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Université Lyon 1, Institut Camille Jordan,

43, blvd. du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Mary F. Wheeler, Thomas Wick
The Center for Subsurface Modeling,

Institute for Computational Engineering and Sciences
The University of Texas at Austin, 201 East 24th Street

Austin, TX 78712, U. S. A.

March 14, 2015

Abstract

In this paper we present a quasistatic formulation of a phase field
model for a pressurized crack in a poroelastic medium. The mathemat-
ical model represents a linear elasticity system with a fading Gassman
tensor as the crack grows, that is coupled with a variational inequal-
ity for the phase field variable containing an entropy inequality. We
introduce a novel incremental approximation that decouples displace-
ment and phase field problems. We establish convergence to a solution
of the quasistatic problem, including Rice’s condition, when the time
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discretization step goes to zero. Numerical experiments confirm the ro-
bustness and efficiency of this approach for multidimensional test cases.

Keywords Pressurized cracks, phase-field, quasistatic model, in-
cremental approximation, Biot’s consolidation equations,
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1 Introduction

In petroleum and environmental engineering, mathematical and numerical
studies of multiscale and multiphysics phenomena such as reservoir deforma-
tion, surface subsidence, well stability, sand production, waste deposition, hy-
draulic fracturing, and CO2 sequestration are receiving increasing attention.
Hydraulic fracturing is fracturing of various rock layers by a pressurized liquid
and is a technique used to release petroleum, natural gas (shale gas, tight gas,
and coal seam gas) for extraction. The first use of hydraulic fracturing was in
1947 and in 1949 it was commercialized. As of 2010, 60% of all new oil and gas
worldwide production was from fractured wells and as of 2012, 2.5M fracking
jobs were performed.

Modeling is crucial for the understanding and the prediction of the phys-
ical behavior of fractured systems [8]. Issues include evaluation of injection
enhancement for various ”frac-job” scenarios and modeling the interaction be-
tween hydraulic and discrete fractures. Specific environmental concerns involve
possible contamination of groundwater, risks to air quality, and migration of
gases and hydraulic fracturing chemicals to the surface and surface contami-
nation from spills and flowback and health effects of these.

The computational modeling of the formation and growth of fluid filled frac-
tures in a poroelastic media is difficult with complex crack topologies. Cracks
can grow, form and interact. Tracking sharp cracks using classical methods
can be computationally intensive, especially in realistic heterogeneous forma-
tions. These difficulties have recently been overcome by diffusive crack mod-
eling based on the introduction of a crack phase field. We refer to the work of
Bourdin, Francfort, and Marigo [5] in which a regularized crack surface func-
tional is shown to converge to a sharp crack surface functional. Our goal here is
to generalize this approach to growing pressurized cracks in poroelastic media.
Reports with our analysis and calculations with a fully implicit incremental
formulation can be found in [15, 17]. Our computational approach uses itera-
tive coupling, in which mechanics and flow equations are solved sequentially. In
this paper we analyze a quasistatic formulation of the phase field model that
involves the introduction of a novel incremental approximation that differs
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from [15, 17] in that the linear elasticity and nonlinear phase field problem are
decoupled, a nonlinear term is treated using a discrete derivative. In [15, 17]
our consideration was limited to an incremental formulation. Specifically in
[15], the Euler-Lagrange equations were considered; whereas [17] treats the
problem as energy minimization.

The significance of our new quasistatic model is as follows. To the best
of our knowledge, this is the first phase field model to treat pressurized crack
propagation in a poroelastic medium. The characteristics of the quasi-static
model include:

• Crack growth is strongly imposed as an entropy condition;

• The system is closed with the Rice condition interpreted as an energy
inequality.

These results are established rigorously as the limit of a corresponding incre-
mental model, as the time step goes to zero.

The outline of our paper is as follows: In Section 2, we formulate a two-field
energy functional coupled with a crack phase field, involving a time derivative
nonnegativity constraint. Our formulation follows Francfort and Marigo’s vari-
ational approach from [9] and [5] and extends the latter to pressurized cracks
in a poroelastic medium. Existence of a solution for this quasistatic prob-
lem is proven in Section 3 by introducing an incremental formulation. This
is achieved by subsequently first treating a phase field step followed by an
elasticity step and then establishing a quasistatic limit. A finite element ap-
proximation to our coupled nonlinear system is described in Section 4. The
solution of several benchmark and prototype problems are presented in Section
5. These include comparisons with an approach based on the anisotropic en-
ergy storage function from [2]. In the Appendix we prove a technical regularity
proposition.

2 Model formulation

A pressurized crack is contained in (0, L)3 and propagates into a poroelastic
medium Ω ⊂ (0, L)3, as shown on Figure 1. We derive a phase-field model for
crack propagation. In contrast to crack propagation in an elastic medium, the
quasistatic Biot equations can not be formulated as an energy minimization
problem. Therefore extending the variational phase-field approach of Franc-
fort, Marigo and others is not straightforward.

As in [15], we approach the problem by applying the fixed stress splitting
algorithm [18, 14]. Specifically, p = pB denotes the effective fluid pressure in
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the poroelastic medium Ω and p = pf is the fracture fluid pressure. Next, the
quasistatic Biot system in Ω

∂t
( 1

M
pB + div (αu)

)
+ div { K

Bfη
(ρfg −∇pB)} = 0; (1)

− div {Ge(u)− α(pB − p0)I + σ0} = 0, (2)

is solved in two steps. The first step consists of solving the pressure equa-
tion (1), with a given displacement u and an enhanced Biot’s modulus M̃ ,
1/M̃ = 1/M +α2/Kdr, where Kdr is the drained bulk modulus and α is Biot’s
coefficient. In the second step, Navier’s system (2) for the displacements is
solved for a given pressure p = pB. Convergence of the fixed stress split itera-
tions was established in [14].

We remark that in this paper we do not solve for the fixed-stress pressure
equation (1) but assume that the pressures pf and pB are given a priori. Our
goal here is to focus on how these pressure variables are modeled in the fixed-
stress elasticity equation (2) (present Section 2), well-posedness (Section 3),
numerical approximations and examples (Sections 4 and 5). The non-trivial
extension, formulating both equations of the fixed stress algorithm within a
phase-field framework is the purpose of another study [16].

In order to avoid a possible confusion due to a large number of parameters
in the Biot equations, we present them in Table 1.

SYMBOL QUANTITY UNITY
u displacement m
pB poroelastic fluid pressure Pa
pf fracture fluid pressure Pa
p0 reference poroelastic fluid pressure Pa
σ0 reference stress tensor Pa
e(u) = (∇u +∇τu)/2 linearized strain tensor dimensionless
K permeability Darcy
α Biot’s coefficient dimensionless
ρf fluid phase density kg/m3

η fluid viscosity kg/m sec
M Biot’s modulus Pa
G Gassman rank-4 tensor Pa
ρf,0 reference state fluid density kg/m3

Bf = ρf,0/ρf formation volume factor dimensionless

Table 1: Unknowns and effective coefficients

Let the boundary of (0, L)3 be denoted by ∂(0, L)3. We assume homoge-
neous Dirichlet conditions for the displacements on ∂D(0, L)3 of ∂(0, L)3. On
the remaining part ∂N(0, L)3, Neumann conditions are defined. Furthermore,
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the crack domain is C, supposed to be smooth, and ∂NΩ = ∂N(0, L)3 ∪ ∂C.
The unit exterior normal to Ω is n.

We follow Griffith’s criterion [10] and suppose that the crack propagation
occurs in the domain Ω when the elastic energy restitution rate reaches its
critical value Gc. If τ is the traction force applied at part of the boundary
∂NΩ, then we associate to the crack C the following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τ ·u dS−
∫

Ω

αpBdiv u dx+GcH2(C), (3)

where H2(C) is the Hausdorff measure of the crack. Note that τ = −pfn on
∂C.

This energy functional is minimized with respect to the kinematically ad-
missible displacements u and any crack set satisfying a crack growth condition.
The computational modeling of this minimization problem requires approxima-
tion of the crack location and of its length. This is achieved by regularizing the
sharp crack surface topology in the solid using diffusive crack zones described
by a scalar auxiliary variable. This variable is a phase-field that interpolates
between the unbroken and the broken states of the material.

A thermodynamically consistent framework for phase-field models has been
proposed by Miehe et al. in [13]. They developed models for quasistatic crack
propagation in elastic solids, together with incremental variational principles.

