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STABILITY OF RESTRICTIONS OF COTANGENT BUNDLES OF IRREDUCIBLE

HERMITIAN SYMMETRIC SPACES OF COMPACT TYPE

INDRANIL BISWAS, PIERRE-EMMANUEL CHAPUT, AND CHRISTOPHE MOUROUGANE

ABSTRACT. It is known that the cotangent bundle ΩY of an irreducible Hermitian symmetric space Y of

compact type is stable. Except for a few obvious exceptions, we show that if X ⊂ Y is a complete intersection

such that Pic(Y ) → Pic(X) is surjective, then the restriction ΩY |X is stable. We then address some cases

where the Picard group increases by restriction.
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1. INTRODUCTION

Stable vector bundles with zero characteristic classes on a smooth projective variety are given by the

irreducible unitary representations of the fundamental group of the variety. On the other hand, it is a difficult
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and interesting question to produce explicit examples of stable vector bundles on algebraic varieties with non-

zero characteristic classes. However, there are such vector bundles within the framework of homogeneous

spaces. For example, an irreducible homogeneous bundle E on a homogeneous space Y is stable [Ume78],

[Ram66], [Bis04]. Once one has these stable vector bundles, a theorem of Mehta-Ramanathan [MR84]

and Flenner [Fle84] asserts the stability of restrictions of these bundles to general hypersurfaces X of high

enough degree with respect to the given polarisation. In this article, we address the following general

question: What can be said about the stability of the restriction of an irreducible homogeneous bundle E,

defined on a homogeneous space Y , to a subvariety X ⊂ Y ?

We give a positive answer to this question in the following setting. Recall that a Hermitian symmetric

space is a Hermitian manifold in which every point is an isolated point of an isometric involution. It is

homogeneous under its isometry group. Compact examples include the usual Grassmannians, the quadric

hypersurfaces, the Lagrangian Grassmannians parametrising n-dimensional Lagrangian subspaces of C2n

equipped with a symplectic form, the spinor Grassmannian parametrising one family of n-dimensional

isotropic subspaces of C2n equipped with a nondegenerate quadratic form, and two exceptional manifolds.

For a compact irreducible Hermitian symmetric spaces Y , the cotangent bundle ΩY is an irreducible homo-

geneous, hence stable, vector bundle.

We assume first that Y is a compact Hermitian symmetric space, and X is a locally factorial complete in-

tersection such that the restriction Pic(Y ) → Pic(X) is surjective. This holds by Lefschetz theorem [Lef21]

whenever dimX ≥ 3 (see also [Laz04, Example 3.1.25]) or whenever X is a very general complete intersec-

tion surface in Pn except if it is a degree d ≤ 3 surface in P3 or the intersection of two quadric threefolds in

P4 (see also [Kim91, Theorem 1]). Furthermore, we assume that E is the cotangent (or, dually, the tangent)

bundle of Y .

Theorem A (Theorem 1 and Theorem 2). Let Y be a compact irreducible Hermitian symmetric space, and

let X be a locally factorial positive dimensional complete intersection in Y . Assume that the restriction

homomorphism Pic(Y ) → Pic(X) is surjective. If Y is a projective space or a quadric, assume moreover

that X has no linear equation. Then, the restriction of ΩY to X is stable.

In fact, our theorems are slightly more general than Theorem A since it is not necessary that X is a

complete intersection : it is enough that X has a short resolution, as explained in Definition 2.1. Moreover,

if one is interested in general complete intersections, then using a relative Harder-Narasimhan filtration one

can get rid of the assumption on the Picard groups ; but semistability, instead of stability, is obtained (see

Theorem 4).

We then deal with the case of small dimensions where the Picard group increases. Recall that irreducible

Hermitian symmetric spaces of dimension 2 or 3 are P2, P3, Q2 and Q3.

Theorem B (Theorem 4, Theorem 5). Let Y be a compact irreducible Hermitian symmetric space of dimen-

sion 2 or 3. Let X ⊂ Y be a smooth divisor, and in the case of ambient dimension 3 let C be a complete

intersection curve.

• Take Y = P2. Then ΩY |X is semi-stable if degX ≥ 2. If degX ≥ 3, then ΩY |X is stable.

• Take Y = P3. Then ΩY |X is stable if degX ≥ 2. IfC is cut-out by general non-linear hypersurfaces.

Then ΩY |C is semi-stable.

• If Y = Q2, then ΩY |X is semi-stable but not stable.
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• Take Y = Q3.

Assume that degX = 1. Then ΩY |X is semi-stable.

Assume that degX = 2. Then ΩY |X is stable.

Assume that degX ≥ 9. Then ΩY |X is stable.

If degX ≥ 3 and X is very general, then ΩY |X is stable.

If C is cut-out by general non-linear hypersurfaces, then ΩY |C is semi-stable.

Our arguments are very different in the two situations. In the case of complete intersections with no

increase of Picard groups, we use a new vanishing theorem (Theorem 3) that may be of independent interest

(see Section 3.1). In fact, by standard cohomological arguments, a subbundle F ⊂ ΩY |X of the restriction

of ΩY contradicting stability yields the non-vanishing of some cohomology group Hq(Y,Ωp(l)), where q

is related to the codimension of X and l to the degree of F . Our vanishing theorem implies the desired

stability inequality (see Section 2). In small dimensions, we use tools from projective geometry to make

explicit the new line bundles that appear on the subvariety X and some arguments of representation theory

(see Section 4).

2. RESTRICTIONS WITH SMALL PICARD GROUP

Let Y be a compact irreducible Hermitian symmetric space, but not isomorphic to Q2. We denote the

ample generator of the Picard group of Y by OY (1). For a sheaf F on Y and an integer l, we denote

the tensor product F ⊗ OY (1)
⊗l by F(l). We denote by deg Y the top degree self-intersection deg Y :=

OY (1)
dim Y and by c1(Y ) the index of the Fano manifold Y . We recall that c1(Y ) is defined by the equality

−KY = c1(Y )OY (1) as elements of the Néron-Severi group of Y .

2.1. Short resolution. We will prove stability of the restriction of ΩY to subschemes whose structure sheaf

has a short resolution in the following sense :

Definition 2.1. A subscheme X ⊂ Y is said to have a short resolution if there is a resolution

0 → Fk → Fk−1 → · · · → F1 → F0 → OX → 0 ,

where F0 = OY , Fi := ⊕jOY (−dij) with dij ≥ i for i > 0, and the length k of the resolution satisfies

k < dim(Y ).

Example 2.2. The Koszul resolution of complete intersections is a short resolution for a positive-dimensional

complete intersection in Y . If, moreover, none of the equations is linear, then the integers dij in Definition 2.1

satisfy dij ≥ i+ 1.

Our second class of examples are some arithmetically Cohen-Macaulay subschemes. Let X ⊂ PN be a

subscheme defined by a homogeneous ideal J in the homogeneous coordinate ring A := C[X0, . . . ,XN ].

Recall that X is called arithmetically Cohen-Macaulay if the depth of A/J is equal to the dimension of

A/J , namely dimX + 1. Let, moreover, I ⊂ A denote the homogeneous ideal ofY . The reason why we

will consider arithmetically Cohen-Macaulay subschemes is the following :

Fact 2.3. Let X ⊂ Y ⊂ PN be an arithmetically Cohen-Macaulay subscheme, and assume that A/J has

finite projective dimension over A/I . Then, the structure sheaf OX has a resolution by split vector bundles

over Y of length k = dimY − dimX

0 → Fk → Fk−1 → · · · → F1 → F0 → OX → 0 ,
3



where F0 = OY and Fi := ⊕jOY (−dij) with dij ≥ i for i > 0. In particular, if dim(X) > 0, then X has

a short resolution.

If, moreover, X is not linearly degenerate in PN , then we have dij ≥ i+ 1.

Proof. We have I ⊂ J ⊂ A. By Auslander-Buchsbaum formula [Mat89, Theorem 19.1], we have the

equality

pdA/I(A/J) = depth(A/I) − depth(A/J) .

Moreover, any homogeneous space embedded by a homogeneous ample line bundle is arithmetically Cohen-

Macaulay (see for example [BK05, Corollary 3.4.4]). Thus,

depth(A/I) = dim(A/I) = dimY + 1 .

Therefore, pdA/I(A/J) = dimY − dimX. Hence a minimal free resolution of A/J over A/I has length

k = dimY − dimX. Moreover, since for such a resolution the differentials have positive degree, we have

dij ≥ i for all ∀i, j. If X is not included in any hyperplane, it has no equation of degree 1, so d1j ≥ 2 for

all ∀j, and we deduce that dij ≥ i+ 1. �

2.2. A cohomological property. We will need the following nonvanishing property to prove our stability

results. Its proof is postponed to Section 3.

Proposition 2.4. Let Y be a compact irreducible Hermitian symmetric space, but not a projective space.

