
HAL Id: hal-01138344
https://hal.science/hal-01138344v2

Submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A quasistatic phase field approach to pressurized
fractures

Andro Mikelic, M.F. Wheeler, Thomas Wick

To cite this version:
Andro Mikelic, M.F. Wheeler, Thomas Wick. A quasistatic phase field approach to pressurized frac-
tures. Nonlinearity, 2015, 28 (5), pp.1371-1399. �10.1088/0951-7715/28/5/1371�. �hal-01138344v2�

https://hal.science/hal-01138344v2
https://hal.archives-ouvertes.fr


Accepted for publication in Nonlinearity, 2015

A quasistatic phase field approach to pressurized
fractures∗

Andro Mikelić †
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1. Introduction

In petroleum and environmental engineering, mathematical and numerical studies of multiscale and
multiphysics phenomena such as reservoir deformation, surface subsidence, well stability, sand produc-
tion, waste deposition, hydraulic fracturing, and CO2 sequestration are receiving increasing attention.
Hydraulic fracturing is fracturing of various rock layers by a pressurized liquid and is a technique used
to release petroleum, natural gas (shale gas, tight gas, and coal seam gas) for extraction. The first
use of hydraulic fracturing was in 1947 and in 1949 it was commercialized. As of 2010, 60% of all new
oil and gas worldwide production was from fractured wells and as of 2012, 2.5M fracking jobs were
performed.

Modeling is crucial for the understanding and the prediction of the physical behavior of fractured
systems [8]. Issues include evaluation of injection enhancement for various ”frac-job” scenarios and
modeling the interaction between hydraulic and discrete fractures. Specific environmental concerns
involve possible contamination of groundwater, risks to air quality, and migration of gases and hy-
draulic fracturing chemicals to the surface and surface contamination from spills and flowback and
health effects of these.

The computational modeling of the formation and growth of fluid filled fractures in a poroelastic
media is difficult with complex crack topologies. Cracks can grow, form and interact. Tracking sharp
cracks using classical methods can be computationally intensive, especially in realistic heterogeneous
formations. These difficulties have recently been overcome by diffusive crack modeling based on the
introduction of a crack phase field. We refer to the work of Bourdin, Francfort, and Marigo [5] in which
a regularized crack surface functional is shown to converge to a sharp crack surface functional. Our
goal here is to generalize this approach to growing pressurized cracks in poroelastic media. Reports
with our analysis and calculations with a fully implicit incremental formulation can be found in [15, 17].
Our computational approach uses iterative coupling, in which mechanics and flow equations are solved
sequentially. In this paper we analyze a quasistatic formulation of the phase field model that involves
the introduction of a novel incremental approximation that differs from [15, 17] in that the linear
elasticity and nonlinear phase field problem are decoupled, a nonlinear term is treated using a discrete
derivative. In [15, 17] our consideration was limited to an incremental formulation. Specifically in [15],
the Euler-Lagrange equations were considered; whereas [17] treats the problem as energy minimization.

The significance of our new quasistatic model is as follows. To the best of our knowledge, this
is the first phase field model to treat pressurized crack propagation in a poroelastic medium. The
characteristics of the quasi-static model include:

• Crack growth is strongly imposed as an entropy condition;

• The system is closed with the Rice condition interpreted as an energy inequality.

These results are established rigorously as the limit of a corresponding incremental model, as the time
step goes to zero.

The outline of our paper is as follows: In Section 2, we formulate a two-field energy functional coupled
with a crack phase field, involving a time derivative nonnegativity constraint. Our formulation follows
Francfort and Marigo’s variational approach from [9] and [5] and extends the latter to pressurized
cracks in a poroelastic medium. Existence of a solution for this quasistatic problem is proven in
Section 3 by introducing an incremental formulation. This is achieved by subsequently first treating
a phase field step followed by an elasticity step and then establishing a quasistatic limit. A finite
element approximation to our coupled nonlinear system is described in Section 4. The solution of
several benchmark and prototype problems are presented in Section 5. These include comparisons

2 Accepted for publication in Nonlinearity, 2015



with an approach based on the anisotropic energy storage function from [2]. In the Appendix we prove
a technical regularity proposition.

2. Model formulation

A pressurized crack is contained in (0, L)3 and propagates into a poroelastic medium Ω ⊂ (0, L)3,
as shown on Figure 1. We derive a phase-field model for crack propagation. In contrast to crack
propagation in an elastic medium, the quasistatic Biot equations can not be formulated as an energy
minimization problem. Therefore extending the variational phase-field approach of Francfort, Marigo
and others is not straightforward.

As in [15], we approach the problem by applying the fixed stress splitting algorithm [18, 14].
Specifically, p = pB denotes the effective fluid pressure in the poroelastic medium Ω and p = pf is the
fracture fluid pressure. Next, the quasistatic Biot system in Ω

∂t
( 1

M
pB + div (αu)

)
+ div { K

Bfη
(ρfg −∇pB)} = 0; (1)

− div {Ge(u)− α(pB − p0)I + σ0} = 0, (2)

is solved in two steps. The first step consists of solving the pressure equation (1), with a given
displacement u and an enhanced Biot’s modulus M̃ , 1/M̃ = 1/M +α2/Kdr, where Kdr is the drained
bulk modulus and α is Biot’s coefficient. In the second step, Navier’s system (2) for the displacements
is solved for a given pressure p = pB. Convergence of the fixed stress split iterations was established
in [14].

We remark that in this paper we do not solve for the fixed-stress pressure equation (1) but assume
that the pressures pf and pB are given a priori. Our goal here is to focus on how these pressure
variables are modeled in the fixed-stress elasticity equation (2) (present Section 2), well-posedness
(Section 3), numerical approximations and examples (Sections 4 and 5). The non-trivial extension,
formulating both equations of the fixed stress algorithm within a phase-field framework is the purpose
of another study [16].

In order to avoid a possible confusion due to a large number of parameters in the Biot equations,
we present them in Table 1.

SYMBOL QUANTITY UNITY

u displacement m

pB poroelastic fluid pressure Pa

pf fracture fluid pressure Pa

p0 reference poroelastic fluid pressure Pa

σ0 reference stress tensor Pa

e(u) = (∇u + ∇τu)/2 linearized strain tensor dimensionless

K permeability Darcy

α Biot’s coefficient dimensionless

ρf fluid phase density kg/m3

η fluid viscosity kg/m sec

M Biot’s modulus Pa

G Gassman rank-4 tensor Pa

ρf,0 reference state fluid density kg/m3

Bf = ρf,0/ρf formation volume factor dimensionless

Table 1: Unknowns and effective coefficients
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Let the boundary of (0, L)3 be denoted by ∂(0, L)3. We assume homogeneous Dirichlet conditions
for the displacements on ∂D(0, L)3 of ∂(0, L)3. On the remaining part ∂N (0, L)3, Neumann conditions
are defined. Furthermore, the crack domain is C, supposed to be smooth, and ∂NΩ = ∂N (0, L)3 ∪ ∂C.
The unit exterior normal to Ω is n.

We follow Griffith’s criterion [10] and suppose that the crack propagation occurs in the domain Ω
when the elastic energy restitution rate reaches its critical value Gc. If τ is the traction force applied
at part of the boundary ∂NΩ, then we associate to the crack C the following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS −
∫

Ω
αpBdiv u dx+GcH2(C), (3)

where H2(C) is the Hausdorff measure of the crack. Note that τ = −pfn on ∂C.
This energy functional is minimized with respect to the kinematically admissible displacements u

and any crack set satisfying a crack growth condition. The computational modeling of this mini-
mization problem requires approximation of the crack location and of its length. This is achieved by
regularizing the sharp crack surface topology in the solid using diffusive crack zones described by a
scalar auxiliary variable. This variable is a phase-field that interpolates between the unbroken and
the broken states of the material.

A thermodynamically consistent framework for phase-field models has been proposed by Miehe et
al. in [13]. They developed models for quasistatic crack propagation in elastic solids, together with
incremental variational principles.