We introduce the time-dependent crack phase field ϕ, defined on (0, L)3 ×
(0, T ). The regularized crack functional reads

Γε(ϕ) =

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx. (4)

This regularization of H2(C), in the sense of the Γ−limit when ε → 0, was
used in [4].

Our further considerations are based on the fact that the evolution of cracks
is fully dissipative in nature. First, the crack phase field ϕ is intuitively a
regularization of 1− 1C and we impose its negative evolution as

∂tϕ ≤ 0. (5)

Next we follow [13] and [6] and replace energy (3) by a global constitutive
dissipation functional for a rate independent fracture process

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ1+bpBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (6)

We note that k > 0 is a regularization parameter with k � ε.
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Remark 1. A straightforward use of the phase field would suggest the 3rd
integral in (6) to be of the form

∫
(0,L)3

αϕpBdiv u dx; that is b = 0. In the

classical case of elastic cracks one has 0 ≤ ϕ ≤ 1. We establish this property
for the continuous time problem. Nevertheless, for the time discretized problem
there will be no invariant region nor maximum principle estimates; the phase
field unknown ϕ may be negative and take values larger than 1. Thus, we
replace ϕ by ϕ+ in terms where negative ϕ could lead to erroneous conclusions.
In addition the entropy condition (5) prevents ϕ being larger than 1. To ensure
smoothness, we replace ϕ by ϕ1+b, b > 0. We note that such a choice does not
modify the problem for ϕ = 1 or ϕ = 0; however, the intermediate values are
slightly smoothed.

Modeling the interaction between a crack C and ∂N(0, L)3 is not considered
in this research and is excluded. The most complicated situation is in the
region where Dirichlet and Neumann boundary conditions meet and where it
is not clear how to define the phase field. We suppose a priori that the crack
does not reach this region, i.e. that ϕ = 1 in a neighborhood O of the contact
surface between outer boundary conditions.

In a porous medium, due to the presence of the pore structure, cracks are
tiny but three dimensional bodies. The energy Eε contains only implicitly the
presence of the pressurized crack in the term

∫
∂NΩ

τ · u dS and still has to be

written in an acceptable form which does not include ∂C. Since Ω = (0, L)3 \C
and ∂Ω = ∂(0, L)3∪ ∂C, we have ∂C ⊂ ∂NΩ. The stress in the crack C is −pfI
and at the crack boundary we have the continuity of the contact force

σn = (Ge(u)− αpBI)n = −pfn. (7)

The interface and corresponding notation is described in Figure 1.
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Ω

(0, L)3

with pf

Ω

with pB

C

zoom-in

C

∂C

Figure 1: Configuration and notation of the reservoir domain Ω and the crack C
and zoom-in to the crack boundary ∂C where the interface law (7) is prescribed.
We recall that Ω = (0, L)3 \ C̄ and ∂Ω = ∂(0, L)3 ∪ ∂C.

The pressure continuity at ∂C allows us to work with the pressure field p
with p = pf in C and p = pB in Ω = (0, L)3 \ C.

Before introducing the phase field we eliminate the implicit dependence of
Eε on the crack by transforming the traction crack surface integrals as follows∫

Ω

αpBdiv w dx+

∫
∂C
σnw dS =

∫
Ω

(α− 1)pBdiv w dx−∫
Ω

∇pBw dx+

∫
∂N (0,L)3

pBw · n dS.

After replacing GcH2(C) by the phase field regularization (4), the Fréchet
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derivative of the functional (6) with respect to u, gives the elasticity equation∫
(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx−

∫
(0,L)3

αϕ1+bpB div w dx

−
∫
∂N (0,L)3

τ ·w dS = −
∫
∂C
pfw · n dS = −

∫
(0,L)3

pBdiv w dx

−
∫

(0,L)3
∇pB ·w dx+

∫
∂N (0,L)3

pBw · n dS, for admissible w. (8)

Next we introduce the phase field ϕ in the terms at the right hand side of (8).
It yields

−
∫

(0,L)3
pBdiv w dx 7→ −

∫
(0,L)3

ϕ1+bpBdiv w dx and∫
(0,L)3

∇pB ·w dx 7→
∫

(0,L)3
ϕ1+b∇pB ·w dx.

After inserting the above transformations into (8) and replacing ϕ by ϕ+, we
obtain the following elasticity equation∫

(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
(0,L)3

(α− 1)ϕ1+b
+ p div w dx+∫

(0,L)3
ϕ1+b

+ ∇p ·w dx−
∫
∂N (0,L)3

(τ + pn) ·w dS = 0, for admissible w. (9)

We choose as functional space of admissible displacements VU = {z ∈
H1((0, L)3)3 | z = 0 on ∂D(0, L)3 }. Then, Equation (9) becomes

Formulation 1 (Weak form of elasticity including pressure force).∫
(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
(0,L)3

(α− 1)ϕ1+b
+ p div w dx+∫

(0,L)3
ϕ1+b

+ ∇p ·w dx−
∫
∂N (0,L)3

(τ + pn) ·w dS = 0, ∀w ∈ VU , (10)

or in differential form

Formulation 2 (Differential form of elasticity including pressure force).

− div
((

(1− k)ϕ2
+ + k

)
Ge(u)

)
+

ϕ1+b
+ ∇p+ (α− 1)∇

(
ϕ1+b

+ p
)

= 0 in (0, L)3, (11)

u = 0 on ∂D(0, L)3, (12)(
(1− k)ϕ2

+ + k
)
Ge(u)n = τ + αpn on ∂N(0, L)3. (13)
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It remains to write the phase field equation. In differential form, the phase
field equation reads

Formulation 3 (Differential form of phase-field including pressure force).

∂tϕ ≤ 0 on (0, T )× (0, L)3 and
∂ϕ

∂n
= 0 on (0, T )× ∂(0, L)3; (14)

−Gcε∆ϕ−
Gc

ε
(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)(1− α)ϕb+p div u + (1 + b)ϕb+ ∇p · u ≤ 0 in (0, T )× (0, L)3, (15){
−Gcε∆ϕ−

Gc

ε
(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)(1− α)ϕb+p div u + (1 + b)ϕb+ ∇p · u
}
∂tϕ = 0 in (0, T )× (0, L)3. (16)

In the above formulation, the inequality (15) is motivated by the entropy
condition ∂tϕ ≤ 0. Therefore, (15) can be viewed as an equation only when
∂tϕ < 0. The Rice condition (16) is a complementarity condition, which states
that either ∂tϕ < 0 (i.e. the fracture grows and (15) is a phase field equation) or
∂tϕ = 0 (i.e. the geometry does not change from the previous time step and we
satisfy only the inequality (15)). The Rice condition is well-known in fracture
mechanics and for incremental formulations it leads to the complementarity
condition for the classical obstacle problem.

In order to write the variational form, we rewrite Rice’s condition (16).

Lemma 1. Let {u, ϕ} be smooth functions satisfying (11)-(15). Then equality
(16) is equivalent to

∂t

∫
(0,L)3

{(1

2

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u) +

Gc

2

(
ε|∇ϕ|2 +

1

ε
(1− ϕ)2

)
+

ϕ1+b
+

(
(1− α)p div u +∇p · u

))
dx−

∫
∂N (0,L)3

(τ + pn) · u dS

}
−∫

(0,L)3
ϕ1+b

+

(
(1− α)∂tp div u +∇∂tp · u

)
dx+

∫
∂N (0,L)3

(∂tτ + ∂tpn) · u dS

= 0 on (0, T ). (17)

Proof. Let us suppose equality (16). We integrate it with respect to x over
(0, L)3. Next we use ∂tu as a test function in equation (10) and we add the
two equalities. It yields directly (17).

In the opposite direction, we subtract from equality (17) the equality (10),
with the test function w = ∂tu. This subtraction yields equality (17) inte-
grated over (0, L)3. Using (14)-(15) we conclude that (16) holds true.
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Remark 2. In fact, we note that in (16) being equal to zero can be replaced
by ≤ 0, which is used in the definition of the weak solution.

Let p0 = p(·, 0), τ 0 = τ(·, 0) and ϕ0 the initial value of ϕ. We denote by u0

the solution for equation (10) with ϕ = ϕ0, p = p0 and τ = τ 0.