Let l, p, q be integers, with q < dimY , such that Hq(Y,Ωp
Y (l)) 6= 0. Then,

l + q ≥ p
c1(Y )

dim(Y )
,

with equality holding if and only if

• p = dim(Y ), q = 0 and l = c1(Y ),

• or p = q = 0 and l ≥ 0,

• or Y is a quadric and l = 0,

• or Y ≃ Q4, l = 2, p = 3, q = 1.

Of course, if q = dim(Y ) were allowed, then the above inequality would fail, since we may have l very

negative and p = dim(Y ) (then apply Serre duality).

2.3. General argument. We can now prove the

Theorem 1. Let Y be any compact irreducible Hermitian symmetric space excluding a projective space and

a quadric. Let X be a locally factorial positive dimensional subvariety of Y having a short resolution and

such that Pic(X) = Z · OY (1)|X . Then the restriction of ΩY to X is stable.

Note that if dimX ≥ 3, the constraint on the Picard group of the complete intersection is ensured by

Lefschetz theorem.

Proof. We will later prove a slightly weaker result for quadrics and projective spaces (Theorem 2), thus, for

the moment Y is any compact irreducible Hermitian symmetric space.

Let F be a coherent subsheaf of ΩY |X of rank 0 < p < dimY . Since X is assumed to be locally

factorial, the rank one reflexive subsheaf detF := (
∧pF)⋆⋆ of

∧pΩY |X is invertible [Har80, Proposition
4



1.9] and hence isomorphic to OX(−d) for some integer d. We have

µ(ΩY ) =
OX(1)dim(X)−1 ·KY

rankΩY |X
= −

c1(Y )

dim(Y )
· degX · deg Y

µ(F) =
OX(1)dim(X)−1 · detF

rankF
= −

d

p
· degX · deg Y .

The inclusion F ⊂ ΩY |X yields the non-vanishing of

H0(X,Hom(detF ,Ωp
Y |X)) = H0(X,Ωp

Y (d)|X),

from which we have to deduce the stability inequality

µ(F) < µ(ΩY |X) , equivalently, d > p
c1(Y )

dim(Y )
.

Consider a resolution of OX as in Definition 2.1. The resolution

0 → Fk ⊗Ωp
Y (d) → · · · → F1 ⊗ Ωp

Y (d) → F0 ⊗ Ωp
Y (d) → Ωp

Y (d)|X → 0

translates the non-vanishing of H0(X,Ωp
Y (d)|X) into the nonvanishing of one of the cohomology groups in

the decomposition

H i(Y,Fi ⊗ Ωp
Y (d)) = ⊕jH

i(Y,Ωp
Y (d− dij)),

say of H i(Y,Ωp
Y (d− dij)).

We now assume that Y is not a projective space. In our setting Proposition 2.4 reads

(d− dij) + i ≥ p
c1(Y )

dim(Y )
. (2.1)

It follows that d ≥ p c1(Y )
dim(Y ) .

In case of the equality d = p c1(Y )
dim(Y ) , we get that dij = i, and the equality in (2.1) holds. Now assume

that Y is not a quadric. Therefore, Proposition 2.4 gives that p = 0 or p = dim(Y ), equivalently, either

F = {0} or F = ΩY . Thus, ΩY is stable. �

Some remarks regarding the two excluded cases in Theorem 1.

Remark 2.5. If X ⊂ Y is a linear section of the quadric Y , then, as the above proof shows, the restriction

of ΩY to X is semi-stable.

Remark 2.6. If X ⊂ Y is a smooth quadric inside the quadric Y , then we have an exact sequence

0 → N∗
X|Y → ΩY |X → ΩX → 0.

All these vector bundles have equal slope, so ΩY |X is not stable. We believe that in this situation the only

destabilizing subsheaf is N∗
X|Y . The above argument shows that a destabilizing sheaf must have rank equal

to the codimension of X.

Remark 2.7. Similarly, if X ⊂ Y is contained in a linear subspace H in a projective space Y , then for the

exact sequence,

0 → N∗
H|Y |X

→ ΩY |X → ΩH |X → 0 ,

the slope of N∗
H|Y |X

is strictly bigger than the slope of ΩY |X . Thus, ΩY |X is not even semi-stable.

Thus, to get a result similar to Theorem 1 in these two cases, we exclude the case where X has a linear

equation :
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Theorem 2. Let Y be a smooth quadric or a projective space. Then ΩY is stable. Let X be a locally

factorial subvariety in Y having a short resolution and such that Pic(X) = Z · OY (1)|X . Assume that X

is contained in no hyperplane section of Y . Then the restriction of ΩY to X is stable.

Note that by Lefschetz theorem, this theorem applies to very general cubic hypersurfaces of Q3.

Proof. We continue with the notation of Theorem 1. If Y is a quadric, by the above proof of Theorem 1, we

have the non-vanishing of some H i(Y,Fi ⊗ Ωp
Y (d)). If i > 0, by (2.1) we have for some j the inequality

d− dij + i ≥ p
c1(Y )

dim(Y )
(= p) .

Since, by Fact 2.3, dij > i, we get that d > p. If i = 0, then H0(Y,Ωp
Y (d)) 6= 0, and by a result due to

Snow (see Section 3.3), we get that either p = 0 or p = dim(Y ). This implies stability as in the proof of

Theorem 1.

Assume now that Y is the projective space Pn. We may assume that 0 < p < n. We wish to prove that

d

p
>

n+ 1

n
.

Since
p+1
p > n+1

n , it is enough to prove that d ≥ p+ 1. For integers p, q, l, we have Hq(Pn,Ωp
Pn(l)) 6= 0

if and only if one of the following hold :

(1) l > 0, p < l and q = 0,

(2) l = 0 and p = q,

(3) l < 0, n− p < −l and q = n.

Once again, we get that H i(Y,Fi ⊗ Ωp
Y (d)) 6= 0 for some i. If i = 0, since F0 = OY , this implies that

p = 0. If i > 0, since i < n, this implies that i = p and d = dij for some j. Thus we have d ≥ i+1 = p+1,

as claimed. �

3. VANISHING THEOREMS

3.1. The statement. We will now explain the proof of Proposition 2.4. Actually, we will prove a stronger

vanishing theorem that may be useful for other purposes.

Theorem 3. Let Y be a compact irreducible Hermitian symmetric space, but not a projective space. Let

l, p, q be integers, with l > 0, p > 0, such that Hq(Y,Ωp
Y (l)) 6= 0.

(1) Then,

l + q ≥ p
c1(Y )

dim(Y )
.

Furthermore, equality holds if and only if

• p = dim(Y ), q = 0 and l = c1(Y ),

• or Y is a quadric and l = 0,

• or Y ≃ Q4, l = 2, p = 3, q = 1.

(2) If moreover q > 0, then

l + q ≤ p.

The proof of Theorem 3 is given in the next subsections. Surprisingly enough, the first item is very

intricate, and the proof of the vanishing theorem in this case entails involved combinatorial arguments. The

second item is much easier.
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Let us explain that Theorem 3 implies Proposition 2.4.

Assume that Hq(Y,Ωp
Y (l)) 6= 0. If l = 0, then by Hodge theory we have p = q. Since c1(Y ) ≤ dim(Y )

with equality holding if and only if Y is a quadric [KO73, page 37], this case is settled. If p = 0, then

q = 0 if l > 0, while q = dim(Y ) if l < 0. Thus this case is also settled.

In the second case of the theorem, let us prove that actually

l + q < p
c1(Y )

dim(Y )
+ dim(Y )− c1(Y ) . (3.1)

Firstly, the theorem states that l + q ≤ p, and we have p ≤ dim(Y ). Since

(1−
c1(Y )

dim(Y )
)(l + q) ≤ dim(Y )− c1(Y ) ,

we have

l + q ≤
c1(Y )

dim(Y )
(l + q) + dim(Y )− c1(Y ) ≤ p

c1(Y )

dim(Y )
+ dim(Y )− c1(Y ) .

Note that the equality here would imply that p = dim(Y ), in which case we cannot have q > 0. Thus, the

inequality (3.1) is proved. Now, coming back to the proof of the theorem, if l < 0, then by Serre duality

we have

Hdim(Y )−q(Y,Ω
dim(Y )−p
Y (−l)) 6= 0 .

The relation (3.1) gives that (−l) + (dim(Y )− q) < (dim(Y )− p) c1(Y )
dim(Y ) + dim(Y )− c1(Y ), or in other

words,

l + q > p
c1(Y )

dim(Y )
.