We introduce the time-dependent crack phase field ϕ, defined on (0, L)3 × (0, T ). The regularized
crack functional reads

Γε(ϕ) =

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx. (4)

This regularization of H2(C), in the sense of the Γ−limit when ε→ 0, was used in [4].
Our further considerations are based on the fact that the evolution of cracks is fully dissipative

in nature. First, the crack phase field ϕ is intuitively a regularization of 1 − 1C and we impose its
negative evolution as

∂tϕ ≤ 0. (5)

Next we follow [13] and [6] and replace energy (3) by a global constitutive dissipation functional for a
rate independent fracture process

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ1+bpBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (6)

We note that k > 0 is a regularization parameter with k � ε.

Remark 1. A straightforward use of the phase field would suggest the 3rd integral in (6) to be of the
form

∫
(0,L)3 αϕpBdiv u dx; that is b = 0. In the classical case of elastic cracks one has 0 ≤ ϕ ≤ 1. We

establish this property for the continuous time problem. Nevertheless, for the time discretized problem
there will be no invariant region nor maximum principle estimates; the phase field unknown ϕ may
be negative and take values larger than 1. Thus, we replace ϕ by ϕ+ in terms where negative ϕ could
lead to erroneous conclusions. In addition the entropy condition (5) prevents ϕ being larger than 1.
To ensure smoothness, we replace ϕ by ϕ1+b, b > 0. We note that such a choice does not modify the
problem for ϕ = 1 or ϕ = 0; however, the intermediate values are slightly smoothed.
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Modeling the interaction between a crack C and ∂N (0, L)3 is not considered in this research and is
excluded. The most complicated situation is in the region where Dirichlet and Neumann boundary
conditions meet and where it is not clear how to define the phase field. We suppose a priori that the
crack does not reach this region, i.e. that ϕ = 1 in a neighborhood O of the contact surface between
outer boundary conditions.

In a porous medium, due to the presence of the pore structure, cracks are tiny but three dimensional
bodies. The energy Eε contains only implicitly the presence of the pressurized crack in the term∫
∂NΩ τ · u dS and still has to be written in an acceptable form which does not include ∂C. Since

Ω = (0, L)3 \ C and ∂Ω = ∂(0, L)3 ∪ ∂C, we have ∂C ⊂ ∂NΩ. The stress in the crack C is −pfI and at
the crack boundary we have the continuity of the contact force

σn = (Ge(u)− αpBI)n = −pfn. (7)

The interface and corresponding notation is described in Figure 1.

Ω

(0, L)3

with pf

Ω

with pB

C

zoom-in

C

∂C

Figure 1: Configuration and notation of the reservoir domain Ω and the crack C and zoom-in to the
crack boundary ∂C where the interface law (7) is prescribed. We recall that Ω = (0, L)3 \ C̄
and ∂Ω = ∂(0, L)3 ∪ ∂C.

The pressure continuity at ∂C allows us to work with the pressure field p with p = pf in C and
p = pB in Ω = (0, L)3 \ C.
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Before introducing the phase field we eliminate the implicit dependence of Eε on the crack by
transforming the traction crack surface integrals as follows∫

Ω
αpBdiv w dx+

∫
∂C
σnw dS =

∫
Ω

(α− 1)pBdiv w dx−∫
Ω
∇pBw dx+

∫
∂N (0,L)3

pBw · n dS.

After replacing GcH2(C) by the phase field regularization (4), the Fréchet derivative of the functional
(6) with respect to u, gives the elasticity equation∫

(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx−

∫
(0,L)3

αϕ1+bpB div w dx

−
∫
∂N (0,L)3

τ ·w dS = −
∫
∂C
pfw · n dS = −

∫
(0,L)3

pBdiv w dx

−
∫

(0,L)3
∇pB ·w dx+

∫
∂N (0,L)3

pBw · n dS, for admissible w. (8)

Next we introduce the phase field ϕ in the terms at the right hand side of (8). It yields

−
∫

(0,L)3
pBdiv w dx 7→ −

∫
(0,L)3

ϕ1+bpBdiv w dx and∫
(0,L)3

∇pB ·w dx 7→
∫

(0,L)3
ϕ1+b∇pB ·w dx.

After inserting the above transformations into (8) and replacing ϕ by ϕ+, we obtain the following
elasticity equation∫

(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
(0,L)3

(α− 1)ϕ1+b
+ p div w dx+∫

(0,L)3
ϕ1+b

+ ∇p ·w dx−
∫
∂N (0,L)3

(τ + pn) ·w dS = 0, for admissible w. (9)

We choose as functional space of admissible displacements VU = {z ∈ H1((0, L)3)3 | z = 0 on ∂D(0, L)3 }.
Then, Equation (9) becomes

Formulation 1 (Weak form of elasticity including pressure force).∫
(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
(0,L)3

(α− 1)ϕ1+b
+ p div w dx+∫

(0,L)3
ϕ1+b

+ ∇p ·w dx−
∫
∂N (0,L)3

(τ + pn) ·w dS = 0, ∀w ∈ VU , (10)

or in differential form

Formulation 2 (Differential form of elasticity including pressure force).

− div
((

(1− k)ϕ2
+ + k

)
Ge(u)

)
+

ϕ1+b
+ ∇p+ (α− 1)∇

(
ϕ1+b

+ p
)

= 0 in (0, L)3, (11)

u = 0 on ∂D(0, L)3, (12)(
(1− k)ϕ2

+ + k
)
Ge(u)n = τ + αpn on ∂N (0, L)3. (13)

6 Accepted for publication in Nonlinearity, 2015



It remains to write the phase field equation. In differential form, the phase field equation reads

Formulation 3 (Differential form of phase-field including pressure force).

∂tϕ ≤ 0 on (0, T )× (0, L)3 and
∂ϕ

∂n
= 0 on (0, T )× ∂(0, L)3; (14)

−Gcε∆ϕ−
Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)(1− α)ϕb+p div u + (1 + b)ϕb+ ∇p · u ≤ 0 in (0, T )× (0, L)3, (15){
−Gcε∆ϕ−

Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)(1− α)ϕb+p div u + (1 + b)ϕb+ ∇p · u
}
∂tϕ = 0 in (0, T )× (0, L)3. (16)

In the above formulation, the inequality (15) is motivated by the entropy condition ∂tϕ ≤ 0.
Therefore, (15) can be viewed as an equation only when ∂tϕ < 0. The Rice condition (16) is a
complementarity condition, which states that either ∂tϕ < 0 (i.e. the fracture grows and (15) is a
phase field equation) or ∂tϕ = 0 (i.e. the geometry does not change from the previous time step and
we satisfy only the inequality (15)). The Rice condition is well-known in fracture mechanics and for
incremental formulations it leads to the complementarity condition for the classical obstacle problem.

In order to write the variational form, we rewrite Rice’s condition (16).

Lemma 1. Let {u, ϕ} be smooth functions satisfying (11)-(15). Then equality (16) is equivalent to

∂t

∫
(0,L)3

{(1

2

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u) +

Gc
2

(
ε|∇ϕ|2 +

1

ε
(1− ϕ)2

)
+

ϕ1+b
+

(
(1− α)p div u +∇p · u

))
dx−

∫
∂N (0,L)3

(τ + pn) · u dS

}
−∫

(0,L)3
ϕ1+b

+

(
(1− α)∂tp div u +∇∂tp · u

)
dx+

∫
∂N (0,L)3

(∂tτ + ∂tpn) · u dS

= 0 on (0, T ). (17)

Proof. Let us suppose equality (16). We integrate it with respect to x over (0, L)3. Next we use ∂tu
as a test function in equation (10) and we add the two equalities. It yields directly (17).

In the opposite direction, we subtract from equality (17) the equality (10), with the test function
w = ∂tu. This subtraction yields equality (17) integrated over (0, L)3. Using (14)-(15) we conclude
that (16) holds true.

Remark 2. In fact, we note that in (16) being equal to zero can be replaced by ≤ 0, which is used in
the definition of the weak solution.

Let p0 = p(·, 0), τ0 = τ(·, 0) and ϕ0 the initial value of ϕ. We denote by u0 the solution for equation
(10) with ϕ = ϕ0, p = p0 and τ = τ0.