Before introducing the variational problem, we recall the definitions of the
appropriate functional spaces. A function ψ ∈ L1((0, L)3×(0, T )) is a function
of bounded variation if and only if

V (ψ, (0, T )× (0, L)3) := sup
{∫ T

0

∫
(0,L)3

ψ (div ζ + ∂tζ) :

ζ ∈ C∞0 ((0, T )× (0, L)3), ‖ζ‖C0 ≤ 1
}
< +∞. (18)

Moreover, V (ψ, (0, T )× (0, L)3) = |Dψ|((0, T )× (0, L)3). The norm ‖ψ‖BV :=
‖ψ‖L1 +V (ψ, (0, T )×(0, L)3) endows BV ((0, T )×(0, L)3) with a Banach space
structure.

A sequence {ψn} converges weakly? in BV ((0, T )× (0, L)3) to ψ if ψn → ψ
strongly in L1((0, T ) × (0, L)3) and ∇ψn and ∂tψn converge weakly? in the
sense of measures to ∇ψ and ∂tψ. In fact a sequence converges weakly? if and
only if it converges in L1 and it is bounded in the BV norm (see Section 3.1
in [1]). The Sobolev inequality gives the embeddings BV ((0, T ) × (0, L)3) ⊂
Lq((0, T ) × (0, L)3) for every q ∈ [1, 4

3
]. The embedding is compact for q < 4

3

(see Corollary 3.49 of [1]).
The variational formulation, corresponding to the equations (14)-(16) is:

Formulation 4 (Weak form of phase-field including pressure). Find ϕ ∈ BV ((0, T )×
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(0, L)3) ∩ L2(0, T ;H1((0, L)3)) such that

∂tϕ, ∂tϕ− and ∂tϕ+ are nonpositive bounded measures; (19)∫ T

0

∫
(0,L)3

(
(1− k)ϕ+ψGe(u) : e(u) +Gc

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

))
dxdt

+(1 + b)

∫ T

0

∫
(0,L)3

ϕb+((1− α)p div u +∇p · u) ψ dxdt ≤ 0,

∀ ψ ∈ L∞((0, T )× (0, L)3) ∩ L2(0, T ;H1((0, L)3)),

ψ ≥ 0 a.e. on (0, T )× (0, L)3; (20)

ϕ(x, 0) = ϕ0(x) on (0, L)3, 0 ≤ ϕ0(x) ≤ 1; (21)∫
(0,L)3

{(1

2

(
(1− k)ϕ2

+(t) + k
)
Ge(u(t)) : e(u(t)) +

Gc
2

(
ε|∇ϕ(t)|2 +

1

ε
(1− ϕ(t))2

)
+ϕ1+b

+ (t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
dx−

∫
∂N (0,L)3

(τ(t) + p(t)n) · u dS

}
−
∫
(0,L)3

{(1

2

(
(1− k)(ϕ0

+)2 + k
)
Ge(u0) : e(u0) +

Gc
2

(
ε|∇ϕ0|2 +

1

ε
(1− ϕ0)2

)
+(ϕ0

+)1+b
(
(1− α)p0 div u0 +∇p0 · u0

))
dx−

∫
∂N (0,L)3

(τ0 + p0n) · u0 dS

}
−∫ t

0

∫
(0,L)3

ϕ1+b
+

(
(1− α)∂ηp div u +∇∂ηp · u

)
dxdη+∫ t

0

∫
∂N (0,L)3

(∂ητ + ∂ηpn) · u dSdη ≤ 0 a. e. on (0, T ). (22)

Remark 3. For a smooth solution ϕ such that ∂t∇ϕ− ∈ L2((0, T )× (0, L)3),
nonpositivity of ∂tϕ, ∂tϕ− and ∂tϕ+ implies nonnegativity of ϕ. This follows
from the following observations. Namely, nonnegativity of −∂tϕ− and −∂tϕ+

allows using them as test functions in (20). From Rice’s equality and (20) with
−∂tϕ− and − ∂tϕ+ as respective test functions, we have∫ T

0

∫
(0,L)3

(1− k)ϕ+∂tϕ−Ge(u) : e(u) dxdt− Gc

ε

∫ T

0

∫
(0,L)3

(1− ϕ)∂tϕ− dxdt+

Gcε

∫ T

0

∫
(0,L)3

∇∂tϕ− · ∇ϕ dxdt+ (1 + b)

∫ T

0

∫
(0,L)3

ϕb+((1− α)p div u+

∇p · u) ∂tϕ− dxdt = 0. (23)

Since the supports of ϕ+ and ϕ− are orthogonal, ϕ+(x, t)∂tϕ−(x, t) = 0 on
(0, T ) × (0, L)3 and the first and the fourth integral cancel. For the integrand
in the second term we have

−(1− ϕ)∂tϕ− = −∂tϕ− +
1

2
∂tϕ

2
−
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and

ε

∫ T

0

∫
(0,L)3

∇∂tϕ− · ∇ϕ dxdt =
ε

2

∫
(0,L)3

|∇ϕ−(T )|2 dx ≥ 0.

Insertion of the above equalities in equality (23) and using the nonnegativity
assumption ϕ−(0) = 0 of the initial condition yield

−Gc

2ε

∫ T

0

∫
(0,L)3

∂tϕ−︸︷︷︸
≤0

dxdt+
Gc

2

∫
(0,L)3

(1

ε
ϕ2
−(T ) + ε|∇ϕ−(T )|2

)
dx = 0 (24)

Equality (24) yields ∂tϕ− = 0. Unfortunately our constructed solution is not
necessarily smooth and this argument does not apply to weak solutions. Note
that even for smooth ϕ, ϕ− is only a Lipschitz function and ∂t∇ϕ− in general
does not exist as a function.

Our goal in the remainder of this paper is to consider the weak settings;
namely Formulation 1 and Formulation 4. We notice that the corresponding
Galerkin finite element approximations are provided in Finite Element Formu-
lation 2 and Finite Element Formulation 1 presented in Section 4.
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3 Existence of the quasistatic problem

In this section we prove existence of a solution for the quasistatic problem by
introducing an incremental formulation.

We start by making the following assumptions on the data:

• G is a positive definite constant rank-4 tensor,

• k is a positive constant,

• and the following regularity assumptions:

p ∈ W 1,1(0, T ;W 1,2r((0, L)3)), r > 3;

τ ∈ W 1,1(0, T ;W 1−1/r,r(∂N(0, L)3)),

and ϕ0 ∈ W 2,r((0, L)3), 0 ≤ ϕ0 ≤ 1. (25)

Let
Kp = {ψ ∈ H1((0, L)3)) | ψ ≤ ϕp a.e. on (0, L)3}, (26)

where ϕp is the phase field and up the displacement from the previous time
step, respectively.

We consider a different incremental problem than introduced in [15]; namely,
a decoupling into a linear elasticity problem and a nonlinear phase field prob-
lem. The nonlinear term ϕb+ is treated using a discrete derivative. In addition,
the friction term is eliminated.

Let O be a small neighborhood of the contact surface between our outer
boundary conditions and let χ be the indicator function of its complement.
The size of O will be defined later precisely by (45).

The system takes the form:∫
(0,L)3

χ(1− k)ϕ+(ψ − ϕ)Ge(up) : e(up) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ψ − ϕ)+

ε∇ϕ · ∇(ψ − ϕ)
)
dx+

∫
(0,L)3

ϕ1+b
+ − (ϕp)

1+b
+

ϕ− ϕp
(
(1− α)pp div up+

∇pp · up
)
(ψ − ϕ) dx ≥ 0, ∀ ψ ∈ Kp ∩ L∞((0, L)3), (27)∫

(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dx−

∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

ϕ1+b
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ VU . (28)
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We briefly explain the rationale of (27) and in particular the replacing of
(1 + b)ϕb+ by the finite difference

ϕ1+b
+ − (ϕp)

1+b
+

ϕ− ϕp
. (29)

We firste note that in the quasistatic limit ϕ is approaching ϕp and the quotient
from (29) behaves as (1 + b)ϕb+. Next we take as test function ψ = ϕp − ψ in
(20) and we recall that the time derivative difference quotient only needs to
approximatively satisfy the Rice condition. For a second test function ϕp − ϕ
we impose the equality in (20). Subtracting the inequality and equality yields
(27). Regarding the finite difference (29), we remark that several estimates
are only valid with this choice rather than the original term. Only this choice
allows us to pass to the quasi-static limit, which was not possible for the
implicit formulation as discussed in [15, 17].