3.2. The case of Grassmannians (type An). Fix positive integers a, b ≥ 2. Let Gab := G(a, a + b) be

the Grassmannian that parametrises a-dimensional linear subspaces of a fixed (a+ b)-dimensional k-vector

space V . It is the homogeneous space G(a, a+ b) = SU(a+ b)/[SU(a+ b)∩U(a)×U(b)]. Let Oab(1) be

the Plücker polarisation on Gab, which is also the positive generator of Pic(Gab). The cotangent bundle Ωab

of Gab being homogeneous and irreducible is µ-stable. We assume dimGab = ab ≥ 4 so that by Lefschetz

hyperplane theorem, the restriction Oab(1)|X generates the Picard group of every smooth hypersurface X

of Gab. Theorem 1 reads in this case as follows :

Proposition 3.1 (Theorem 1 for Grassmannians). Assume that ab ≥ 4. Let X be a smooth complete

intersection in Gab such that Pic(X) = Z · Oab(1)|X . Then the restriction of Ωab to X is semi-stable. It is

stable except exactly when a = b = 2 with X being a hyperplane section.

In case Y is a Grassmannian, by [Sno86], the non-vanishing of Hq(Y,Ωp
Y (l)) implies the existence of a

partition of p, which is l-admissible with cohomological degree q in the following sense.

Definition 3.2 ([Sno86]). Let λ be a partition and l an integer. We say that λ is l-admissible if no hook-

number of λ is equal to l. The (l-)cohomological degree of an l-admissible partition is the number of

hook-numbers which are greater than l.

Hence, as we have seen in the proof of Theorem 1, the above Proposition 3.1 is a consequence of the

following combinatorial result :
7



Proposition 3.3 (First part of Theorem 3 for Grassmannians). Let l be a non-negative integer. Let λ be a

l-admissible partition of p in a rectangle a× b, with cohomological degree q. Then, we have the inequality

l + q ≥ p
a+ b

ab
,

with equality holding if and only if either λ = (ba), l = a + b and q = 0, or λ = (2, 1), l = 2 and

q = 1.

Proof. The case where l = 0 is easy as then we have p = q, and if a , b ≥ 2, the inequality ab ≥ a+ b

holds.
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n∑
i=1

xi

+n−1

n∑
i=2

xi

+n

n∑
i=2

xi

+n−2

n∑
i=3

xi

+n−1

n∑
i=3

xi

+n−3
· · ·

n∑
n−k+1

xi

+k+1

n∑
n−k+1

xi

+k−1

n∑
n−3

xi

+3

n∑
n−2

xi

+4

n∑
n−2

xi

+2

xn−1
+xn
+3

xn−1
+xn
+1

xn

+2 xn 1

n−1∑
i=1

xi

+n−2

n−1∑
i=2

xi

+n−1

n−1∑
i=2

xi

+n−3

n−1∑
i=3

xi

+n−2

n−1∑
i=3

xi

+n−4

· · · · · · · · ·
n−1∑
n−3

xi

+2

xn−1
+xn−2

+3

xn−1
+xn−2

+1

xn−1

+2 xn−1 1

n−2∑
i=1

xi

+n−3

n−2∑
i=2

xi

+n−2

n−2∑
i=2

xi

+n−4

n−2∑
i=3

xi

+n−3

n−2∑
i=3

xi

+n−5

· · · · · · · · ·
xn−3

+xn−2

+1

xn−2

+2 xn−2 1

n−3∑
i=1

xi

+n−4

n−3∑
i=2

xi

+n−3

n−3∑
i=2

xi

+n−5

n−3∑
i=3

xi

+n−4

n−3∑
i=3

xi

+n−6

· · · · · · · · · xn−3 1

...
...

...
...

...

k+2∑
j=1

xj

+k+1

k+2∑
j=2

xj

+k+2

k+2∑
j=2

xj

+k

k+2∑
j=3

xj

+k+1

k+2∑
j=3

xj

+k−1

k+1∑
j=1

xj

+k

k+1∑
j=2

xj

+k+1

k+1∑
j=2

xj

+k−1

k∑
j=1

xj

+k−1

k+1∑
j=2

xj

+k+1

k+1∑
j=2

xj

+k−1

xk 1

...
...

...

x1
+x2
+x3
+2

x2
+x3
+3

x2
+x3
+1

x3

+2 x3 1

x1
+x2
+1

x2

+2 x2 1

x1 1



We choose to denote partitions by non-decreasing sequences λ = (λ1 ≤ λ2 ≤ · · · ≤ λb′). Let x1 = λ1

be the first part; for all 2 ≤ i ≤ n, let xi denote the increase λi − λi−1 between consecutive parts. We

denote by qi the number of boxes in the ith row strictly bigger than l. From the reading of the top row, we

obtain that the gap l has the expression

l =
n∑

j=i

xj + (n+ 1− i)

for some index i with 2 ≤ i ≤ n. If xn−2 = 0 for example, then the whole block

xn−2

+xn−1

+xn+2

xn−1

+xn
+3

xn−1

+xn−2

+1

xn−1

+2

xn−2 1

gets removed, and we get two consecutive values xn−1 + xn + 2 and

xn−2 + xn−1 + xn + 3 = xn−1 + xn + 3

as candidates for gaps on the top row. For example, with x1 = 2, x2 = 0, x3 = 2, x4 = 2, we get 6 and 7 as

candidates for gaps on the top row.

9 8 5 4 2 1

6 5 2 1

3 2

2 1

The number of boxes strictly bigger than l on the top row is qn =
∑i−1

j=1 xj . We have

l + q =
n∑

j=1

xj + (n+ 1− i) +
n−1∑

j=1

qj = b′ + a′ + 1− i+
n−1∑

j=1

qj.

On the other hand, counting boxes in the complementary partition, we have

a′ −
p

b′
= =

a′b′ − p

b′
=

∑n
j=2(j − 1)xj∑n

j=1 xj
.

Up to changing the fixed vector space V by its dual, we may assume that a′ ≤ b′, so that b′ − p
a′ ≥ a′ − p

b′ .

We have to show that l + q ≥
p

a′
+

p

b′
, that is (a′ −

p

b′
) + (b′ −

p

a′
) ≥ i− 1−

n−1∑

j=1

qj . It is enough to prove

that

a′ −
p

b′
≥

i− 1−
∑n−1

j=1 qj

2
. (3.2)
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Let k = #{i|ci,1 < l}, where ci,1 denotes the hook number in the (i, 1)-box. We have

(

k∑

j=1

xj) + k − 1 < l ≤ (

k+1∑

j=1

xj) + k

(see the red boxes). As l ≤ (
∑k+1

j=1 xj)+ k, the number l is one of the gaps in the (k+1)th row, and hence,

l ≤ (
∑k+1

j=2 xj) + k (see the green boxes). As l ≤ (
∑k+2

j=2 xj) + k (see the blue box), it is a gap in the

(k + 2)th row with l ≤ (
∑k+2

j=3 xj) + k (see the green boxes). Arguing further, we get that on the nth row,

l ≤ (
∑n

j=n−k+1 xj) + k forcing the index i to satisfy the inequality

i ≥ n− k + 1.

We also infer that on each row above the kth, there are boxes strictly bigger than l, so that considering the

number of boxes strictly bigger than l on non-top rows we have
∑n−1

j=1 qj ≥ n− k − 1, in particular

i− 1−

n−1∑

j=1

qj ≤ k .

From the choice of the level k we have (
∑k

j=1 xj) + k ≤ l =
∑n

j=i xj + (n+ 1− i). Now cancelling the

common terms in these sums, we infer the following bound on the first increases in terms of the last ones

min(k,i−1)∑

j=1

xj ≤

n∑

j=max(k+1,i)

xj + (n− k + 1− i) ≤

n∑

j=max(k+1,i)

xj . (3.3)

Therefore

a′ −
p

b′
=

∑n
j=2(j − 1)xj∑n

j=1 xj
=

∑n
j=2(j − 1)xj

∑min(k,i−1)
j=1 xj +

∑n
min(k+1,i) xj

≥

∑n
j=2(j − 1)xj∑n

j=max(k+1,i) xj +
∑n

min(k+1,i) xj
(3.4)

=

∑n
j=2(j − 1)xj

∑max(k+1,i)−1
j=min(k+1,i) xj + 2

∑n
max(k+1,i) xj

≥
min(k, i − 1)

∑n
j=min(k+1,i) xj

2
∑n

j=min(k+1,i) xj
(3.5)

=
min(k, i − 1)

2
≥

i− 1−
∑n−1

j=1 qj

2
.

This proves the inequality for semi-stability.

If the inequality in (3.5) is not strict, then comparing numerators, we have

x2 = x3 = · · · = xmin(k,i−1) = 0 and xmin(k+2,i+1) = · · · = xn = 0 .

The partition is not a rectangle, so that xmin(k+1,i) 6= 0.
11



x1

+xk+1

+n−1

x1

+xk+1

+n−2
· · ·

xk+1

+n

xk+1

+n−k
−1

xk+1

+n−k
−2

· · · n− k

...
...