Before introducing the variational problem, we recall the definitions of the appropriate functional
spaces. A function ψ ∈ L1((0, L)3 × (0, T )) is a function of bounded variation if and only if

V (ψ, (0, T )× (0, L)3) := sup
{∫ T

0

∫
(0,L)3

ψ (div ζ + ∂tζ) :

ζ ∈ C∞0 ((0, T )× (0, L)3), ‖ζ‖C0 ≤ 1
}
< +∞. (18)
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Moreover, V (ψ, (0, T )× (0, L)3) = |Dψ|((0, T )× (0, L)3). The norm ‖ψ‖BV := ‖ψ‖L1 + V (ψ, (0, T )×
(0, L)3) endows BV ((0, T )× (0, L)3) with a Banach space structure.

A sequence {ψn} converges weakly? in BV ((0, T )× (0, L)3) to ψ if ψn → ψ strongly in L1((0, T )×
(0, L)3) and∇ψn and ∂tψn converge weakly? in the sense of measures to∇ψ and ∂tψ. In fact a sequence
converges weakly? if and only if it converges in L1 and it is bounded in the BV norm (see Section 3.1
in [1]). The Sobolev inequality gives the embeddings BV ((0, T ) × (0, L)3) ⊂ Lq((0, T ) × (0, L)3) for
every q ∈ [1, 4

3 ]. The embedding is compact for q < 4
3 (see Corollary 3.49 of [1]).

The variational formulation, corresponding to the equations (14)-(16) is:

Formulation 4 (Weak form of phase-field including pressure). Find ϕ ∈ BV ((0, T ) × (0, L)3) ∩
L2(0, T ;H1((0, L)3)) such that

∂tϕ, ∂tϕ− and ∂tϕ+ are nonpositive bounded measures; (19)∫ T

0

∫
(0,L)3

(
(1− k)ϕ+ψGe(u) : e(u) +Gc

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

))
dxdt

+(1 + b)

∫ T

0

∫
(0,L)3

ϕb+((1− α)p div u +∇p · u) ψ dxdt ≤ 0,

∀ ψ ∈ L∞((0, T )× (0, L)3) ∩ L2(0, T ;H1((0, L)3)),

ψ ≥ 0 a.e. on (0, T )× (0, L)3; (20)

ϕ(x, 0) = ϕ0(x) on (0, L)3, 0 ≤ ϕ0(x) ≤ 1; (21)∫
(0,L)3

{(1

2

(
(1− k)ϕ2

+(t) + k
)
Ge(u(t)) : e(u(t)) +

Gc
2

(
ε|∇ϕ(t)|2 +

1

ε
(1− ϕ(t))2

)
+ϕ1+b

+ (t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
dx−

∫
∂N (0,L)3

(τ(t) + p(t)n) · u dS

}
−
∫

(0,L)3

{(1

2

(
(1− k)(ϕ0

+)2 + k
)
Ge(u0) : e(u0) +

Gc
2

(
ε|∇ϕ0|2 +

1

ε
(1− ϕ0)2

)
+(ϕ0

+)1+b
(
(1− α)p0 div u0 +∇p0 · u0

))
dx−

∫
∂N (0,L)3

(τ0 + p0n) · u0 dS

}
−∫ t

0

∫
(0,L)3

ϕ1+b
+

(
(1− α)∂ηp div u +∇∂ηp · u

)
dxdη+∫ t

0

∫
∂N (0,L)3

(∂ητ + ∂ηpn) · u dSdη ≤ 0 a. e. on (0, T ). (22)

Remark 3. For a smooth solution ϕ such that ∂t∇ϕ− ∈ L2((0, T )× (0, L)3), nonpositivity of
∂tϕ, ∂tϕ− and ∂tϕ+ implies nonnegativity of ϕ. This follows from the following observations.
Namely, nonnegativity of −∂tϕ− and − ∂tϕ+ allows using them as test functions in (20). From
Rice’s equality and (20) with −∂tϕ− and − ∂tϕ+ as respective test functions, we have∫ T

0

∫
(0,L)3

(1− k)ϕ+∂tϕ−Ge(u) : e(u) dxdt− Gc
ε

∫ T

0

∫
(0,L)3

(1− ϕ)∂tϕ− dxdt+

Gcε

∫ T

0

∫
(0,L)3

∇∂tϕ− · ∇ϕ dxdt+ (1 + b)

∫ T

0

∫
(0,L)3

ϕb+((1− α)p div u+

∇p · u) ∂tϕ− dxdt = 0. (23)
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Since the supports of ϕ+ and ϕ− are orthogonal, ϕ+(x, t)∂tϕ−(x, t) = 0 on (0, T ) × (0, L)3 and the
first and the fourth integral cancel. For the integrand in the second term we have

−(1− ϕ)∂tϕ− = −∂tϕ− +
1

2
∂tϕ

2
−

and

ε

∫ T

0

∫
(0,L)3

∇∂tϕ− · ∇ϕ dxdt =
ε

2

∫
(0,L)3

|∇ϕ−(T )|2 dx ≥ 0.

Insertion of the above equalities in equality (23) and using the nonnegativity assumption ϕ−(0) = 0 of
the initial condition yield

−Gc
2ε

∫ T

0

∫
(0,L)3

∂tϕ−︸ ︷︷ ︸
≤0

dxdt+
Gc
2

∫
(0,L)3

(1

ε
ϕ2
−(T ) + ε|∇ϕ−(T )|2

)
dx = 0 (24)

Equality (24) yields ∂tϕ− = 0. Unfortunately our constructed solution is not necessarily smooth and
this argument does not apply to weak solutions. Note that even for smooth ϕ, ϕ− is only a Lipschitz
function and ∂t∇ϕ− in general does not exist as a function.

Our goal in the remainder of this paper is to consider the weak settings; namely Formulation 1 and
Formulation 4. We notice that the corresponding Galerkin finite element approximations are provided
in Finite Element Formulation 2 and Finite Element Formulation 1 presented in Section 4.

3. Existence of the quasistatic problem

In this section we prove existence of a solution for the quasistatic problem by introducing an incre-
mental formulation.

We start by making the following assumptions on the data:

• G is a positive definite constant rank-4 tensor,

• k is a positive constant,

• and the following regularity assumptions:

p ∈W 1,1(0, T ;W 1,2r((0, L)3)), r > 3;

τ ∈W 1,1(0, T ;W 1−1/r,r(∂N (0, L)3)),

and ϕ0 ∈W 2,r((0, L)3), 0 ≤ ϕ0 ≤ 1. (25)

Let
Kp = {ψ ∈ H1((0, L)3)) | ψ ≤ ϕp a.e. on (0, L)3}, (26)

where ϕp is the phase field and up the displacement from the previous time step, respectively.
We consider a different incremental problem than introduced in [15]; namely, a decoupling into a

linear elasticity problem and a nonlinear phase field problem. The nonlinear term ϕb+ is treated using
a discrete derivative. In addition, the friction term is eliminated.

Let O be a small neighborhood of the contact surface between our outer boundary conditions and
let χ be the indicator function of its complement. The size of O will be defined later precisely by (45).
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The system takes the form:∫
(0,L)3

χ(1− k)ϕ+(ψ − ϕ)Ge(up) : e(up) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ψ − ϕ)+

ε∇ϕ · ∇(ψ − ϕ)
)
dx+

∫
(0,L)3

ϕ1+b
+ − (ϕp)

1+b
+

ϕ− ϕp
(
(1− α)pp div up+

∇pp · up
)
(ψ − ϕ) dx ≥ 0, ∀ ψ ∈ Kp ∩ L∞((0, L)3), (27)∫

(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

ϕ1+b
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ VU . (28)

We briefly explain the rationale of (27) and in particular the replacing of (1 + b)ϕb+ by the finite
difference

ϕ1+b
+ − (ϕp)

1+b
+

ϕ− ϕp
. (29)

We firste note that in the quasistatic limit ϕ is approaching ϕp and the quotient from (29) behaves as
(1 + b)ϕb+. Next we take as test function ψ = ϕp − ψ in (20) and we recall that the time derivative
difference quotient only needs to approximatively satisfy the Rice condition. For a second test function
ϕp−ϕ we impose the equality in (20). Subtracting the inequality and equality yields (27). Regarding
the finite difference (29), we remark that several estimates are only valid with this choice rather than
the original term. Only this choice allows us to pass to the quasi-static limit, which was not possible
for the implicit formulation as discussed in [15, 17].