3.1 The phase field step

Let δ > 0 and θδ be given by

θδ(y) =


1, y ≤ 0;
1− y/δ, 0 < y ≤ δ;
0, δ < y.

(30)

Next let ϕ̃ = inf{1, ϕ+}, ϕ ∈ L1((0, L)3), and let

kreg(ϕp, g) = inf{0,−Gcε∆ϕp −
Gc

ε
(1− ϕp) + (1− k)χGe(up) : e(up)g̃+

inf{1,
g1+b

+ − (ϕ1+b
p )+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
} on (0, L)3. (31)

We consider the following penalized variant of the variational inequality (27)∫
(0,L)3

(1− k)χϕ̃ψGe(up) : e(up) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ+

ε∇ϕ · ∇ψ
)
dx+

∫
(0,L)3

inf{1, ϕ
1+b
+ − (ϕp)

1+b
+

ϕ− ϕp
}
(
(1− α)pp div up+

∇pp · up
)
ψ dx−

∫
(0,L)3

kreg(ϕp, ϕ)θδ(ϕp − ϕ)ψ = 0, ∀ ψ ∈ H1((0, L)3), (32)

In the following propositions we drop the domain notation for the function
spaces.
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Proposition 1. Let pp ∈ W 1,r, ϕp ∈ W 2,r, ϕp ≤ 1 and up ∈ W 1,2r, r >
3. Then there exists a solution ϕ = ϕδ ∈ H1 for variational equation (32)
satisfying

||ϕδ||W 2,r ≤ C(||up||2W 1,2r + ||pp||2W 1,r), (33)

where the constant C is independent of δ.

Proof. See Appendix A.

Proposition 2. Let pp ∈ W 1,r, ϕp ∈ W 2,r, ϕp ≤ 1 and up ∈ W 1,2r, r > 3.
Then ϕδ ⇀ ϕ weakly in W 2,r, as δ → 0, where ϕ ∈ W 2,r is a solution of the
variational inequality (27) satisfying estimate (33).

Proof. We first prove that ϕδ ∈ Kp. Let ζ = ϕδ − inf{ϕδ, ϕp} ≥ 0. We use ζ
as a test function in equation (32), with the goal to prove that ζ = 0. Testing
equation (32) with ζ yields

Gc

∫
(0,L)3

(1

ε
(ϕδ − ϕp)ζ + ε∇(ϕδ − ϕp) · ∇ζ

)
dx+

∫
(0,L)3

{
(1− k)χϕ̃δGe(up) : e(up)

+ inf{1, (ϕ1+b
δ )+ − (ϕp)

1+b
+

ϕδ − ϕp
}
(
(1− α)pp div up +∇pp · up

)
−Gcε∆ϕp −

Gc

ε
(1− ϕp)

}
ζ dx−

∫
(0,L)3

kreg(ϕp, ϕδ)θδ(ϕp − ϕδ)ζ = 0. (34)

For ϕδ < ϕp, we have ζ = 0. Next, ϕδ ≥ ϕp yields θδ = 1 and ζ = ϕδ − ϕp.
Finally,

inf{1, (ϕδ)
1+b
+ − (ϕp)

1+b
+

ϕδ − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+ (1− k)χϕ̃δGe(up) : e(up)

−Gcε∆ϕp −
Gc

ε
(1− ϕp)− kreg(ϕp, ϕδ) ≥ 0 (a.e) on (0, L)3

and we obtain from (34) ζ = 0.
By estimate (33), the set {ϕδ}δ>0 is bounded in W 2,r independently of

δ. Hence, by the weak compactness, it contains a subsequence in Kp which
converge weakly in W 2,r and strongly in C1,s , s < 1− 3/r, to an element ϕ of
Kp.

To show that ϕ satisfies equation (27), it is enough to follow [12], page 109
and apply Minty’s lemma to the monotone term defined by kregθδ.
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3.2 The elasticity step

Proposition 3. Let p ∈ W 1,2r, τ ∈ W 1−1/r,r and ϕ ∈ W 2,r, r > 3. Let O be
a smooth neighborhood of the contact surface between Dirichlet and Neumann
conditions. Then there exists a unique solution u ∈ W 2,r((0, L)3 \ O)3 for
variational equation (28).

Proof. Obviously, problem (28) has a unique solution u ∈ H1((0, L)3)3. We
write in the following differential form

− div
(
Ge(u)

)
= Ge(u)∇ log

(
(1− k)ϕ2

+ + k
)

−
ϕ1+b

+ ∇pp + (α− 1)∇
(
ϕ1+b

+ pp
)

(1− k)ϕ2
+ + k

in (0, L)3, (35)

u = 0 on ∂D(0, L)3, (36)(
(1− k)ϕ2

+ + k
)
Ge(u)n = τp + αppn on ∂N(0, L)3. (37)

Then the regularity theory for the Navier equations of the linear elasticity (see
e.g. [7], Theorems 6.3-6) and a simple bootstrapping yield u ∈ W 2,r((0, L)3 \
O)3.

3.3 The quasistatic limit

In this subsection we suppose for simplicity b = 1.
We start by stating auxiliary lemmas easily derived from elementary in-

equalities:

Lemma 2.

(1− k)ϕ+(ϕ− ϕp)Ge(up) : e(up) +
(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u− up) ≥

1

2

(
(1− k)(ϕ2

+ − (ϕp)
2
+)Ge(up) : e(up) +

(
(1− k)ϕ2

+ + k
)
(Ge(u) : e(u)−

Ge(up) : e(up)
)

=
1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
. (38)

Lemma 3.

−1

ε
(1− ϕ)(ϕ− ϕp) + ε∇ϕ · ∇(ϕ− ϕp) ≥

−1

ε
(ϕ− ϕp) +

1

2ε
(ϕ2 − ϕ2

p) +
ε

2
(|∇ϕ|2 − |∇ϕp|2). (39)
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Lemma 4.

(ϕ2
+ − (ϕp)

2
+)pp div up + ϕ2

+pp div (u− up) =

p div u ϕ2
+ − pp div up(ϕp)

2
+ − ϕ2

+ div u(p− pp), (40)

(ϕ2
+ − (ϕp)

2
+)∇pp · up + ϕ2

+∇pp · (u− up) =

∇p · u ϕ2
+ −∇pp · up(ϕp)2

+ − ϕ2
+(∇p−∇pp) · u. (41)

We suppose the quasistatic problem (10), (20)-(22) is discretized with a
uniform time step ∆t. Given solutions at discrete times tj, j = 0, . . . , N ,
{ϕ∆t(tj),u∆t(tj)} are extended from the discrete times {tj}0≤j≤N to (0, T ) by

ϕ∆t(t) = ϕ∆t(tj) if tj ≤ t < tj+1, j = 0, . . . N − 1; (42)

ϕ∆t(t0) = ϕ∆t(0) = ϕ0; (43)

u∆t(t) = u∆t(tj) if tj ≤ t < tj+1, j = 0, . . . N − 1. (44)

Proposition 4. Let us suppose that hypothesis (25) holds true and

|O|γ/(2+γ)/|∆t| = O(|∆t|). (45)

Let {ϕ∆t,u∆t} be a solution to (27)-(28) corresponding to the time discretiza-
tion step ∆t. Then we have

||(ϕ∆t)+e(u∆t)||L∞(0,T ;L2) +
√
k||u∆t||L∞(0,T ;H1) ≤ C, (46)

||(ϕ∆t)+||L∞((0,T )×(0,L)3) ≤ C, (47)

||ϕ∆t||L∞(0,T ;L2) + ||ε∇ϕ∆t||L∞(0,T ;L2) + ||∂∆tϕ∆t||L1((0,T )×(0,L)3) ≤ C, (48)

where C is a generic constant independent of ∆t and

∂∆tψ(t) =
ψ(tj+1)− ψ(tj)

∆t
, for tj ≤ t < tj+1, j = 0, . . . N − 1.

Proof. First we recall that initial condition (21) and definition of the convex
sets Kp imply

ϕ∆t ≤ 1 on (0, L)3 × (0, T ) and 0 ≤ (ϕ∆t)+ ≤ 1 on (0, L)3 × (0, T ). (49)

Estimate (49) contains estimate (47).
Next we use w = u∆t as a test function in variational equation (28). It

yields ∫
(0,L)3

{
|(ϕ∆t)+e(u∆t)|2 + k(|∇u∆t|2 + |u∆t|2)

}
dx ≤ C.
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The above inequality implies estimate (46), with constant C independent of
∆t.