...
...

...
...

x1

+xk+1

+k+1

x1

+xk+1

+k
· · ·

xk+1

+k+2
xk+1

+1
xk+1 · · · 2

x1

+xk+1

+k

x1

+xk+1

+k−1
· · ·

xk+1

+k+1
xk+1

xk+1

−1 · · · 1

x1

+k−1
x1

+k−2 · · · k

...
...

...

x1+1 x1 · · · 2

x1 x1−1 · · · 1

Comparing denominators, we find that min(k + 1, i) = max(k + 1, i). So the level k satisfies the equation

k = i − 1 and a′ − p
b′ ≥

i−1
2 . If the inequality in (3.2) is not strict, then

∑n−1
j=1 qj = 0, so the level k must

also be maximal k = n− 1.

x1

+xn
+n−1

· · · xn
+n xn

xn

−1 · · · 2 1

x1

+n−2 · · · n−1

...
...

x1

+1 · · · 2

x1 · · · 1

If the first inequality in (3.4) is not strict, then recalling (3.3) we find a third constraint on the level k,

namely n − k + 1 − i = 0. This gives us k = i− 1 = n − 1 = 1. This proves the requirement (3.2) with

strict inequality except in the following case:

3 1

1

�

We now prove the second part of Theorem 3.
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Proposition 3.4 (Second part of Theorem 3 for Grassmannians). Let l be a positive integer. Let λ be a

l-admissible partition of p with l-cohomological degree q > 0. Then, we have the inequality

l + q ≤ p.

Moreover, if the equality p = l + q holds, then λ is a hook (i.e., it’s shape is (a, 1b)).

Proof. Let Y (λ) := {(i, j) | j ≤ λi} ⊂ N2 be the Young diagram of λ. For x ∈ Y (λ), we denote by

h(x) the hook number at x. We have p = #Y (λ) and q = #{x ∈ Y (λ) | h(x) > l}. Since q > 0, let

x ∈ Y (λ) such that h(x) > l. Moreover, we can assume that x is minimal for this property, namely that

h(y) < l if y is south-east from x. By definition of h(x), there are h(x) − 1 elements z ∈ Y (λ) which

are either on the same row as x on its right, or under x in the same column. For these elements, we have

h(z) < l. This implies that p− q = #{y ∈ Y (λ) | h(y) < l} ≥ h(x) − 1 ≥ l.

We now deal with the case of equality (that will not be used in the sequel). If the equality p = l + q

occurs, with q > 0 as above, then we first show that x is on the first row.

x′′

x x′

x′′

x x′

Case λi−1 = λi Case λi−1 > λi

If x is not on the first row, then the hook number of the box x′′, very right on the row over that of x not in

the same row of x neither on the same column, is 2 or 1. Hence this box contribute to {y ∈ Y (λ) | h(y) < l}

and therefore, p − q > l. In the same way, we can show that x is on the first column and that all the boxes

with hook number smaller than l are on the hook of x. Therefore λ is a hook. �

3.3. The case of quadrics (type Bn or Dn). Let Y be a non singular quadric hypersurface of dimension n

with its natural polarisation OY (1) = OPn+1(1)|Y . It is the homogeneous space

Y = SO(n+ 2)/(SO(n)× SO(2)) .

From the adjunction formula, c1(Y ) = n+ 2− 2 = dimY . Recall a theorem of Snow.

Theorem ([Sno86, page 174]). Let Y be a nonsingular quadric hypersurface of dimension n. If Hq(Y,Ωp
Y (l)) 6= 0,

then

• either p = q and l = 0,

• or q = n− p and l = −n+ 2p,

• or q = 0 and l > p,

• or q = n and l < −n+ p.

13



As when q = 0 and 0 < p < n, the inequality l > p holds, the cotangent bundle ΩY of the quadric is

stable as soon as the Picard group of the quadric is the restriction of that of Pn+1, for example when n ≥ 3.

Theorem 3 follows for quadrics by checking the above cases.

3.4. The case of Lagrangian Grassmannians (type Cn). In this case, Y is the so-called Lagrangian Grass-

mannian, parametrising n-dimensional Lagrangian subspaces of C2n equipped with the standard symplectic

form. It is the homogeneous space Y = Sp(2n,C)/U(n). By [Sno88], the non-vanishing of Hq(Y, Ωp
Y (l))

amounts to the existence of an l-admissible Cn-sequence of weight p and cohomological degree q, in the

following sense :

Definition 3.5. Fix l, n ∈ N with l > 0. A n-uple of integers (xi)1≤i≤n will be called an l-admissible

Cn-sequence if

• ∀ 1 ≤ i ≤ n, |xi| = i

• ∀ i ≤ j, xi + xj 6= 2l.

Its weight is defined to be

p :=
∑

xi>0

xi

and its cohomological degree is q := # {(i, j) | i ≤ j and xi + xj > 2l}.

Notation 3.6. Given an integer x, we denote x+ := Max(0, x). Therefore, we have p =
∑

i x
+
i . The set

of all (u, v) ∈ N2 such that u ≤ v and xu + xv > 2l will be denoted by Q. The cardinality #Q will be

denoted by q. Moreover we adopt the following convention: if C is a condition on (u, v), then Q(C) will

denote the subset of Q consisting of pairs satisfying C. For example, given an integer v0, the set Q(v = v0)

consists of all pairs (u, v) in Q such that v = v0.

Since this excludes the case of Y being a projective space or a quadric, which occurs when n ≤ 2, the

first part of Theorem 3 amounts to the following proposition is this case :

Proposition 3.7 (First part of Theorem 3 for Lagrangian Grassmannians). Let (xi) be an l-admissible Cn-

sequence of weight p and cohomological degree q, with n ≥ 3. Then

l + q ≥
2p

n
,

with equality occurring if and only if xi = i, l = n+ 1 and q = 0.

Proof. Let t = #{i | xi > l}. Snow classified the cases where l = 1 [Sno88, Theorem 2.2]. We then have

p = t(t+1)
2 and q = t2. Since t ≤ n

2 , we have

2p

n
=

2t(t+ 1)

n
≤ t+ 1 ≤ t2 + 1 = q + l .

Moreover, if the equality holds, then t = 1 and thus n = 2, but this value of n has been excluded. Therefore,

the proposition is true in this case.

We now assume that l ≥ 2. Given i, j, if xi > l and xj > l, then evidently xi + xj > 2l. Therefore,

q ≥
t(t+ 1)

2
≥ 2t− 1 .

On the other hand, we have p ≤ l(l−1)
2 + tn. If 2p ≥ (l + q)n, then

l(l − 1) + 2tn ≥ (2t+ l − 1)n .
14



Since l > 1, this implies n ≤ l, and so q = 0.

If l = n, then xn = −n, so we have 2p ≤ n(n − 1), therefore,
2p
n ≤ n − 1 < l, and the proposition is

true.

If l > n, since 2p ≤ n(n + 1), we get that 2p
n ≤ n + 1 ≤ l, and if the equality holds then l = n+ 1 and

p = n(n+1)
2 . �

We now prove the second part of Theorem 3 :

Proposition 3.8 (Second part of Theorem 3 for Lagrangian Grassmannians). Let (xi) be an l-admissible

Cn-sequence of weight p and cohomological degree q, with n ≥ 3 and q > 0. Then

l + q ≤ p .

Moreover, the equality p = q + l holds if and only if

x = (−1,−2, . . . ,−l, l + 1,−(l + 2),−(l + 3), . . . ,−n)

with p = l + 1 and q = 1.

Proof. The proof is similar to that of Proposition 3.4. Let j be the minimal integer such that there exists

i ≤ j with xi + xj > 2l. We have xj = j ≥ l + 1. We want to bound q = #Q. We observe that if

(u, j) ∈ Q with j − l ≤ u < j, then xu > 0. Otherwise, xu = −u and 0 < xu + xj = −u + j ≤ l,

contradicting the assumption that xu + xj > 2l. Hence 1 ≤ x+u , and therefore

#Q(v = j, j − l ≤ u < j) ≤
∑

j−l≤u<j

x+u .

Actually, a similar inequality holds with j− l replaced by j− 2l, but in the sequel we will use the inequality

j − l ≥ 1. In fact, we have

#Q(v = j, u < j − l) ≤ j − l − 1 .

Finally, #Q(v > j) ≤
∑

v>j x
+
v . Therefore, by minimality of j, we have the inequality:

q = = #Q(v = j = u) + #Q(v = j, j − l ≤ u < j) + #Q(v = j, u < j − l) + #Q(v > j)
≤ 1 +

∑
j−l≤u<j x

+
u + (j − l − 1) +

∑
v>j x

+
v

≤
∑

u<j x
+
u + xj +

∑
v>j x

+
v − l = p− l .

This proves the inequality.