3.1. The phase field step

Let δ > 0 and θδ be given by

θδ(y) =


1, y ≤ 0;
1− y/δ, 0 < y ≤ δ;
0, δ < y.

(30)

Next let ϕ̃ = inf{1, ϕ+}, ϕ ∈ L1((0, L)3), and let

kreg(ϕp, g) = inf{0,−Gcε∆ϕp −
Gc
ε

(1− ϕp) + (1− k)χGe(up) : e(up)g̃+

inf{1,
g1+b

+ − (ϕ1+b
p )+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
} on (0, L)3. (31)

We consider the following penalized variant of the variational inequality (27)∫
(0,L)3

(1− k)χϕ̃ψGe(up) : e(up) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ+

ε∇ϕ · ∇ψ
)
dx+

∫
(0,L)3

inf{1,
ϕ1+b

+ − (ϕp)
1+b
+

ϕ− ϕp
}
(
(1− α)pp div up+

∇pp · up
)
ψ dx−

∫
(0,L)3

kreg(ϕp, ϕ)θδ(ϕp − ϕ)ψ = 0, ∀ ψ ∈ H1((0, L)3), (32)

In the following propositions we drop the domain notation for the function spaces.
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Proposition 1. Let pp ∈ W 1,r, ϕp ∈ W 2,r, ϕp ≤ 1 and up ∈ W 1,2r, r > 3. Then there exists a
solution ϕ = ϕδ ∈ H1 for variational equation (32) satisfying

||ϕδ||W 2,r ≤ C(||up||2W 1,2r + ||pp||2W 1,r), (33)

where the constant C is independent of δ.

Proof. See Appendix A.

Proposition 2. Let pp ∈ W 1,r, ϕp ∈ W 2,r, ϕp ≤ 1 and up ∈ W 1,2r, r > 3. Then ϕδ ⇀ ϕ weakly
in W 2,r, as δ → 0, where ϕ ∈ W 2,r is a solution of the variational inequality (27) satisfying estimate
(33).

Proof. We first prove that ϕδ ∈ Kp. Let ζ = ϕδ − inf{ϕδ, ϕp} ≥ 0. We use ζ as a test function in
equation (32), with the goal to prove that ζ = 0. Testing equation (32) with ζ yields

Gc

∫
(0,L)3

(1

ε
(ϕδ − ϕp)ζ + ε∇(ϕδ − ϕp) · ∇ζ

)
dx+

∫
(0,L)3

{
(1− k)χϕ̃δGe(up) : e(up)

+ inf{1,
(ϕ1+b

δ )+ − (ϕp)
1+b
+

ϕδ − ϕp
}
(
(1− α)pp div up +∇pp · up

)
−Gcε∆ϕp −

Gc
ε

(1− ϕp)

}
ζ dx−

∫
(0,L)3

kreg(ϕp, ϕδ)θδ(ϕp − ϕδ)ζ = 0. (34)

For ϕδ < ϕp, we have ζ = 0. Next, ϕδ ≥ ϕp yields θδ = 1 and ζ = ϕδ − ϕp. Finally,

inf{1,
(ϕδ)

1+b
+ − (ϕp)

1+b
+

ϕδ − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+ (1− k)χϕ̃δGe(up) : e(up)

−Gcε∆ϕp −
Gc
ε

(1− ϕp)− kreg(ϕp, ϕδ) ≥ 0 (a.e) on (0, L)3

and we obtain from (34) ζ = 0.
By estimate (33), the set {ϕδ}δ>0 is bounded in W 2,r independently of δ. Hence, by the weak

compactness, it contains a subsequence in Kp which converge weakly in W 2,r and strongly in C1,s ,
s < 1− 3/r, to an element ϕ of Kp.

To show that ϕ satisfies equation (27), it is enough to follow [12], page 109 and apply Minty’s lemma
to the monotone term defined by kregθδ.

3.2. The elasticity step

Proposition 3. Let p ∈ W 1,2r, τ ∈ W 1−1/r,r and ϕ ∈ W 2,r, r > 3. Let O be a smooth neighborhood
of the contact surface between Dirichlet and Neumann conditions. Then there exists a unique solution
u ∈W 2,r((0, L)3 \ O)3 for variational equation (28).

Proof. Obviously, problem (28) has a unique solution u ∈ H1((0, L)3)3. We write in the following
differential form

− div
(
Ge(u)

)
= Ge(u)∇ log

(
(1− k)ϕ2

+ + k
)

−
ϕ1+b

+ ∇pp + (α− 1)∇
(
ϕ1+b

+ pp
)

(1− k)ϕ2
+ + k

in (0, L)3, (35)

u = 0 on ∂D(0, L)3, (36)(
(1− k)ϕ2

+ + k
)
Ge(u)n = τp + αppn on ∂N (0, L)3. (37)
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Then the regularity theory for the Navier equations of the linear elasticity (see e.g. [7], Theorems
6.3-6) and a simple bootstrapping yield u ∈W 2,r((0, L)3 \ O)3.

3.3. The quasistatic limit

In this subsection we suppose for simplicity b = 1.
We start by stating auxiliary lemmas easily derived from elementary inequalities:

Lemma 2.

(1− k)ϕ+(ϕ− ϕp)Ge(up) : e(up) +
(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u− up) ≥

1

2

(
(1− k)(ϕ2

+ − (ϕp)
2
+)Ge(up) : e(up) +

(
(1− k)ϕ2

+ + k
)
(Ge(u) : e(u)−

Ge(up) : e(up)
)

=
1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
. (38)

Lemma 3.

−1

ε
(1− ϕ)(ϕ− ϕp) + ε∇ϕ · ∇(ϕ− ϕp) ≥

−1

ε
(ϕ− ϕp) +

1

2ε
(ϕ2 − ϕ2

p) +
ε

2
(|∇ϕ|2 − |∇ϕp|2). (39)

Lemma 4.

(ϕ2
+ − (ϕp)

2
+)pp div up + ϕ2

+pp div (u− up) =

p div u ϕ2
+ − pp div up(ϕp)

2
+ − ϕ2

+ div u(p− pp), (40)

(ϕ2
+ − (ϕp)

2
+)∇pp · up + ϕ2

+∇pp · (u− up) =

∇p · u ϕ2
+ −∇pp · up(ϕp)2

+ − ϕ2
+(∇p−∇pp) · u. (41)

We suppose the quasistatic problem (10), (20)-(22) is discretized with a uniform time step ∆t.
Given solutions at discrete times tj , j = 0, . . . , N , {ϕ∆t(tj),u∆t(tj)} are extended from the discrete
times {tj}0≤j≤N to (0, T ) by

ϕ∆t(t) = ϕ∆t(tj) if tj ≤ t < tj+1, j = 0, . . . N − 1; (42)

ϕ∆t(t0) = ϕ∆t(0) = ϕ0; (43)

u∆t(t) = u∆t(tj) if tj ≤ t < tj+1, j = 0, . . . N − 1. (44)

Proposition 4. Let us suppose that hypothesis (25) holds true and

|O|γ/(2+γ)/|∆t| = O(|∆t|). (45)

Let {ϕ∆t,u∆t} be a solution to (27)-(28) corresponding to the time discretization step ∆t. Then we
have

||(ϕ∆t)+e(u∆t)||L∞(0,T ;L2) +
√
k||u∆t||L∞(0,T ;H1) ≤ C, (46)

||(ϕ∆t)+||L∞((0,T )×(0,L)3) ≤ C, (47)

||ϕ∆t||L∞(0,T ;L2) + ||ε∇ϕ∆t||L∞(0,T ;L2) + ||∂∆tϕ∆t||L1((0,T )×(0,L)3) ≤ C, (48)
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where C is a generic constant independent of ∆t and

∂∆tψ(t) =
ψ(tj+1)− ψ(tj)

∆t
, for tj ≤ t < tj+1, j = 0, . . . N − 1.