At this point we recall a Meyers type result for the linear elasticity non-
homogeneous Navier equations from [19]. It says that there is a γ > 0 such
that,

||u∆t(t)||W 1,2+γ ≤ C(k, ||(ϕ∆t)+||∞, L,G)
{
||(ϕ∆t)

2
+p(t)||L2+γ((0,L)3)+

||τ(t) + αp(t)||L2(2+γ)/3(∂N (0,L)3)

}
. (50)

Hence under the data smoothness we have, in addition to (46), that

||u∆t||L∞(0,T ;W 1,2+γ) ≤ C, (51)

where C does not depend on the time discretization step ∆t. Consequently

sup
0≤t≤T

∫
(0,L)3

(1− χ)Ge(u∆t) : e(u∆t) ≤ C|O|γ/(2+γ). (52)

Next, for j ∈ {1, . . . , N} we set u = u∆t(tj) and up = u∆t(tj−1) and test
equation (28) by w = u−up. Then we subtract inequality (27), with ψ = ϕp,
from the obtained equality. It yields∫

(0,L)3

{
(1− k)ϕ+(ϕ− ϕp)Ge(up) : e(up) +

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u− up)

}
dx

+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ϕ− ϕp) + ε∇ϕ · ∇(ϕ− ϕp)

)
dx

+

∫
(0,L)3

(
(1− α)

(
(ϕ2

+ − (ϕp)
2
+)pp div up + ϕ2

+pp div (u− up)
)
+

(ϕ2
+ − (ϕp)

2
+)∇pp · up + ϕ2

+∇pp · (u− up)
)
dx−

∫
∂N (0,L)3

(τp + ppn) · (u− up) dS

= −
∫

(0,L)3
(1− k)(1− χ)ϕ+(ϕ− ϕp)Ge(up) : e(up) dx. (53)
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After inserting (38), (39), (40) and (41) into (53), we get∫
(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
dx

−Gc

∫
(0,L)3

ϕ− ϕp
ε

dx+Gc

∫
(0,L)3

(
1

2ε
(ϕ2 − ϕ2

p) +
ε

2
(|∇ϕ|2 − |∇ϕp|2)

)
dx+∫

(0,L)3

{(
(1− α)p div u +∇p · u

)
ϕ2

+ − ((1− α)pp div up +∇pp · up
)
(ϕp)

2
+

}
dx+∫

∂N (0,L)3

{
(τ + pn) · u− (τp + ppn) · up

}
dS ≤ ∆t

∫
∂N (0,L)3

|u||τ − τp + (p− pp)n
∆t

| dS

+C∆t

∫
(0,L)3

(|ϕ+e(u)||p− pp
∆t
|+ |u||∇p− pp

∆t
|) dx+ C|O|γ/(2+γ). (54)

We remark that our motivation for using the discrete derivative for ϕ2
+, instead

of 2ϕ+, is to obtain (54). Namely, the Taylor remainder can not be controlled
by our time estimates. Next we sum up over the time intervals (tj−1, tj),
j = 1, . . . ,M and obtain

∫
(0,L)3

1

2

(
(1− k)(ϕ∆t)

2
+(t) + k

)
Ge(u∆t(t)) : e(u∆t(t)) dx

+Gc

∫ t

0

∫
(0,L)3

|∂∆tϕ∆t(ξ)|
ε

dxdξ

+Gc

∫
(0,L)3

(
ϕ2

∆t(t)

2ε
+
ε

2
|∇ϕ∆t(t)|2

)
dx ≤ Gc

∫
(0,L)3

(
ϕ2(0)

2ε
+
ε

2
|∇ϕ(0)|2

)
dx

+C||p||W 1,1(0,t;L2)||(ϕ∆t)+e(u∆t)||L∞(0,t;L2) + C||∇p||W 1,1(0,t;L2)||u∆t||L∞(0,t;L2)+

C(||τ ||W 1,1(0,t;L2(∂N (0,L)3)) + ||p||W 1,1(0,t;L2(∂N (0,L)3)))||u∆t||L∞(0,t;H1) +
C

|∆t|
|O|γ/(2+γ)

+

∫
(0,L)3

(
(1− k)ϕ2(0) + k

)
Ge(u(0)) : e(u(0)) dx, (55)

for t ≤ tM . Using that |O|γ/(2+γ)/|∆t| = O(|∆t|), estimate (48) follows from
(55).

Our goal is now to use the estimates (46)-(48) and pass to the limit ∆t→ 0.

Theorem 1. Let us suppose the data regularity assumptions (25) and (45). Let
{ϕ∆t,u∆t} be a solution to (27)-(28) corresponding to the time discretization
step ∆t. Then there is a subsequence of {ϕ∆t,u∆t}, denoted by the same
subscript, and {ϕ,u} ∈ BV ((0, T ) × (0, L)3) ∩ L2(0, T ;H1) × L∞(0, T ;H1),
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ϕ ≤ ϕ0 a.e. on (0, T )× (0, L)3 , ∂tϕ, ∂tϕ− and ∂tϕ+ are nonpositive bounded
measures, such that

u∆t
∗
⇀ u weak− ∗ in L∞(0, T ;H1); (56)

u∆t → u strongly in L2(0, T ;H1); (57)

ϕ∆t
∗
⇀ ϕ weak− ∗ in BV ((0, T )× (0, L)3); (58)

ϕ∆t → ϕ strongly in Lq((0, T )× (0, L)3), ∀q ∈ [1,
4

3
); (59)

ϕ∆t⇀ϕ weakly in L2(0, T ;H1), (60)

when ∆t→ 0. Furthermore, {ϕ,u} is a solution for (10), (20)-(22).

Proof. We start by observing that

< ∂tϕ∆t, ψ >=< ∂∆tϕ∆t, ψ >, ∀ψ ∈ C∞0 ((0, T )× (0, L)3),

and by density for all ψ ∈ C0((0, T )× (0, L)3). Therefore, we have

| < ∂tϕ∆t, ψ > | ≤ ||∂∆tϕ∆t||L1||ψ||L∞ , ∀ψ ∈ C0((0, L)3 × (0, T )).

Estimates (46)-(48), and the above estimate imply the a priori estimates

||u∆t||L∞(0,T ;H1) + ||ϕ∆t||BV ((0,T )×(0,L)3) + ||ϕ∆t||L2(0,T ;H1) ≤ C. (61)

From (61) we observe that Sobolev embeddings and the weak∗compactness
in L∞(0, T ;H1) and in BV ((0, T ) × (0, L)3) ∩ L2(0, T ;H1) respectively, take
place. This provides existence of a subsequence of {ϕ∆t,u∆t}, denoted by
the same subscript, with limit {ϕ,u} ∈ BV ((0, T )× (0, L)3) ∩ L2(0, T ;H1)×
L∞(0, T ;H1), satisfying convergences (56), (58)-(60). In addition, ϕ ≤ ϕ0

a.e. on (0, T ) × (0, L)3 and ∂tϕ is a nonpositive bounded measure. Since
u∆t(t) ≤ u∆t(t−∆t) implies the same inequality for its positive and negative
parts, ∂tϕ− and ∂tϕ+ are also nonpositive bounded measures.