We now deal with the case of equality. Assume that q = p− l. Then, asking for equalities in the previous

estimates, we find that for j − l ≤ u < j, if xu > 0, then xu = 1, and for u < j − l, xu + j > 2l

by the first inequality and xu < 0 by the second. In particular, j − l − 1 ≤ 0 and hence j = l + 1 for

otherwise xj−l−1 + j = −(j − l− 1) + j = l+ 1 > 2l. For v0 such that j = l+ 1 < v0, from the equality

Q(v = v0) = x+v0 , we infer that if xv0 > 0 then for all u ≤ v0, xu + xv0 > 2l. In particular, xv0−1 > 0

and xv0−2 > 0. By decreasing induction, we find that xl = l, contradicting the l-admissibility. Hence, for

j < v < 2l, we get xv < 0. Finally, x is of the form (−1,−2,−3, · · · ,−l, l+1,−(l+2),−(l+3), . . . ,−n)

or (1,−2,−3, · · · ,−l, l+1,−(l+2),−(l+3), . . . ,−n). In the second case, one has p = l+2 thus q = 2

thus x1 + xl+1 > 2l thus l = 1. But then x is not 1-admissible since x1 = 1. �
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3.5. The case of spinor Grassmannians (type Dn). In this case Y is the so-called spinor Grassmannian,

that parametrises a family of n-dimensional isotropic subspaces of C2n equipped with a non-degenerate

quadratic form. It is the homogeneous space Y = SO(2n)/U(n). By [Sno88], the non-vanishing of

Hq(Y, Ωp
Y (l)) amounts to the existence of an l-admissible Dn-sequence of weight p and cohomological

degree q in the following sense :

Definition 3.9. Fix n, l ∈ N with l > 0. A n-uple of integers (xi)0≤i≤n−1 will be called an l-admissible

Dn-sequence if

• |xi| = i for all 0 ≤ i ≤ n− 1,

• xi + xj 6= l for all i < j.

Its weight is defined to be

p :=
∑

xi>0

xi

and its cohomological degree q := # {(i, j) | i < j and xi + xj > l}.

Remark 3.10. Observe that the only 1-admissible Dn-sequence is the sequence (0,−1, . . . ,−n) with p =

q = 0. In fact, the 1-admissibility condition leads to the implication (xv > 0 =⇒ xv−1 > 0), and thus to

x1 = 1 and x0 + x1 = 1.

We continue to use Notation 3.6 except that now Q = {(i, j) | i < j and xi + xj > l}. Since Y is

not a projective space or a quadric, we have n ≥ 5. The first part of theorem 3 amounts to the following

proposition in this case :

Proposition 3.11 (First part of Theorem 3 for spinor Grassmannians). Let (xi) be an l-admissible Dn-

sequence of weight p and cohomological degree q, with n ≥ 5. Then

l + q ≥
4p

n
,

with equality occurring if and only if xi = i and l = 2(n− 1).

Proof. First of all, if xn−1 = −(n − 1), let x′ be the sequence of length n − 1 with x′i = xi for i ≤ n − 2.

Then x′ is evidently l-admissible. It has weight p and cohomological degree q. By induction on n, we get

that l + q ≥ 4p
n−1 > 4p

n . Thus, in the rest of the proof, we assume that xn−1 = n− 1.

Let us first assume that l > 2(n − 1). In this case, we have q = 0. Since in any case p ≤ n(n−1)
2 , we get

that 4p
n ≤ 2(n − 1) < l + q.

Let us now assume that n ≤ l ≤ 2(n − 1). Then, we denote by u the unique integer that satisfies the

following condition

#{i | xi > 0, l − n+ 1 ≤ i ≤ n− 1} = u+ 1 .

Since the sequence (xi) is l-admissible, if for l − n + 1 ≤ i ≤ n − 1 we have xi > 0, then l − n + 1 ≤

l − i ≤ n− 1 and xl−i < 0. This implies that

n− 1− (l − n+ 1) ≥ 2u ,

that is, l ≤ 2(n − u− 1). Since n ≤ l ≤ 2n− 2u− 2, we have n ≥ 2u+ 2. The sum of positive xi’s with

l − n+ 1 ≤ i ≤ n− 1 can be at most (u+ 1)(n − 1)− u(u+1)
2 . Therefore, we have

4p ≤ 4(u+ 1)(n − 1)− 2u(u+ 1) + 2(l − n+ 1)(l − n) .
16



On the other hand q ≥ u, so introducing

∆ := (u+ l)n− 2(l − n+ 1)(l − n)− 4(u+ 1)(n − 1) + 2u(u+ 1) ,

the proposition amounts to the positivity of ∆ whenever n ≤ l ≤ 2(n − u− 1).

After fixing u and n, the above defined ∆ is a concave function on l, so we only need to consider the

values of ∆ when l = n and when l = 2(n − u− 1). When l = n, we get that

∆ = n2 − (4 + 3u)n+ 2u2 + 6u+ 4 .

Fixing u, the two roots of this polynomial are n = u+ 2 and n = 2u+ 2. Since we know that n ≥ 2u+ 2,

we have ∆ ≥ 0 for l = n ≤ 2(n − u− 1). For l = 2(n− 1− u), we have

∆ = 3un− 6u(u+ 1)

Since once again n ≥ 2u + 2, we get that ∆ ≥ 0, and hence the inequality in the proposition follows for

any l such that n ≤ l ≤ 2(n− u− 1).

Moreover, we show that the equality l+ q = 4p
n can only occur if xi = i and l = 2(n− 1). Indeed, let

us assume that ∆ = 0. By the concavity argument, we have either l = n or l = 2(n− u− 1). If l = n, we

also get by the above argument that n = 2u+ 2. Since the inequality

4p ≤ 4(u+ 1)(n − 1)− 2u(u+ 1)

becomes an equality, we conclude that x is of the form (−0,−1, · · · ,−u, u + 1, u + 2, · · · , 2u + 1). This

implies that q = u(u+1)
2 , and since q = u, we have u = 1 and n = 4, and the last equality contradicts the

hypothesis of the proposition. If l = 2(n− u− 1), since ∆ = 3un− 6u(u+1) = 0, we have n = 2(u+1)

or u = 0. The case of n = 2(u + 1), n = l, was already dealt with earlier. Thus we have u = 0 and

l = 2(n − 1). The equality

4p = 4(u+ 1)(n − 1)− 2u(u+ 1) + 2(l − n+ 1)(l − n)

amounts to p = (n−1)n
2 , so that xi = i for all i, and we are in the case of the proposition.

Let us now assume that l < n. We consider the sequence (x′i) with x′i = xi for i < n − 1 and

x′n−1 = −(n − 1). We observe that (x′i) is l-admissible with weight p′ = p − (n − 1) and cohomological

degree q′ satisfying q′ ≤ q − (n− l). In fact, xi + xn−1 > l for i < n− 1− l, and xn−1−l = n− 1− l by

l-admissibility, so that xn−1−l + xn−1 > l.

By our very first argument, we have 4p′

n−1 < d+ q′, so that 4p
n < d+ q′ +4. Therefore, if q′ ≤ q− 4, then

we are done. This is indeed the case if n − l ≥ 4. Thus, we assume that q′ ≥ q − 3, and so n ≤ l + 3. We

now consider these cases.

If n = l+3, we have xn−1 = l+2, and so x2 = 2. Since q′ ≥ q−3, we get that xi < 0 for 3 ≤ i ≤ n−2.

Thus we have p ≤ l+5. The inequality in the proposition is implied by the inequality l+3 > 4(l+5)
l+3 , which

in turn is true for l ≥ 3. Observe that the value l = 2 is excluded because we would then have x4 = 4.

Therefore, either x2 + x0 = 2 (if x2 = 2) or x2 + x4 = 2 (if x2 = −2).

If n = l + 2, then there is at most one integer i such that 2 ≤ i ≤ n − 2 and xi > 0. By admissibility,

x1 = 1, and therefore xl−1 = −l+1. Moreover, we have xl = −l. This implies that p ≤ 2l. The inequality

of the proposition is implied by the inequality l + 2 > 8l
l+2 , which in turn is true for l ≥ 3.

The value n = l + 1 would contradict l-admissibility, since we would then have xl = l. �

We now prove the second part :
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Proposition 3.12 (Second part of Theorem 3 for spinor Grassmannians). Let (xi) be an l-admissible Dn-

sequence of weight p and cohomological degree q, with n ≥ 5 and q > 0. Then

l + q ≤ p .

Moreover, the equality p = q + l holds if and only if there are exactly two indices i, j such that xi >

0, xj > 0 and they satisfy the condition that either xi + xj = l + 1 (in this case q = 1) or x is equal to

(0, 1,−2,−3, . . . ,−l, l + 1,−(l + 2),−(l + 3), . . . ,−n) (then q = 2).