Proof. First we recall that initial condition (21) and definition of the convex sets Kp imply

ϕ∆t ≤ 1 on (0, L)3 × (0, T ) and 0 ≤ (ϕ∆t)+ ≤ 1 on (0, L)3 × (0, T ). (49)

Estimate (49) contains estimate (47).

Next we use w = u∆t as a test function in variational equation (28). It yields∫
(0,L)3

{
|(ϕ∆t)+e(u∆t)|2 + k(|∇u∆t|2 + |u∆t|2)

}
dx ≤ C.

The above inequality implies estimate (46), with constant C independent of ∆t.

At this point we recall a Meyers type result for the linear elasticity nonhomogeneous Navier equations
from [19]. It says that there is a γ > 0 such that,

||u∆t(t)||W 1,2+γ ≤ C(k, ||(ϕ∆t)+||∞, L,G)
{
||(ϕ∆t)

2
+p(t)||L2+γ((0,L)3)+

||τ(t) + αp(t)||L2(2+γ)/3(∂N (0,L)3)

}
. (50)

Hence under the data smoothness we have, in addition to (46), that

||u∆t||L∞(0,T ;W 1,2+γ) ≤ C, (51)

where C does not depend on the time discretization step ∆t. Consequently

sup
0≤t≤T

∫
(0,L)3

(1− χ)Ge(u∆t) : e(u∆t) ≤ C|O|γ/(2+γ). (52)

Next, for j ∈ {1, . . . , N} we set u = u∆t(tj) and up = u∆t(tj−1) and test equation (28) by w = u−up.
Then we subtract inequality (27), with ψ = ϕp, from the obtained equality. It yields

∫
(0,L)3

{
(1− k)ϕ+(ϕ− ϕp)Ge(up) : e(up) +

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u− up)

}
dx

+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ϕ− ϕp) + ε∇ϕ · ∇(ϕ− ϕp)

)
dx

+

∫
(0,L)3

(
(1− α)

(
(ϕ2

+ − (ϕp)
2
+)pp div up + ϕ2

+pp div (u− up)
)
+

(ϕ2
+ − (ϕp)

2
+)∇pp · up + ϕ2

+∇pp · (u− up)
)
dx−

∫
∂N (0,L)3

(τp + ppn) · (u− up) dS

= −
∫

(0,L)3
(1− k)(1− χ)ϕ+(ϕ− ϕp)Ge(up) : e(up) dx. (53)
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After inserting (38), (39), (40) and (41) into (53), we get∫
(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
dx

−Gc
∫

(0,L)3

ϕ− ϕp
ε

dx+Gc

∫
(0,L)3

(
1

2ε
(ϕ2 − ϕ2

p) +
ε

2
(|∇ϕ|2 − |∇ϕp|2)

)
dx+∫

(0,L)3

{(
(1− α)p div u +∇p · u

)
ϕ2

+ − ((1− α)pp div up +∇pp · up
)
(ϕp)

2
+

}
dx+∫

∂N (0,L)3

{
(τ + pn) · u− (τp + ppn) · up

}
dS ≤ ∆t

∫
∂N (0,L)3

|u||τ − τp + (p− pp)n
∆t

| dS

+C∆t

∫
(0,L)3

(|ϕ+e(u)||p− pp
∆t

|+ |u||∇p− pp
∆t

|) dx+ C|O|γ/(2+γ). (54)

We remark that our motivation for using the discrete derivative for ϕ2
+, instead of 2ϕ+, is to obtain

(54). Namely, the Taylor remainder can not be controlled by our time estimates. Next we sum up
over the time intervals (tj−1, tj), j = 1, . . . ,M and obtain

∫
(0,L)3

1

2

(
(1− k)(ϕ∆t)

2
+(t) + k

)
Ge(u∆t(t)) : e(u∆t(t)) dx

+Gc

∫ t

0

∫
(0,L)3

|∂∆tϕ∆t(ξ)|
ε

dxdξ

+Gc

∫
(0,L)3

(
ϕ2

∆t(t)

2ε
+
ε

2
|∇ϕ∆t(t)|2

)
dx ≤ Gc

∫
(0,L)3

(
ϕ2(0)

2ε
+
ε

2
|∇ϕ(0)|2

)
dx

+C||p||W 1,1(0,t;L2)||(ϕ∆t)+e(u∆t)||L∞(0,t;L2) + C||∇p||W 1,1(0,t;L2)||u∆t||L∞(0,t;L2)+

C(||τ ||W 1,1(0,t;L2(∂N (0,L)3)) + ||p||W 1,1(0,t;L2(∂N (0,L)3)))||u∆t||L∞(0,t;H1) +
C

|∆t|
|O|γ/(2+γ)

+

∫
(0,L)3

(
(1− k)ϕ2(0) + k

)
Ge(u(0)) : e(u(0)) dx, (55)

for t ≤ tM . Using that |O|γ/(2+γ)/|∆t| = O(|∆t|), estimate (48) follows from (55).

Our goal is now to use the estimates (46)-(48) and pass to the limit ∆t→ 0.

Theorem 1. Let us suppose the data regularity assumptions (25) and (45). Let {ϕ∆t,u∆t} be a
solution to (27)-(28) corresponding to the time discretization step ∆t. Then there is a subsequence
of {ϕ∆t,u∆t}, denoted by the same subscript, and {ϕ,u} ∈ BV ((0, T ) × (0, L)3) ∩ L2(0, T ;H1) ×
L∞(0, T ;H1), ϕ ≤ ϕ0 a.e. on (0, T )×(0, L)3 , ∂tϕ, ∂tϕ− and ∂tϕ+ are nonpositive bounded measures,
such that

u∆t
∗
⇀ u weak− ∗ in L∞(0, T ;H1); (56)

u∆t → u strongly in L2(0, T ;H1); (57)

ϕ∆t
∗
⇀ ϕ weak− ∗ in BV ((0, T )× (0, L)3); (58)

ϕ∆t → ϕ strongly in Lq((0, T )× (0, L)3), ∀q ∈ [1,
4

3
); (59)

ϕ∆t⇀ϕ weakly in L2(0, T ;H1), (60)

when ∆t→ 0. Furthermore, {ϕ,u} is a solution for (10), (20)-(22).
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Proof. We start by observing that

< ∂tϕ∆t, ψ >=< ∂∆tϕ∆t, ψ >, ∀ψ ∈ C∞0 ((0, T )× (0, L)3),

and by density for all ψ ∈ C0((0, T )× (0, L)3). Therefore, we have

| < ∂tϕ∆t, ψ > | ≤ ||∂∆tϕ∆t||L1 ||ψ||L∞ , ∀ψ ∈ C0((0, L)3 × (0, T )).

Estimates (46)-(48), and the above estimate imply the a priori estimates

||u∆t||L∞(0,T ;H1) + ||ϕ∆t||BV ((0,T )×(0,L)3) + ||ϕ∆t||L2(0,T ;H1) ≤ C. (61)

From (61) we observe that Sobolev embeddings and the weak∗compactness in L∞(0, T ;H1) and in
BV ((0, T )× (0, L)3) ∩ L2(0, T ;H1) respectively, take place. This provides existence of a subsequence
of {ϕ∆t,u∆t}, denoted by the same subscript, with limit {ϕ,u} ∈ BV ((0, T )×(0, L)3)∩L2(0, T ;H1)×
L∞(0, T ;H1), satisfying convergences (56), (58)-(60). In addition, ϕ ≤ ϕ0 a.e. on (0, T )× (0, L)3 and
∂tϕ is a nonpositive bounded measure. Since u∆t(t) ≤ u∆t(t−∆t) implies the same inequality for its
positive and negative parts, ∂tϕ− and ∂tϕ+ are also nonpositive bounded measures.