It remains to prove that {ϕ,u} is a solution for (10), (20)-(21), satisfies
inequality (22) and u∆t → u strongly in L2(0, T ;H1). Replacing in (28) u by
u∆t(t) and ϕ by ϕ∆t(t) and passing to the limit, we obtain∫ T

0

∫
(0,L)3

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(w) dxdt−∫ T

0

∫
(0,L)3

(α− 1)ϕ2
+p div w dxdt+

∫ T

0

∫
(0,L)3

ϕ2
+∇pw dxdt

−
∫ T

0

∫
∂N (0,L)3

(τ + pn) ·w dSdt = 0, ∀w ∈ L2(0, T ;VU). (62)
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Next we choose w = u∆t as test function in (28) and pass to the limit ∆t→ 0.
It yields

lim
∆t→0

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt =∫ T

0

∫
(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dxdt. (63)

Using Fatou’s lemma we have∫ T

0

∫
(0,L)3

lim inf
∆t→0

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt

≤ lim inf
∆t→0

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ∆t)

2
+ + k

)
Ge(u∆t) : e(u∆t) dxdt

=

∫ T

0

∫
(0,L)3

(
(1− k)(ϕ)2

+ + k
)
Ge(u) : e(u) dxdt. (64)

Consequently,

u∆t → u strongly in L2(0, T ;VU), as ∆t→ 0. (65)

We note that

u ∈ L∞(0, T ;W 1,2+γ), for some γ > 0, (66)

and for every nonnegative function g ∈ L1+γ0((0, T )× (0, L)3), γ0 > 0,∫ T−∆t

0

∫
(0,L)3

|(ϕ∆t)+(t+ ∆t)− (ϕ∆t)+(t)|g dxdt ≤

C|∆t|γ0/(1+γ0)||g||L1+γ0 ((0,T )×(0,L)3)||∂∆tϕ∆t||(1+γ0)/γ0
L1((0,T )×(0,L)3). (67)

For every ψ ∈ C∞0 ((0, L)3 × (0, T )), (65) implies

lim
∆t→0

|
∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t − u) : e(u∆t − u) dxdt| → 0,

as ∆t→ 0, (68)

and (63)-(68) yield∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t) : e(u∆t) dxdt =∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t − u) : e(u∆t − u) dxdt+
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2

∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u∆t) : e(u) dxdt−∫ T−∆t

0

∫
(0,L)3

(ϕ∆t)+(t+ ∆t)ψGe(u) : e(u) dxdt→∫ T

0

∫
(0,L)3

(ϕ)+ψGe(u) : e(u) dxdt, as ∆t→ 0. (69)

Next we use that

|
(ϕ∆t)

2
+(t)− (ϕ2

∆t)+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)
− 2(ϕ∆t)+(t)| ≤ C|(ϕ∆t)+(t)− (ϕ∆t)+(t−∆t)|

and convergences (63)-(68) to get

lim
∆t→0

∫ T

∆t

∫
(0,L)3

(ϕ∆t)
2
+(t)− (ϕ2

∆t)+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(1− α)p(t−∆t) div u(t−∆t)+

∇p(t−∆t) · u(t−∆t)
)
ψ dxdt =

lim
∆t→0

∫ T

0

∫
(0,L)3

2(ϕ∆t)+(t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
ψ dxdt =∫ T

0

∫
(0,L)3

2ϕ+(t)
(
(1− α)p(t) div u(t) +∇p(t) · u(t)

)
ψ dxdt. (70)
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Now we write equation (27) in the equivalent form (71)-(72)∫
(0,L)3

χ(1− k)(ϕ∆t)+(t)ψGe(u∆t)(t−∆t) : e(u∆t(t−∆t)) dx

+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ∆t(t))ψ + ε∇ϕ∆t(t) · ∇ψ

)
dx+∫

(0,L)3

(ϕ∆t)
2
+(t)− (ϕ∆t)

2
+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(1− α)p(t−∆t) div u∆t(t−∆t)+

∇p(t−∆t) · u∆t(t−∆t)
)
ψ dx ≤ 0, a.e. on (∆t, T ),

∀ ψ ∈ C∞([0, L]3), ψ ≥ 0 a.e. on (0, L)3; (71)∫
(0,L)3

χ(1− k)(ϕ∆t)+(t)(ϕ∆t(t−∆t)− ϕ∆t(t))Ge(u∆t(t−∆t)) : e(u∆t(t−

∆t)) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ∆t)(ϕ∆t(t−∆t)− ϕ∆t(t))+

ε∇ϕ∆t · ∇(ϕ∆t(t−∆t)− ϕ∆t(t))
)
dx+

∫
(0,L)3

(ϕ∆t)
2
+(t)− (ϕ∆t)

2
+(t−∆t)

ϕ∆t(t)− ϕ∆t(t−∆t)

(
(

1− α)p(t−∆t) div u∆t(t−∆t)+

∇p(t−∆t) · u∆t(t−∆t)
)
(ϕ∆t(t−∆t)− ϕ∆t(t)) dx = 0, a.e. on (∆t, T ).

(72)

Using convergences (56)-(60), (65) and (69)-(70) we pass to the limit ∆t→ 0
in inequality (71) and get∫ T

0

∫
(0,L)3

(1− k)ϕ+ψGe(u) : e(u) dxdt+Gc

∫ T

0

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ

+ε∇ϕ · ∇ψ
)
dxdt+ 2(1− α)

∫ T

0

∫
(0,L)3

ϕ+p div uψ dxdt+∫ T

0

∫
(0,L)3

2ϕ+ ∇p · u ψ dxdt ≤ 0,

∀ ψ ∈ C∞([0, T ]× [0, L]3), ψ ≥ 0 a.e. on (0, T )× (0, L)3; (73)

ϕ(x, 0) = ϕ0(x) on (0, L)3, 0 ≤ ϕ0(x) ≤ 1. (74)

It remains to prove Rice’s equality in its weak form (22).
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We write estimate (54) in the form∫
(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
Ge(u) : e(u)−

(
(1− k)(ϕp)

2
+ + k

)
Ge(up) : e(up)

)
dx

+Gc

∫
(0,L)3

(
1

2ε
((1− ϕ)2 − (1− ϕp)2) +

ε

2
(|∇ϕ|2 − |∇ϕp|2)

)
dx+∫

(0,L)3

{(
(1− α)p div u +∇p · u

)
ϕ2

+ − ((1− α)pp div up +∇pp · up
)
(ϕp)

2
+

}
dx−∫

∂N (0,L)3

{
(τ + pn) · u− (τp + ppn) · up

}
dS + ∆t

∫
∂N (0,L)3

u · τ − τp + (p− pp)n
∆t

dS

−∆t

∫
(0,L)3

ϕ2
+

(
div u

p− pp
∆t

+ u · ∇p− pp
∆t

) dx = C|O|γ/(2+γ) (75)

After summing up over the time intervals (tj−1, tj) we obtain∫
(0,L)3

1

2

(
(1− k)ϕ2

+(t) + k
)
Ge(u(t)) : e(u(t)) dx+Gc

∫
(0,L)3

(
(1− ϕ(t))2

2ε
+

ε

2
|∇ϕ(t)|2

)
dx+

∫
(0,L)3

(
(1− α)p div u(t) +∇p · u(t)

)
ϕ2

+(t) dx−∫
∂N (0,L)3

(τ + pn) · u(t) dS −
∫ t

0

∫
(0,L)3

ϕ1+b
+

(
(1− α)∂tp div u +∇∂tp · u

)
dxdt+∫ t

0

∫
∂N (0,L)3

(∂tτ + ∂tpn) · u dSdt−
∫

(0,L)3

{(1

2

(
(1− k)(ϕ0

+)2 + k
)
Ge(u0) : e(u0)+

Gc

2

(
ε|∇ϕ0|2 +

1

ε
(1− ϕ0)2

)
+ (ϕ0

+)2
(
(1− α)p0 div u0 +∇p0 · u0

))}
dx

+

∫
∂N (0,L)3

(τ 0 + p0n) · u0 dS =
C

∆t
|O|γ/(2+γ), (76)

for all t ∈ (0, T ). Next we multiply equality (76) by the characteristic function
of any time interval and pass to the limit ∆t → 0. Using the previously
established convergences and the lower semicontinuity of the L2-norm of∇ϕ∆t,
we obtain inequality (22).

4 Numerical approximation

In this section, we formulate finite element approximations for the Formula-
tions 4 and 1 presented in Section 2. Specifically, we apply a standard Galerkin
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finite element method in 2D on quadrilaterals. The displacements u are ap-
proximated by continuous bilinears and are referred to as the finite element
space Vh. We take ϕ to be continuous bilinear and denote this space as Wh.
The standard spatial approximation parameter is represented by h.

In our numerical treatment, we set b = 1. The regularized incremental
problem reads:∫

(0,L)3
(1− k)ϕh+ψGe(up) : e(up) dx+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈ Wh, (77)∫
(0,L)3

(
(1− k)(ϕh+)2 + k

)
Ge(uh) : e(w) dx−

∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕh)2
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh. (78)

In contrast to [15] (and also [11]), we use a sequential coupling algorithm
in which both subproblems are solved subsequently; namely, we first solve
equation (77) for ϕh and then solve equation (78) for uh, with a given phase
field ϕh. This procedure has two advantages:

• it is computationally efficient since we use a loosely coupled scheme,
which only requires a few subiterations;

• considering the fact that the elasticity problem is linear no Newton
method is required.