Proof. Let j be the smallest integer such that there exists i < j with xi + xj > l. Observe that xj > 0, and

by Dn-admissibility, x0 + xj 6= l so that j 6= l. We first deal with the case j > l. The argument in this case

is similar to the case of type Cn:

q = #Q = #Q(v = j, j − l ≤ u < j) + #Q(v = j, u < j − l) + #Q(v > j)
≤

∑
j−l≤u<j x

+
u + (j − l) +

∑
v>j x

+
v

≤
∑

u<j x
+
u + x+j − l +

∑
v>j x

+
v = p− l .

If under the assumption j > l the equality p = q+ l holds, then by the second inequality we have xu ≤ 0 for

u < j−l, and by the first inequality we have x+u ≤ 1 for j−l ≤ u < j. If xj−l = −(j−l), then xj−l+xj = l,

contradicting l-admissibility. Therefore, xj−l = j − l ≤ 1, so l − l = 1 and x1 = 1. When v > j, the first

inequality leads to the implication (xv > 0 =⇒ ∀ u < v, xu + xv > l). Assuming the existence of a v > j

such that xv > 0, we get that xv−1 > 0 and xv−2 > 0 because l > 1 (see Remark 3.10). By descending

induction, this would lead to xj−1 > 0. Then j− 1 = 1, hence j = 2, l = 1, which is a contradiction. Thus,

if v > j, then xv < 0. Hence x = (0, 1,−2,−3, · · · ,−l, l+1,−(l+2),−(l+3), . . . ,−n) (with p = l+2

and q = 2).

Let us now assume that j < l, and let i be the largest integer such that i < j and xi + xj > l. Note that

xi > 0 and xj > 0, and by maximality of i we have xk < 0 for i < k < j. We have

q = #Q = 1 +#Q(v = j, u < i) + #Q(v > j)
≤ 1 +

∑
u<i x

+
u +

∑
v>j x

+
v

≤ (xi + xj − l) +
∑

u<i x
+
u +

∑
v>j x

+
v = p− l .

The inequality is proved. In the case of q = p − l, for 1 ≤ u < i we have x+u ≤ 1 by the first inequality.

By the second inequality we have xi + xj = l + 1. Using the descending induction argument, if there is a

v > j such that xv > 0, then xl > 0, and x0 + xl = l contradicting the admissibility. The only positive

entries are among x1, xi, xj . In this case, since i + j = l + 1, we have Q = {(i, j)}, so q = 1, p = l + 1

and x1 < 0. �

3.6. The exceptional cases (type E6 or E7). Now Y is homogeneous under a group of type E6 (case

EIII) or E7 (case EV II). In the first case, we have dim(Y ) = 16 and c1(Y ) = 12. In the second case,

we have dim(Y ) = 27 and c1(Y ) = 18. These values are well-known to the specialists; several arguments

for the computation of c1 can be found at the end of Section 2.1 in [CMP08].

From Tables 4.4 and 4.5 in [Sno88] we conclude that the inequalities we are looking for hold :

Proposition 3.13 (Theorem 3 for the exceptional cases). Let Y be a Hermitian symmetric space of type

EIII or EV II . Let l, p, q be integers with l > 0, p > 0, and such that

Hq(Y,ΩY (l)) 6= 0 .

Then, p c1(Y )
dim(Y ) ≤ l + q. Equality implies that p = dim(Y ), l = c1(Y ) and q = 0.

Assume moreover that q > 0. Then l + q ≤ p.
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4. RESTRICTION TO A HYPERSURFACE WITH AN INCREASE OF THE PICARD GROUP

In this section, we assume that we are given a compact irreducible Hermitian symmetric space Y as in

Section 2. We assume X ⊂ Y is a smooth divisor but we do not make any assumption on Pic(X).

4.1. Another argument for general complete intersection. In this section, we want to get rid of the

assumption on the Picard group. This can be done at the cost of considering only general complete intersec-

tions.

Let V = Γ(Y,OY (1))
∗ be the minimal homogeneous embedding of Y , so that Y ⊂ PV . Let

S = PSh1V ∗ × . . . × PShcV ∗ ,

and let Z ⊂ Y × S be the universal family of complete intersections defined by

(x, ([H1], . . . , [Hc])) ∈ Z ⇐⇒ ∀i,Hi(x) = 0 .

Thus we have morphisms p : Z → Y and q : Z → S such that for generic s ∈ S, the inverse image

Ys := q−1(s) is a complete intersection in Y .

To prove by contradiction, assume that semistability does not hold. We will use the relative Harder-

Narasimhan filtration relative to q : Z → S [HL10, Theorem 2.3.2] (the idea of using this relative version

appears e.g. in the proof of [HL10, Theorem 7.1.1]). There is a birational projective morphism f : T → S

which induces a commutative diagram

g∗p∗ΩY

��

p∗ΩY

��

ZT

��

g
// Z

q

��

p
// Y

T
f

// S

and there is a filtration of g∗p∗ΩY , which induce for a generic point s ∈ S the Harder-Narasimhan filtration

of ΩY |Ys
. We denote by F the first term of this filtration and by k its rank. The rank one reflexive subsheaf

detF := (
∧k F)⋆⋆ of p∗

∧k ΩY is invertible. Since S is smooth, f is an isomorphism in codimension 1,

so also g, and since Z is also smooth, detF defines a line bundle on Z and it is a subsheaf of
∧k p∗ΩY . We

will denote detF by L. Now, p is a locally trivial morphism with fibres isomorphic to products of projective

spaces, so Pic(Z) ≃ Pic(Y ) × Pic(S), and L can be expressed as p∗LY ⊗ q∗LS , for some line bundles

LY ∈ Pic(Y ) and LS ∈ Pic(S).

Let d be the integer such that LY ≃ OY (−d), and let X = Ys. Given s ∈ S, we have L|X×{s} ≃ LY |X ,

and hence for generic s ∈ S, this yields an injection of sheaves OY (−d)|X ⊂ p∗ΩY .

Let h = h1 . . . hc, we have :

µ(ΩY |X) =
OX(1)dim(X)−1 ·KY

rankΩY |X
= −

c1(Y )

dim(Y )
· h · deg Y

µ(F|X) =
OX(1)dim(X)−1 · detF

rankF
= −

d

p
· h · deg Y .

Since OY (−d)|X ⊂ ΩY |X , it follows that

H0(X,Hom(OY (−d)|X ,Ωk
Y |X)) = H0(X,Ωk

Y |X(d))
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does not vanish. Using this and previous results we deduce the inequality

µ(F|X) < µ(ΩY |X) , i.e., d > k
c1(Y )

dim(Y )
.

This contradicts the construction of L as the determinant of the first term of the relative Harder-Narasimhan

filtration.

We get the following adaptation of theorems 1 and 2.

Theorem 4. Let Y be a compact irreducible Hermitian symmetric space. Let X be a general positive-

dimensional complete intersection in Y . If Y is neither a projective space nor a quadric, then the restriction

of ΩY to X is semistable.

If Y is a smooth quadric or a projective space, assume that none of the hypersurfaces Hi is linear. Then

the restriction of ΩY to X is semistable.

4.2. Results for all smooth divisors. Recall the theorem of Langer in our setting.

Theorem ([Lan04, Theorem 5.2]). Consider a compact irreducible Hermitian symmetric space Y , not

isomorphic to Q2. Consider the OY (1)-stable vector bundle ΩY of rank r on Y . Let X be a smooth divisor

in the complete linear system |OY (h)|. If

h >
r − 1

r

[
2rc2(ΩY )− (r − 1)c21(ΩY )

]
· OY (1)

dim Y−2 +
1

r(r − 1) degOY (1)
,

then ΩY |X is OY (1)-stable.

Remark 4.1. In the cases of P3 and Q3, as r > 2, Langer noticed in [Lan04, Remark 5.3.2] that the inequality

h > r−1
r

[
2rc2(ΩY )− (r − 1)c21(ΩY )

]
· OY (1)

dimY−2 is enough to ensure stability by restriction. Hence,

the bounds of Langer are

• for P2, h > 2,

• for P3, h > 8/3,

• for Q3, h > 8.

With some obvious exceptions, we get the stability of ΩY |X :

Theorem 5. Let Y be a compact irreducible Hermitian symmetric space of dimension 2 or 3. Let X ⊂ Y

be a smooth divisor.

• Take Y = P2. Then ΩY |X is semi-stable if degX ≥ 2.

If degX ≥ 3, then ΩY |X is stable.

• If Y = P3, assume that degX ≥ 2. Then ΩY |X is stable.

• If Y = Q2, then ΩY |X is semi-stable but not stable.

• Take Y = Q3. If degX = 1, then ΩY |X is semi-stable.

If degX = 2, then ΩY |X is stable.

If degX ≥ 9, then ΩY |X is stable.