It remains to prove that {ϕ,u} is a solution for (10), (20)-(21), satisfies inequality (22) and u∆t → u
strongly in L2(0, T ;H1). Replacing in (28) u by u∆t(t) and ϕ by ϕ∆t(t) and passing to the limit, we
obtain ∫ T

0

∫
(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dxdt−∫ T

0

∫
(0,L)3

(α− 1)ϕ2
+p div w dxdt+

∫ T

0

∫
(0,L)3

ϕ2
+∇pw dxdt

−
∫ T

0

∫
∂N (0,L)3

(τ + pn) ·w dSdt = 0, ∀w ∈ L2(0, T ;VU ). (62)

Next we choose w = u∆t as test function in (28) and pass to the limit ∆t→ 0. It yields

lim
∆t→0

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt =∫ T

0

∫
(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dxdt. (63)

Using Fatou’s lemma we have∫ T

0

∫
(0,L)3

lim inf
∆t→0

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt

≤ lim inf
∆t→0

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt

=

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ)2

+ + k
)
Ge(u) : e(u) dxdt. (64)

Consequently,

u∆t → u strongly in L2(0, T ;VU ), as ∆t→ 0. (65)
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We note that

u ∈ L∞(0, T ;W 1,2+γ), for some γ > 0, (66)

and for every nonnegative function g ∈ L1+γ0((0, T )× (0, L)3), γ0 > 0,∫ T−∆t

0

∫
(0,L)3

|(ϕ∆t)+(t+ ∆t)− (ϕ∆t)+(t)|g dxdt ≤

C|∆t|γ0/(1+γ0)||g||L1+γ0 ((0,T )×(0,L)3)||∂∆tϕ∆t||(1+γ0)/γ0
L1((0,T )×(0,L)3)

. (67)

For every ψ ∈ C∞0 ((0, L)3 × (0, T )), (65) implies

lim
∆t→0

|
∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t − u) : e(u∆t − u) dxdt| → 0,

as ∆t→ 0, (68)

and (63)-(68) yield ∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t) : e(u∆t) dxdt =∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t − u) : e(u∆t − u) dxdt+

2

∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t) : e(u) dxdt−∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u) : e(u) dxdt→∫ T

0

∫
(0,L)3

(ϕ)+ψGe(u) : e(u) dxdt, as ∆t→ 0. (69)

Next we use that

|
(ϕ∆t)

2
+(t)− (ϕ2

∆t)+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)
− 2(ϕ∆t)+(t)| ≤ C|(ϕ∆t)+(t)− (ϕ∆t)+(t−∆t)|

and convergences (63)-(68) to get

lim
∆t→0

∫ T

∆t

∫
(0,L)3

(ϕ∆t)
2
+(t)− (ϕ2

∆t)+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(1− α)p(t−∆t) div u(t−∆t)+

∇p(t−∆t) · u(t−∆t)
)
ψ dxdt =

lim
∆t→0

∫ T

0

∫
(0,L)3

2(ϕ∆t)+(t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
ψ dxdt =∫ T

0

∫
(0,L)3

2ϕ+(t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
ψ dxdt. (70)
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Now we write equation (27) in the equivalent form (71)-(72)∫
(0,L)3

χ(1− k)(ϕ∆t)+(t)ψGe(u∆t)(t−∆t) : e(u∆t(t−∆t)) dx

+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ∆t(t))ψ + ε∇ϕ∆t(t) · ∇ψ

)
dx+∫

(0,L)3

(ϕ∆t)
2
+(t)− (ϕ∆t)

2
+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(1− α)p(t−∆t) div u∆t(t−∆t)+

∇p(t−∆t) · u∆t(t−∆t)
)
ψ dx ≤ 0, a.e. on (∆t, T ),

∀ ψ ∈ C∞([0, L]3), ψ ≥ 0 a.e. on (0, L)3; (71)∫
(0,L)3

χ(1− k)(ϕ∆t)+(t)(ϕ∆t(t−∆t)− ϕ∆t(t))Ge(u∆t(t−∆t)) : e(u∆t(t−

∆t)) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ∆t)(ϕ∆t(t−∆t)− ϕ∆t(t))+

ε∇ϕ∆t · ∇(ϕ∆t(t−∆t)− ϕ∆t(t))
)
dx+

∫
(0,L)3

(ϕ∆t)
2
+(t)− (ϕ∆t)

2
+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(

1− α)p(t−∆t) div u∆t(t−∆t)+

∇p(t−∆t) · u∆t(t−∆t)
)
(ϕ∆t(t−∆t)− ϕ∆t(t)) dx = 0, a.e. on (∆t, T ). (72)

Using convergences (56)-(60), (65) and (69)-(70) we pass to the limit ∆t → 0 in inequality (71) and
get ∫ T

0

∫
(0,L)3

(1− k)ϕ+ψGe(u) : e(u) dxdt+Gc

∫ T

0

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ

+ε∇ϕ · ∇ψ
)
dxdt+ 2(1− α)

∫ T

0

∫
(0,L)3

ϕ+p div uψ dxdt+∫ T

0

∫
(0,L)3

2ϕ+ ∇p · u ψ dxdt ≤ 0,

∀ ψ ∈ C∞([0, T ]× [0, L]3), ψ ≥ 0 a.e. on (0, T )× (0, L)3; (73)

ϕ(x, 0) = ϕ0(x) on (0, L)3, 0 ≤ ϕ0(x) ≤ 1. (74)

It remains to prove Rice’s equality in its weak form (22).
We write estimate (54) in the form∫

(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
dx

+Gc

∫
(0,L)3

(
1

2ε
((1− ϕ)2 − (1− ϕp)2) +

ε

2
(|∇ϕ|2 − |∇ϕp|2)

)
dx+∫

(0,L)3

{(
(1− α)p div u +∇p · u

)
ϕ2

+ − ((1− α)pp div up +∇pp · up
)
(ϕp)

2
+

}
dx−∫

∂N (0,L)3

{
(τ + pn) · u− (τp + ppn) · up

}
dS + ∆t

∫
∂N (0,L)3

u · τ − τp + (p− pp)n
∆t

dS

−∆t

∫
(0,L)3

ϕ2
+

(
div u

p− pp
∆t

+ u · ∇p− pp
∆t

) dx = C|O|γ/(2+γ) (75)
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After summing up over the time intervals (tj−1, tj) we obtain∫
(0,L)3

1

2

(
(1− k)ϕ2

+(t) + k
)
Ge(u(t)) : e(u(t)) dx+Gc

∫
(0,L)3

(
(1− ϕ(t))2

2ε
+

ε

2
|∇ϕ(t)|2

)
dx+

∫
(0,L)3

(
(1− α)p div u(t) +∇p · u(t)

)
ϕ2

+(t) dx−∫
∂N (0,L)3

(τ + pn) · u(t) dS −
∫ t

0

∫
(0,L)3

ϕ1+b
+

(
(1− α)∂tp div u +∇∂tp · u

)
dxdt+∫ t

0

∫
∂N (0,L)3

(∂tτ + ∂tpn) · u dSdt−
∫

(0,L)3

{(1

2

(
(1− k)(ϕ0

+)2 + k
)
Ge(u0) : e(u0)+

Gc
2

(
ε|∇ϕ0|2 +

1

ε
(1− ϕ0)2

)
+ (ϕ0

+)2
(
(1− α)p0 div u0 +∇p0 · u0

))}
dx

+

∫
∂N (0,L)3

(τ0 + p0n) · u0 dS =
C

∆t
|O|γ/(2+γ), (76)

for all t ∈ (0, T ). Next we multiply equality (76) by the characteristic function of any time interval and
pass to the limit ∆t→ 0. Using the previously established convergences and the lower semicontinuity
of the L2-norm of ∇ϕ∆t, we obtain inequality (22).

4. Numerical approximation

In this section, we formulate finite element approximations for the Formulations 4 and 1 presented in
Section 2. Specifically, we apply a standard Galerkin finite element method in 2D on quadrilaterals.
The displacements u are approximated by continuous bilinears and are referred to as the finite element
space Vh. We take ϕ to be continuous bilinear and denote this space as Wh. The standard spatial
approximation parameter is represented by h.