In the numerical examples in Section 5, we deal with an isotropic poroelastic
medium with

Gijkl = µ(δilδjk + δikδjl) + λδijδkl.

The stress tensor is defined as

σij =
∑
k,l

Gijklekl(u) = µeij(u) + λtr(e)δij,

where µ and λ denote the Lamé parameters. Our computations are compared
with the approach from [2], where Hooke’s law is modified by introducing an
anisotropic energy storage functional. Here, the stress tensor is additively
decomposed into a tensile part σ+ and a compressive part σ−, i.e., σ :=

(
(1−
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k)ϕ2 + k
)
σ+ + σ−. We emphasize that the energy degradation only acts on

the tensile part. The modified energy functional then reads:

Eε(u, ϕ) =

∫
(0,L)3

1

2

((
(1− k)ϕ2

+ + k
)
σ+ : e(u) + σ− : e(u)

)
dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ2
+pBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx. (79)

Here, the two stress contributions are given by:

σ+ := κtr+(e)I + 2µeD,

σ− := κtr−(e)I,

with κ = 2
n
µ+λ and where the deviatoric part of the strain tensor e is defined

as

eD := e− 1

n
tr(e)I, n = 2, 3.

Moreover,

tr+(e) = max(tr(e), 0), tr−(e) = tr(e)− tr+(e).

The corresponding Euler-Lagrange equations read:

Formulation 5 (Weak form of phase-field including pressure and an anisotropic
energy storage functional).∫

(0,L)3
(1− k)ϕh+ψσ

+ : e(up) dx+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈ Wh, (80)

Formulation 6 (Weak form of elasticity including pressure and an anisotropic
energy storage functional).∫

(0,L)3

(
(1− k)(ϕh+)2 + k

)
σ+ : e(w) dx+

∫
(0,L)3

σ− : e(w) dx

−
∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕh)2
+

(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh. (81)
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The isotropic system (77) and (78) is recovered by setting

σ+ := Ge(up) and σ− ≡ 0.

We formulate separately a semilinear and bilinear form for each of the two
subproblems. The spatially discretized elasticity problem can be written in
the following way:

Finite Element Formulation 1 (Variational FE formulation of the nonlinear
phase-field function). Given pp and up find ϕh ∈ Wh such that:

A(ϕh)(ψ) =

∫
(0,L)3

(1− k)ϕh+ψσ
+ : e(up) dx

+Gc

∫
(0,L)3

(
−1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx

+

∫
(0,L)3

2
(
(1− α)ϕh+pp div up + ϕh+∇pp · up

)
ψ dx

−
∫

(0,L)3
kreg(ϕp, ϕ

h)θδ(ϕp − ϕh)ψ = 0, ∀ψ ∈ Wh.

Finite Element Formulation 2 (Variational FE formulation of elasticity).
Given pp and ϕp, find uh ∈ Vh such that:

B(uh)(w) =

∫
(0,L)3

(
(1− k)(ϕh+)2 + k

)
σ+ : e(w) dx+

∫
(0,L)3

σ− : e(w) dx

−
∫
∂N (0,L)3

(τp + ppn) ·w dS

+

∫
(0,L)3

(ϕ+)2
(
(1− α)pp div w +∇pp ·w

)
dx = 0, ∀w ∈ Vh.

We adopt a partitioned coupling scheme to solve the equations. First, the
nonlinear problem (Finite Element Formulation 1) is solved with Newton’s
method. For the iteration steps m = 0, 1, 2, . . ., we have:

A′(ϕh,m)(δϕh, ψ) = −A(ϕh,m)(ψ), ϕh,m+1 = ϕh,m + ωδϕh, (82)

with a line search parameter ω ∈ (0, 1]. Here, the Jacobian of A(ϕh)(ψ) is
denoted by A′(·)(·).

Then, we solve for the linear elasticity problem (Finite Element Formula-
tion 2), which can be treated with an appropriate solver.
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5 Numerical tests

We perform four numerical tests where we assume a dimensionless form of
the equations. In the first example, we consider Sneddon’s benchmark and
compare it to findings in the literature. In the second and third test cases,
we compare formulation (77), (78) with (80), (81). In the second test case,
an increasing pressure is applied to a single crack, which starts propagating
after some time. For the third test, we use an increasing pressure to study two
joining cracks. In the final test, heterogeneous porous media are considered.
The last two tests demonstrate the performance of the variational approach
to fractures in which joining and branching of cracks are easily treated. The
programming code is a modification of the multiphysics program template [25],
based on the finite element software deal.II [3].

5.1 Sneddon’s benchmark

The first example is motivated by Bourdin et al. [6] and is based on Sneddon’s
theoretical calculations [21, 20]. Specifically, we consider a 2D problem where
a (constant) pressure p is used to drive the deformation and crack propagation.

The configuration is displayed in Figure 2. Here we have assumed the
following geometric data: Ω = (0, 4)2 and a (prescribed) initial crack on the
line ΩC : y = 2.0 and 1.8 ≤ x ≤ 2.2. As boundary conditions we set the
displacements zero on ∂Ω. In addition, we set the regularization parameter
ε = hcoarse = 4.4 × 10−3 and k = 1

2
ε = 2.2 × 10−3. For other choices using a

different solution algorithm, we refer to [24, 11]. We set α = 0 and the fracture
toughness Gc = 1.0. The mechanical parameters are Young’s modulus and
Poisson’s ration E = 1.0 and νs = 0.2. The injected pressure is p = 10−3.
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Figure 2: Example 1 (going from top left to bottom right): Crack pattern,
normal displacements (required for computing the width of the crack), mesh,
and zoom-in of the mesh with the crack pattern. The crack is denoted in red
with ϕ = 0 and the unbroken material is blue with ϕ = 1. In the second figure,
the normal displacements are positive (red) above the fracture and negative
(blue) below the fracture. The displacements are of order 10−4 (see Figure 3).
The green part in the final figure shows the thickness ε of the mushy zone in
the phase-field variable.

Our computational goal is to measure the crack opening displacement
(COD). To do so, we observe u along ΩC . Specifically, the width is deter-
mined as the jump of the normal displacements:

w = COD = [u · n]= u+n+ − u−n+. (83)

Here, [·] denotes the jump. Equation (83) can be written in integral form
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Figure 3: Example 1: COD for different h. Sneddon’s pink line with squares
corresponds to his analytical solution.

(following, e.g., the arguments presented in [23], p.51):

w = COD =

∫ ∞
−∞

u · ∇ϕdy.

The crack pattern and the corresponding mesh are displayed in Figure 2.
In Figure 3, the crack opening displacement is shown for different h. The
solution on the finest mesh approximates well the analytical solution provided
by Sneddon.

5.2 Increasing pressure

In this second example, we study a propagating pressurized-crack. In partic-
ular, we compare the standard energy with an energy split into tensile and
compressive parts as derived in [2].

We keep the geometry and all material and model parameters as in the
first example. We compute 40 time steps with time step size ∆t = 1. While
applying an increasing pressure,

p = ∆tp̄

with p̄ = 0.1, we are able to study the propagation of and the crack as shown
in Figure 4. Two subiterations are used to solve the coupled elasticity phase-
field problem. We study time versus crack length as shown in Figure 5. As
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Figure 4: Example 2: Crack pattern (in red with ϕ = 0) for four different
time steps at T = 1, 30, 35, 40. The unbroken material is denoted in blue with
ϕ = 1. The mushy zone is yellow/green.

observed in the literature, we note that the crack does not grow unless Gc is
exceeded and brutal crack growth occurs then.
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Figure 5: Example 2: Total crack length versus time for three mesh levels. On
the left, we use the standard energy expression and in the right subfigure, the
energy-split is shown. Both expressions lead to the same results from which
we infer that pressurized crack propagation as modeled in this paper does not
rely on compressive energy modes.

5.3 Increasing pressure leading to joining of two cracks

The third example demonstrates a major capability of the phase-field ap-
proach: joining of two cracks without any special geometry-adapted technique.
A similar test has been computed in [24], where it is shown that the crack prop-
agation is insensitive to grid perturbation. As in the previous Example 5.2,
we compare the energy split into tensile and compressive parts.
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Figure 6: Example 3: Length of Crack 1 versus time for three mesh levels.
The propagation of this crack stops around when the centered crack reaches
the vertical-oriented crack on the right. On the left, we use the standard
energy expression and in the right subfigure, the energy-split is shown. Both
expressions lead to the same results from which we infer that pressurized crack
propagation as modeled in this paper does not rely on compressive energy
modes.