These cases will be considered in the next subsections.
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4.3. The case of P2. Recall the Euler sequence on P2

0 −→ ΩP2(1) −→ OP2
⊕3 −→ OP2(1) −→ 0 .

For a smooth conic C , because each section of H0(C,O(1)|C ) is a restriction of a sections on P2, the rank

2 vector bundle ΩP2(1)|C of degree −2 has no section. Therefore, ΩP2(1)|C is isomorphic to the direct sum

of two line bundles of degree −1 on the rational curve C . Consequently, it is semi-stable and not stable.

Let C be a curve of degree d ≥ 3 in P2. We could apply Langer theorem to get the stability of ΩP2(1)|C ,

but we give an elementary argument.

As subsheaves of ΩP2(1)|C are subsheaves of the semi-stable sheaf OP2
⊕3 of zero slope, they are of non-

positive slope. Consider a torsion-free (hence locally free) sheaf L on the curve C such that 0 ≥ µ(L) ≥

µ(ΩP2(1)|C) that is

0 ≤ degL⋆ ≤ d/2.

We intend to show that there is no coherent sheaf homomorphism from L to ΩP2(1)|C .

In view of the long exact sequence of cohomologies associated with the Euler sequence

0 −→ H0(C,L⋆ ⊗ ΩP2(1)) −→ H0(C,L⋆)⊕3 ǫ
−→ H0(C,L⋆ ⊗OP2(1)) , (4.1)

this amounts to proving the injectivity of the last map ǫ.

Lemma 4.2. h0(C,L⋆) ≤ 1.

Proof. If d = 3, then degL⋆ = 0 or 1, and so h0(L⋆) = 0 or 1 on the elliptic curve C . If d ≥ 4, then the

plane curve C of degree d does not have any g1m for m ≤ d− 2 (see [ACGH85, page 56]). In fact, in such a

pencil there would be a reduced divisor D of degree m. The canonical map ΦK of C is an embedding and

the geometric form of Riemann-Roch theorem yields 1 ≤ r(D) = m− 1− dimΦK(D), in other words the

dimension of the projective subspace generated by ΦK(D) satisfies the inequality dimΦK(D) ≤ m − 2.

But the codimension

h0(P2,O(d− 3))− h0(ID(d− 3))

of the space of divisors linearly equivalent to O(d−3) passing through D is the codimension of hyperplanes

in |K| passing through ΦK(D) which is

h0(|K|,O(1)) − h0(IΦK(D)(1)) = dimΦK(D) + 1 ≤ m− 1 .

This contradicts the fact that the m ≤ d − 2 distinct points of D impose independent conditions on curves

of degree d− 3. �

The map ǫ in (4.1) reads

(as, bs, cs) 7−→ asX + bsY + csZ = sl(X,Y,Z) ,

where (X,Y,Z) are homogeneous coordinates on P2, while (s) is a basis of H0(C,L⋆) and l is a linear

form in (X,Y,Z) not zero on C for (a, b, c) non zero. If ǫ(a, b, c) = 0, then l = 0 and hence (a, b, c) = 0.

This proves the injectivity of ǫ and the stability of ΩP2(1)|C for d ≥ 3. This argument was suggested to us

by Frédéric Han.
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4.4. The case of P3. We assume that X ⊂ P3 is a smooth divisor of degree d > 1. In this case, as

discussed in Remark 4.1, the bound in Langer’s theorem is 8
3 . Therefore, we conclude that the restriction

TP3
|X is stable if d ≥ 3.

Assume that d = 2. In this case X = P1 × P1.

Let

P ⊂ SL(2)

be the parabolic subgroup defined by the lower triangular matrices. The quotient

M := SL(2)/P

is isomorphic to P1. For i = 1 , 2, let

pi : M ×M −→ M

be the projection to the i-th factor. Consider the line bundle

L := (p∗1OP1(1)) ⊗ (p∗2OP1(1)) −→ M ×M .

It is very ample. Let

ϕ : M ×M −→ P := P(H0(M ×M, L)) (4.2)

be the corresponding embedding. Note that dimP = 3.

Up to an automorphism of P3, the embedding ι of X in P3 coincides with ϕ in (4.2). Therefore, to prove

that ι∗TP3
C is stable it suffices to show that ϕ∗TP is stable with respect to the polarisation L on M ×M .

We have degree(ϕ∗TP) = 8. In particular, degree(ϕ∗TP) is coprime to rank(ϕ∗TP) = 3. Therefore,

ϕ∗TP is stable if it is semistable.

Assume that ϕ∗TP is not semistable. Let

F ( ϕ∗TP (4.3)

be the first nonzero term of the Harder–Narasimhan filtration of ϕ∗TP.

Consider the left-translation action of SL(2)× SL(2) on

SL(2) × SL(2)/(P × P ) = (SL(2)/P ) × (SL(2)/P ) = M ×M .

The left-translation action of SL(2) on SL(2)/P = M has a natural lift to an action of SL(2) on OP1(1).

Using it, we get a lift of the action of SL(2) × SL(2) on M × M to the line bundle L. This action on L

produces an action of SL(2)× SL(2) on P := P(H0(M ×M, L)). The map ϕ in (4.2) is SL(2)× SL(2)–

equivariant.

The action of SL(2) × SL(2) on TP produces an action of SL(2)× SL(2) on ϕ∗TP. This action is a lift

of the action of SL(2) × SL(2) on M × M . From the uniqueness of the Harder–Narasimhan filtration it

follows that the action of SL(2) × SL(2) on ϕ∗TP leaves the subsheaf F in (4.3) invariant. In particular, F

is a subbundle of ϕ∗TP, as the action of SL(2)× SL(2) on M ×M is transitive.

Let V be the trivial vector bundle over M with fibre H0(M, OP1(1)) = C⊕2. Consider the Euler

sequence

0 −→ OP −→ OP(1)⊗C H0(M ×M, L) −→ TP −→ 0

on P. Its pullback by ϕ in (4.2) is the following:

0 −→ OM×M −→ L⊗ (p∗1V)⊗ (p∗2V)
γ

−→ ϕ∗TP −→ 0 . (4.4)
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Each of the three vector bundles in the short exact sequence in (4.4) is equipped with an action of SL(2)×

SL(2), and all the homomorphisms in (4.4) are SL(2) × SL(2)–equivariant. Since F is SL(2) × SL(2)–

invariant, for the projection γ in (4.4) we conclude that the inverse image

γ−1(F ) ⊂ L⊗ (p∗1V)⊗ (p∗2V)

is either T1 := L ⊗ (p∗1OP1(−1)) ⊗ (p∗2V), or T2 := L ⊗ (p∗1V) ⊗ (p∗2OP1(−1)) (note that OP1(−1) is an

equivariant subsheaf of OP1 ⊗ V), or T1 + T2.

Indeed, this follows from the fact that the only nonzero subspaces of C⊕2 preserved by P are 0⊕ C and

C⊕2.

From the above property of γ−1(F ) it follows immediately that

degree(F )

rank(F )
= 2 .

Therefore, we have
degree(F )

rank(F )
= 2 <

8

3
=

degree(ϕ∗TP)

rank(ϕ∗TP)
.

But this contradicts the assumption that F is the first nonzero term of the Harder–Narasimhan filtration of

ϕ∗TP. In view of this contradiction, we conclude that ϕ∗TP is semistable.

4.5. The case of Q2. We consider a nondegenerate quadric Q in P3. Recall that it is isomorphic to P1 ×P1

in such a way that OP3(1)|Q = OP1×P1(1, 1). Note that TQ = O(2, 0) ⊕ O(0, 2), being the sum of

two line bundles of the same OP3(1)|Q-degree, is OP3(1)|Q-semi-stable. Its restriction TQ|X to a smooth

curve X ⊂ Q in any linear system |OP3(d)|Q| = |O(d, d)| is the sum of two line bundles of degree

O(d, d) · O(2, 0) = O(d, d) · O(0, 2) = 2d. Hence TQ|X is semi-stable for any d ≥ 1.

4.6. The case of Q3. We now consider a nondegenerate quadric Q in P4 and a smooth hypersurface S ⊂ Q

of degree d. By the results in Section 3.3, the vector bundle TQ stable. The bound in Langer’s theorem

computed in Remark 4.1 is 8. Therefore, we conclude that the restriction TQ|S is stable if d ≥ 9. We do

not know if this bound is optimal. We will study low degree cases in the rest of this subsection.

4.6.1. Estimate of the Picard group. From the Koszul resolution of the ideal sheaf IS ,

0 → OP4(−2− d) → OP4(−2)⊕OP4(−d) → IS → 0

and the defining sequence for the structure sheaf OS , namely

0 → IS → OP4 → OS → 0 ,

we infer that H1(S,OS) = 0. Therefore, the Picard group of S is discrete, and

Pic(S) = H2(S,Z) ∩H1,1(S).