In our numerical treatment, we set b = 1. The regularized incremental problem reads:∫
(0,L)3

(1− k)ϕh+ψGe(up) : e(up) dx+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈Wh, (77)∫
(0,L)3

(
(1− k)(ϕh+)2 + k

)
Ge(uh) : e(w) dx−

∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕh)2
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh. (78)

In contrast to [15] (and also [11]), we use a sequential coupling algorithm in which both subproblems
are solved subsequently; namely, we first solve equation (77) for ϕh and then solve equation (78) for
uh, with a given phase field ϕh.
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This procedure has two advantages:

• it is computationally efficient since we use a loosely coupled scheme, which only requires a few
subiterations;

• considering the fact that the elasticity problem is linear no Newton method is required.

In the numerical examples in Section 5, we deal with an isotropic poroelastic medium with

Gijkl = µ(δilδjk + δikδjl) + λδijδkl.

The stress tensor is defined as

σij =
∑
k,l

Gijklekl(u) = µeij(u) + λtr(e)δij ,

where µ and λ denote the Lamé parameters. Our computations are compared with the approach
from [2], where Hooke’s law is modified by introducing an anisotropic energy storage functional. Here,
the stress tensor is additively decomposed into a tensile part σ+ and a compressive part σ−, i.e.,
σ :=

(
(1−k)ϕ2 +k

)
σ+ +σ−. We emphasize that the energy degradation only acts on the tensile part.

The modified energy functional then reads:

Eε(u, ϕ) =

∫
(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
σ+ : e(u) + σ− : e(u)

)
dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ2
+pBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx. (79)

Here, the two stress contributions are given by:

σ+ := κtr+(e)I + 2µeD,

σ− := κtr−(e)I,

with κ = 2
nµ+ λ and where the deviatoric part of the strain tensor e is defined as

eD := e− 1

n
tr(e)I, n = 2, 3.

Moreover,
tr+(e) = max(tr(e), 0), tr−(e) = tr(e)− tr+(e).

The corresponding Euler-Lagrange equations read:

Formulation 5 (Weak form of phase-field including pressure and an anisotropic energy storage func-
tional). ∫

(0,L)3
(1− k)ϕh+ψσ

+ : e(up) dx+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈Wh, (80)
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Formulation 6 (Weak form of elasticity including pressure and an anisotropic energy storage func-
tional). ∫

(0,L)3

(
(1− k)(ϕh+)2 + k

)
σ+ : e(w) dx+

∫
(0,L)3

σ− : e(w) dx

−
∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕh)2
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh. (81)

The isotropic system (77) and (78) is recovered by setting

σ+ := Ge(up) and σ− ≡ 0.

We formulate separately a semilinear and bilinear form for each of the two subproblems. The spatially
discretized elasticity problem can be written in the following way:

Finite Element Formulation 1 (Variational FE formulation of the nonlinear phase-field function).
Given pp and up find ϕh ∈Wh such that:

A(ϕh)(ψ) =

∫
(0,L)3

(1− k)ϕh+ψσ
+ : e(up) dx

+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈Wh.

Finite Element Formulation 2 (Variational FE formulation of elasticity). Given pp and ϕp, find
uh ∈ Vh such that:

B(uh)(w) =

∫
(0,L)3

(
(1− k)(ϕh+)2 + k

)
σ+ : e(w) dx+

∫
(0,L)3

σ− : e(w) dx

−
∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕ+)2
(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh.

We adopt a partitioned coupling scheme to solve the equations. First, the nonlinear problem (Finite
Element Formulation 1) is solved with Newton’s method. For the iteration steps m = 0, 1, 2, . . ., we
have:

A′(ϕh,m)(δϕh, ψ) = −A(ϕh,m)(ψ), ϕh,m+1 = ϕh,m + ωδϕh, (82)

with a line search parameter ω ∈ (0, 1]. Here, the Jacobian of A(ϕh)(ψ) is denoted by A′(·)(·).
Then, we solve for the linear elasticity problem (Finite Element Formulation 2), which can be treated

with an appropriate solver.
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5. Numerical tests

We perform four numerical tests where we assume a dimensionless form of the equations. In the first
example, we consider Sneddon’s benchmark and compare it to findings in the literature. In the second
and third test cases, we compare formulation (77), (78) with (80), (81). In the second test case, an
increasing pressure is applied to a single crack, which starts propagating after some time. For the third
test, we use an increasing pressure to study two joining cracks. In the final test, heterogeneous porous
media are considered. The last two tests demonstrate the performance of the variational approach
to fractures in which joining and branching of cracks are easily treated. The programming code is a
modification of the multiphysics program template [25], based on the finite element software deal.II

[3].

5.1. Sneddon’s benchmark

The first example is motivated by Bourdin et al. [6] and is based on Sneddon’s theoretical calculations
[21, 20]. Specifically, we consider a 2D problem where a (constant) pressure p is used to drive the
deformation and crack propagation.

Figure 2: Example 1 (going from top left to bottom right): Crack pattern, normal displacements
(required for computing the width of the crack), mesh, and zoom-in of the mesh with the
crack pattern. The crack is denoted in red with ϕ = 0 and the unbroken material is blue
with ϕ = 1. In the second figure, the normal displacements are positive (red) above the
fracture and negative (blue) below the fracture. The displacements are of order 10−4 (see
Figure 3). The green part in the final figure shows the thickness ε of the mushy zone in the
phase-field variable.
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Figure 3: Example 1: COD for different h. Sneddon’s pink line with squares corresponds to his
analytical solution.

The configuration is displayed in Figure 2. Here we have assumed the following geometric data:
Ω = (0, 4)2 and a (prescribed) initial crack on the line ΩC : y = 2.0 and 1.8 ≤ x ≤ 2.2. As boundary
conditions we set the displacements zero on ∂Ω. In addition, we set the regularization parameter
ε = hcoarse = 4.4 × 10−3 and k = 1

2ε = 2.2 × 10−3. For other choices using a different solution
algorithm, we refer to [24, 11]. We set α = 0 and the fracture toughness Gc = 1.0. The mechanical
parameters are Young’s modulus and Poisson’s ration E = 1.0 and νs = 0.2. The injected pressure is
p = 10−3.

Our computational goal is to measure the crack opening displacement (COD). To do so, we observe
u along ΩC . Specifically, the width is determined as the jump of the normal displacements:

w = COD = [u · n]= u+n+ − u−n+. (83)

Here, [·] denotes the jump. Equation (83) can be written in integral form (following, e.g., the arguments
presented in [23], p.51):

w = COD =

∫ ∞
−∞

u · ∇ϕdy.

The crack pattern and the corresponding mesh are displayed in Figure 2. In Figure 3, the crack
opening displacement is shown for different h. The solution on the finest mesh approximates well the
analytical solution provided by Sneddon.
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5.2. Increasing pressure

In this second example, we study a propagating pressurized-crack. In particular, we compare the
standard energy with an energy split into tensile and compressive parts as derived in [2].

We keep the geometry and all material and model parameters as in the first example. We compute
40 time steps with time step size ∆t = 1. While applying an increasing pressure,

p = ∆tp̄

with p̄ = 0.1, we are able to study the propagation of and the crack as shown in Figure 4. Two
subiterations are used to solve the coupled elasticity phase-field problem. We study time versus crack
length as shown in Figure 5. As observed in the literature, we note that the crack does not grow
unless Gc is exceeded and brutal crack growth occurs then.

Figure 4: Example 2: Crack pattern (in red with ϕ = 0) for four different time steps at T = 1, 30, 35, 40.
The unbroken material is denoted in blue with ϕ = 1. The mushy zone is yellow/green.
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Figure 5: Example 2: Total crack length versus time for three mesh levels. On the left, we use the
standard energy expression and in the right subfigure, the energy-split is shown. Both
expressions lead to the same results from which we infer that pressurized crack propagation
as modeled in this paper does not rely on compressive energy modes.

5.3. Increasing pressure leading to joining of two cracks

The third example demonstrates a major capability of the phase-field approach: joining of two cracks
without any special geometry-adapted technique. A similar test has been computed in [24], where it
is shown that the crack propagation is insensitive to grid perturbation. As in the previous Example
5.2, we compare the energy split into tensile and compressive parts.
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Figure 6: Example 3: Length of Crack 1 versus time for three mesh levels. The propagation of this
crack stops around when the centered crack reaches the vertical-oriented crack on the right.
On the left, we use the standard energy expression and in the right subfigure, the energy-split
is shown. Both expressions lead to the same results from which we infer that pressurized
crack propagation as modeled in this paper does not rely on compressive energy modes.