We keep all material and model parameters as in the previous example,
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with the exception of having two initial cracks. The first one (Crack 1) is the
same as before and centered in the middle of the domain. The second crack
is vertically oriented at x = 2.6 and y ∈ [1.8, 2.2]. Consequently, the shortest
distance between the two cracks is 0.4. We compute 40 time steps with time
step size ∆t = 1. While applying an increasing pressure,

p = ∆tp̄

with p̄ = 0.1, we are able to study the propagation and joining of the cracks
as shown in Figure 7.

Figure 7: Example 3: Crack pattern (in red with ϕ = 0) for four different
time steps at T = 1, 25, 30, 35. The unbroken material is denoted in blue with
ϕ = 1. The mushy zone is yellow/green.

Our computational goal is to detect the time when the cracks meet. In
Figure 6, there are two graphs corresponding to two different mesh values,
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showing growth of Crack 1. We note that when Crack 1 meets the vertical
crack, there is merging of the two cracks followed by no growth in Crack 1 as
illustrated in Figure 7.

5.4 Joining and branching in a nonhomogeneous porous
medium

The final example demonstrates another important feature of the phase-field
approach: joining and branching of two cracks in a nonhomogeneous porous
medium. Therefore, we adapt the Lamé coefficients such where µ varies in a
range of 0.42 − 1.41 and λ between 0.28 − 1.28. In Figure 8 the pattern of
material distribution for λ and µ is provided. The initial crack configuration
is the same as in the previous example. In addition, all other material and
model parameters are taken as in the previous examples. We compute 15 time
steps with time step size ∆t = 1. While applying an increasing pressure,

p = ∆tp̄

with p̄ = 0.5, we are able to study the evolution crack patterns as shown in
Figure 9.

Figure 8: Example 4: µ-distribution (left) and initial crack configuration
(right). The Lamé parameter µ varies in a range of 0.42 − 1.41 where the
red parts denotes stiff material and the blue regions smoother material.
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Figure 9: Example 4: Crack pattern (in red with ϕ = 0): joining, branch-
ing and non-planar crack growth in a heterogeneous medium. The unbroken
material is denoted in blue with ϕ = 1. The mushy zone is yellow/green.
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A Proof of Proposition 1

Proof. We will use Schauder theorem to prove Proposition 1. An alternative
possibility would be to use an approach based on the pseudomonotone opera-
tors .

Let X = H1((0, L)3), X1 = L2 and let g ∈ X. We introduce g̃ = inf{1, g+}
and consider the following monotone elliptic variational problem.

Find ϕ ∈ X such that

Gc

∫
(0,L)3

{
ε∇ϕ · ∇ψ − 1

ε
(1− ϕ)ψ

}
dx−

∫
(0,L)3

kreg(ϕp, g)θδ(ϕp − ϕ)ψ dx =

−
∫

(0,L)3
inf{1, g

1+b
+ − (ϕp)

1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
ψ dx−∫

(0,L)3
χ(1− k)g̃ψGe(up) : e(up) dx, ∀ψ ∈ X. (84)

Problem (84) corresponds to the minimization of a strictly convex and
continuous, coercive functional Γ on X, where Γ is given by

Γ(ψ) =

∫
(0,L)3

{Gc

2

{
ε|∇ψ|2 +

1

ε
(1− ψ)2

}
−Ψδ(ψ)kreg(ϕp, g) +Fψ

}
dx, (85)

with

F = inf{1, g
1+b
+ − (ϕp)

1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+

χ(1− k)g̃Ge(up) : e(up); (86)

Ψδ(t) =


0, t < ϕp − δ;
(t− ϕp + δ)2/(2δ), ϕp − δ ≤ t ≤ ϕp;
δ

2
+ t− ϕp, ϕp < t.

(87)

The basic variational calculus implies that the minimization problem has a
unique solution ϕ ∈ X. Hence, problem (84) has a unique solution as well and
the map g → ϕ = Φ(g) is well defined as a map Φ : X1 → X1.

We note that if g ∈ X1 = L2((0, L)3) then ϕ ∈ X = H1((0, L)3).
Next we test (84) by ψ = ϕ. It yields

Gc

∫
(0,L)3

{
ε|∇ϕ|2 +

1

ε
ϕ2
}
dx−

∫
(0,L)3

kreg(ϕp, g)(θδ(ϕp − ϕ)− θδ(ϕp))ϕ dx =
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−
∫

(0,L)3
inf{1, g

1+b
+ − (ϕp)

1+b
+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
ϕ dx+

Gc

ε

∫
(0,L)3

ϕ dx

+

∫
(0,L)3

kreg(ϕp, g)θδ(ϕp)ϕ dx−
∫

(0,L)3
(1− k)g̃ϕGe(up) : e(up) dx

and we get
||ϕ||L2 + ||∇ϕ||L2 ≤ R, (88)

where R does not depend on g, but only on ||e(up)||L4 , |kreg| and pp.
Let K = BH1(0, R). Then K is a convex, non-empty and compact set of

X1 = L2. Furthermore, Φ(K) ⊂ K. It remains to prove that Φ is continuous.
Let {gn} ⊂ K be such that gn → g ∈ K in X1. Let

Fn = inf{1, (gn)1+b
+ − (ϕp)

1+b
+

gn − ϕp
}
(
(1− α)pp div up +∇pp · up

)
+

(1− k)g̃nGe(up) : e(up). (89)

Then Ge(up) : e(up) ∈ Lr, r > 3 and

gn → g in L2, as n→∞,

imply

(1− k)g̃nGe(up) : e(up) → (1− k)g̃Ge(up) : e(up) in L2.

Next, we define h2 = (1−α)pp div up +∇pp ·up ∈ Lr, r > 3, and the function

z → Q(z, y) = inf{1, z
1+b
+ − y1+b

+

z − y
}, y ∈ R,

is in C0,b[0, 1] with values between 0 and 1. Consequently, we have∫
(0,L)3

h2
2|Q(gn, ϕp)−Q(g, ϕp)|2 dx ≤ C||h2||2L3||gn − g||βL2 ,

where

β =

{
2/3, for b ≥ 1/3;
2b, for 0 < b < 1/3.

The convergence in L2 of the second term in Fn and the above estimate, yield
that

gn → g in L2, as n→∞, ⇒ Fn → F in L2. (90)
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Furthermore, using that

kreg(ϕp, g) = inf{0,−Gcε∆ϕp −
Gc

ε
(1− ϕp) + (1− k)χGe(up) : e(up)g̃+

inf{1,
g1+b

+ − (ϕ1+b
p )+

g − ϕp
}
(
(1− α)pp div up +∇pp · up

)
} on (0, L)3,

we immediately observe that

gn → g in L2, as n→∞, implies kreg(ϕp, gn)→ kreg(ϕp, g) in L2. (91)

Next Φ(gn) = ϕn satisfies

Gc

∫
(0,L)3

{
ε∇(ϕn − ϕm) · ∇ψ +

1

ε
(ϕn − ϕm)ψ

}
dx−∫

(0,L)3
kreg(ϕp, gn)(θδ(ϕp − ϕn)− θδ(ϕp − ϕm))ψ dx =

∫
(0,L)3

(Fm −Fn)ψ dx

−
∫

(0,L)3
(kreg(ϕp, gn)− kreg(ϕp, gm))θδ(ϕp − ϕm))ψ dx, ∀ψ ∈ X, (92)

and we get, after choosing ψ = ϕn − ϕm, that {ϕn} is a Cauchy sequence in
X = H1((0, L)3). Therefore, there is ϕ0 ∈ X such that Φ(gn) = ϕn → ϕ0

and ϕ0 satisfies equation (84), with gn replaced by g. Hence ϕ0 = Φ(g) and
Φ(gn)→ Φ(g), as n→∞.

Now Schauder’s theorem implies existence of a fixed point in K.
Next we observe that ϕ satisfies

−ε∆ϕ+
1

ε
ϕ = G ∈ Lr((0, L)3), r > 3 and

∂ϕ

∂n
= 0 on ∂(0, L)3. (93)

By a theorem of Calderon-Zygmund we get estimate (33).
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