We keep all material and model parameters as in the previous example, with the exception of having
two initial cracks. The first one (Crack 1) is the same as before and centered in the middle of the
domain. The second crack is vertically oriented at x = 2.6 and y ∈ [1.8, 2.2]. Consequently, the
shortest distance between the two cracks is 0.4. We compute 40 time steps with time step size ∆t = 1.
While applying an increasing pressure,

p = ∆tp̄

with p̄ = 0.1, we are able to study the propagation and joining of the cracks as shown in Figure 7.
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Figure 7: Example 3: Crack pattern (in red with ϕ = 0) for four different time steps at T = 1, 25, 30, 35.
The unbroken material is denoted in blue with ϕ = 1. The mushy zone is yellow/green.

Our computational goal is to detect the time when the cracks meet. In Figure 6, there are two
graphs corresponding to two different mesh values, showing growth of Crack 1. We note that when
Crack 1 meets the vertical crack, there is merging of the two cracks followed by no growth in Crack 1
as illustrated in Figure 7.

5.4. Joining and branching in a nonhomogeneous porous medium

The final example demonstrates another important feature of the phase-field approach: joining and
branching of two cracks in a nonhomogeneous porous medium. Therefore, we adapt the Lamé
coefficients such where µ varies in a range of 0.42 − 1.41 and λ between 0.28 − 1.28. In Figure 8 the
pattern of material distribution for λ and µ is provided. The initial crack configuration is the same
as in the previous example. In addition, all other material and model parameters are taken as in
the previous examples. We compute 15 time steps with time step size ∆t = 1. While applying an
increasing pressure,

p = ∆tp̄

with p̄ = 0.5, we are able to study the evolution crack patterns as shown in Figure 9.
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Figure 8: Example 4: µ-distribution (left) and initial crack configuration (right). The Lamé parameter
µ varies in a range of 0.42 − 1.41 where the red parts denotes stiff material and the blue
regions smoother material.

Figure 9: Example 4: Crack pattern (in red with ϕ = 0): joining, branching and non-planar crack
growth in a heterogeneous medium. The unbroken material is denoted in blue with ϕ = 1.
The mushy zone is yellow/green.
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A. Proof of Proposition 1

Proof. We will use Schauder theorem to prove Proposition 1. An alternative possibility would be to
use an approach based on the pseudomonotone operators .

Let X = H1((0, L)3), X1 = L2 and let g ∈ X. We introduce g̃ = inf{1, g+} and consider the
following monotone elliptic variational problem.

Find ϕ ∈ X such that

Gc

∫
(0,L)3

{
ε∇ϕ · ∇ψ − 1

ε
(1− ϕ)ψ

}
dx−

∫
(0,L)3

kreg(ϕp, g)θδ(ϕp − ϕ)ψ dx =

−
∫

(0,L)3
inf{1,

g1+b
+ − (ϕp)

1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
ψ dx−∫

(0,L)3
χ(1− k)g̃ψGe(up) : e(up) dx, ∀ψ ∈ X. (84)

Problem (84) corresponds to the minimization of a strictly convex and continuous, coercive func-
tional Γ on X, where Γ is given by

Γ(ψ) =

∫
(0,L)3

{Gc
2

{
ε|∇ψ|2 +

1

ε
(1− ψ)2

}
−Ψδ(ψ)kreg(ϕp, g) + Fψ

}
dx, (85)

with

F = inf{1,
g1+b

+ − (ϕp)
1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+

χ(1− k)g̃Ge(up) : e(up); (86)

Ψδ(t) =


0, t < ϕp − δ;
(t− ϕp + δ)2/(2δ), ϕp − δ ≤ t ≤ ϕp;
δ

2
+ t− ϕp, ϕp < t.

(87)

The basic variational calculus implies that the minimization problem has a unique solution ϕ ∈ X.
Hence, problem (84) has a unique solution as well and the map g → ϕ = Φ(g) is well defined as a map
Φ : X1 → X1.

We note that if g ∈ X1 = L2((0, L)3) then ϕ ∈ X = H1((0, L)3).
Next we test (84) by ψ = ϕ. It yields

Gc

∫
(0,L)3

{
ε|∇ϕ|2 +

1

ε
ϕ2
}
dx−

∫
(0,L)3

kreg(ϕp, g)(θδ(ϕp − ϕ)− θδ(ϕp))ϕ dx =

−
∫

(0,L)3
inf{1,

g1+b
+ − (ϕp)

1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
ϕ dx+

Gc
ε

∫
(0,L)3

ϕ dx

+

∫
(0,L)3

kreg(ϕp, g)θδ(ϕp)ϕ dx−
∫

(0,L)3
(1− k)g̃ϕGe(up) : e(up) dx

and we get
||ϕ||L2 + ||∇ϕ||L2 ≤ R, (88)
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where R does not depend on g, but only on ||e(up)||L4 , |kreg| and pp.
Let K = BH1(0, R). Then K is a convex, non-empty and compact set of X1 = L2. Furthermore,

Φ(K) ⊂ K. It remains to prove that Φ is continuous.
Let {gn} ⊂ K be such that gn → g ∈ K in X1. Let

Fn = inf{1,
(gn)1+b

+ − (ϕp)
1+b
+

gn − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+

(1− k)g̃nGe(up) : e(up). (89)

Then Ge(up) : e(up) ∈ Lr, r > 3 and

gn → g in L2, as n→∞,
imply

(1− k)g̃nGe(up) : e(up) → (1− k)g̃Ge(up) : e(up) in L2.

Next, we define h2 = (1− α)pp div up +∇pp · up ∈ Lr, r > 3, and the function

z → Q(z, y) = inf{1,
z1+b

+ − y1+b
+

z − y
}, y ∈ R,

is in C0,b[0, 1] with values between 0 and 1. Consequently, we have∫
(0,L)3

h2
2|Q(gn, ϕp)−Q(g, ϕp)|2 dx ≤ C||h2||2L3 ||gn − g||βL2 ,

where

β =

{
2/3, for b ≥ 1/3;
2b, for 0 < b < 1/3.

The convergence in L2 of the second term in Fn and the above estimate, yield that

gn → g in L2, as n→∞, ⇒ Fn → F in L2. (90)

Furthermore, using that

kreg(ϕp, g) = inf{0,−Gcε∆ϕp −
Gc
ε

(1− ϕp) + (1− k)χGe(up) : e(up)g̃+

inf{1,
g1+b

+ − (ϕ1+b
p )+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
} on (0, L)3,

we immediately observe that

gn → g in L2, as n→∞, implies kreg(ϕp, gn)→ kreg(ϕp, g) in L2. (91)

Next Φ(gn) = ϕn satisfies

Gc

∫
(0,L)3

{
ε∇(ϕn − ϕm) · ∇ψ +

1

ε
(ϕn − ϕm)ψ

}
dx−∫

(0,L)3
kreg(ϕp, gn)(θδ(ϕp − ϕn)− θδ(ϕp − ϕm))ψ dx =

∫
(0,L)3

(Fm −Fn)ψ dx

−
∫

(0,L)3
(kreg(ϕp, gn)− kreg(ϕp, gm))θδ(ϕp − ϕm))ψ dx, ∀ψ ∈ X, (92)
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and we get, after choosing ψ = ϕn − ϕm, that {ϕn} is a Cauchy sequence in X = H1((0, L)3).
Therefore, there is ϕ0 ∈ X such that Φ(gn) = ϕn → ϕ0 and ϕ0 satisfies equation (84), with gn
replaced by g. Hence ϕ0 = Φ(g) and Φ(gn)→ Φ(g), as n→∞.

Now Schauder’s theorem implies existence of a fixed point in K.

Next we observe that ϕ satisfies

−ε∆ϕ+
1

ε
ϕ = G ∈ Lr((0, L)3), r > 3 and

∂ϕ

∂n
= 0 on ∂(0, L)3. (93)

By a theorem of Calderon-Zygmund we get estimate (33).
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