We also infer that H2(S,OS) is the kernel of the surjective map

H4(OP4(−2− d)) = Sd−3V ⋆ FQ
→ Sd−5V ⋆ = H4(OP4(−d))

gotten by contracting using the equation FQ ∈ S2V of Q, where V as before denotes H0(P4,O(1)). Hence,

we have

H2(S,OS) =





0 if d = 1, 2
C if d = 3
V ⋆ if d = 4.
23



Dimension count leads to h2(S,OS) =
(d−1)(d−2)(2d−3)

6 .

From the normal sequence

0 → TS → TP4
|S → O(2)⊕O(d)|S → 0

we can compute the Euler class

c2(TS) = (d2 − 3d+ 4)c1(OP4(1))2|S ,

the topological Euler characteristic χtop(S) =
∫
S c2(TS) = 2d(d2 − 3d+ 4) and the second Betti number

b2(S) = χtop(S)− (2− 2b1) = χtop(S)− 2 = 2(d3 − 3d2 + 4d− 1).

In particular

b2(S) =





2 if d = 1
6 if d = 2
22 if d = 3
62 if d = 4.

We deduce that

h1,1(S) =
d(4d2 − 9d+ 11)

3
and in particular h1,1(S) =





2 if d = 1
6 if d = 2
20 if d = 3
52 if d = 4.

4.6.2. Linear sections. For d = 1, the isomorphism Pic(S) = Z2 is due to the product structure S ≃

P1 × P1.

Proposition 4.3. If S is a smooth linear section of the solid quadric Q, then TQ|S is semi-stable but not

stable.

Proof. Consider a putative destabilizing sheaf F ⊂ TQ|S . Assume that the rank of F is one. Replacing F

by its reflexive hull, we get an exact sequence

0 → L → TQ|S → E (4.5)

with L a line bundle and E a rank 2 vector bundle. Moreover, we have deg(F) = deg(L), thus to prove semi-

stability it suffices to show that the existence of such an exact sequence implies that deg(L) ≤ µ(TQ|S) = 2.

Let us write S = P1 × P1 π1,π2
→ P1, and L = O(d1, d2) := π∗

1O(d1) ⊗ π∗
2O(d2). For example, for

L = π∗
1TP

1, we have an exact sequence as in (4.5), and L ≃ O(2, 0) so deg(L) = 2. In particular TQ|S

can not be stable. The semi-stability inequality is proved in the following Lemma 4.4.

Lemma 4.4. With the notation of the proof of Proposition 4.3, let O(d1, d2) be a subbundle of TQ|S . Then,

we have d1 + d2 ≤ 2.

Proof. Since L = O(d1, d2) is assumed to be a subbundle of TQ|S , there is a nowhere vanishing section of

L∗ ⊗ TQ|S . There is an exact sequence of sections on S :

H0(L∗ ⊗ TS) → H0(L∗ ⊗ TQ|S) → H0(L∗ ⊗OS(1) .

We have L∗ ⊗OS(1) ≃ O(1− d1, 1− d2) and L∗ ⊗ TS ≃ O(2− d1,−d2)⊕O(−d1, 2− d2).

Assume that d1 > 1. Then H0(L∗(1))) = 0 since π1,∗L
∗(1) = 0. Thus

H0(L∗ ⊗ TQ|S) = H0(L∗ ⊗ TS) = H0(O(2 − d1,−d2)) .
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By the same argument, this space of sections is not reduced to {0} if and only if d1 = 2 and d2 ≤ 0.

Moreover, there will be nowhere vanishing sections if and only if d2 = 0. We get (d1, d2) = (2, 0) (so L is

isomorphic to π∗
1TP

1).

Similarly, we can deal with the case d2 > 1. In the remaining cases we indeed have d1+d2 ≤ 2 (asserted

in the lemma). �

We now finish the proof of Proposition 4.3. Consider a rank two subsheaf

F ⊂ ΩY |X .

Its determinant is a line subbundle of Ω2
Y |X . As

TY (−1) = O(−1)⊥/O(−1)

is self-dual, we have Ω2
Y = KY ⊗ TY = TY (−3) = ΩY (−1). Hence we get an inclusion

detF ⊗O(1) ⊂ ΩY |X .

We already checked that line subbundles do not destabilise ΩY |X . Therefore, we have

2µ(F ) + 2 ≤ µ(ΩY |X) = −2 ,

which implies the desired semi-stability inequality

µ(F ) ≤ µ(ΩY |X).

�

4.6.3. Quadric sections. For d = 2, the surface S is a Del Pezzo surface of degree 4 meaning

(−KS) · (−KS) = 4

(see [Dol12, Definition 8.1.12]); it is known as a Segre quartic surface. We have Pic(S) = Z6, and it is

explained by the abstract description of S as the projective plane P2 blown-up at 5 points in general position

(see[GH94, page 550], [Dol12, Proposition 8.1.25]). Recall the diagram

Blp(S)

µ

��

φ
Σ �

� ι

b
��

P3

S
π

// P2

where µ is the blow up of S at a point p on S not on a line of S, ι ◦ φ is given by the linear system of lines

in P4 passing through p (its image is a smooth cubic Σ), b is the blow up of P2 at six points, ι is given by

the linear system of cubics in P2 passing through the blown-up six points, and π is gotten from φ by the

universal property of blow ups. With E =
∑5

i=1 Ei, and  : E → S is the natural inclusion, we have

OP4(1)|S = π⋆OP2(3)⊗OS(−E)

and

0 → π⋆ΩP2 → ΩS → ⋆ΩE → 0. (4.6)

Proposition 4.5. If S is a smooth quadric section of the solid quadric Q, then ΩQ|S is stable.
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The proof runs through the rest of this subsection. To begin with, consider a line bundle

L = π⋆OP2(−a)⊗OS(−
∑

bjEj)

with an inclusion L ⊂ ΩQ|S which is seen as a nonzero element of H0(S,Hom(L,ΩQ|S)).

µ(ΩQ|S) =
KQ · OP4(1)|S

3
=

(−5 + 2)1× 2× 2

3
= −4

µ(L) = L · OP4(1)|S = −3a−
∑

bj .

We first intend to show the semi-stability inequality

3a+
∑

bj ≥ 4,

and show that equality can occur only if L = OS(−2E0 + 2Ej). By the general argument, this is ensured

if L is in the restriction of the Picard group of P4 i.e., a multiple of OP4(1)|S .

The conormal sequence for S in Q reads

0 → OP4(−2)|S → ΩQ|S → ΩS → 0 . (4.7)

If H0(Hom(L,OP4(−2)|S)) 6= 0, then µ(L) ≤ µ(OP4(−2)|S) = −8 < µ(ΩQ|S), and the desired inequal-

ity is proved, in its strict version.

From now on, we will assume that

H0(Hom(L,OP4(−2)|S)) = 0 .

Hence a non-zero element in H0(S,Hom(L,ΩQ|S)) gives a non-zero element in

H0(S,Hom(L,ΩS)) = H0(S,ΩS ⊗OP2(a)⊗OS(
∑

bjEj)) .

In particular,

H0(S − ∪Ej,ΩS ⊗ π⋆OP2(a)) = H0(P2 −∪pj,ΩP2(a)) = H0(P2,ΩP2(a)) 6= 0

and from the Euler sequence with V := H0(P2,OP2(1))

0 → OP2(a− 3) → V ⋆ ⊗OP2(a− 2) → TP2(a− 3) = ΩP2(a) → 0

this leads to

a ≥ 2.

Let j be an integer between 1 and 5. To make use of the sequence (4.6), inspired by [Fah89], we consider

the rational section of ΩP2 given in homogeneous coordinates [X : Y : Z] such that the blown up point pj
is [0 : 0 : 1] by

ωj :=
XdY − Y dX

Z2
=

(
X

Z

)2

d

(
Y

X

)
.

Its pull-back π⋆ωj on S has poles only along the strict transform E0 of the line (Z = 0) with order two, and

vanishes with multiplicity two along the exceptional divisor Ej above pj

π⋆ω ∈ H0(S,ΩS ⊗OS(2E0 − 2Ej)).

If H0(Hom(L,OS(−2E0 + 2Ej))) 6= 0, then µ(L) ≤ µ(OS(−2E0 + 2Ej)) = −4 = µ(ΩQ|S) with

equality if and only if L is isomorphic to OS(−2E0 + 2Ej).
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We assume from now on that H0(S,Hom(L,ΩS)) 6= 0 and that for all j, H0(Hom(L,OS(−2E0 +

2Ej))) = 0. The rational form π⋆ωj yields the sequence

0 → OS(−2E0 + 2E1) → ΩS → KS ⊗OS(2E0 − 2Ej)

and after a twist by L⋆ a map

H0(Hom(L,ΩS)) → H0(L⋆ ⊗KS ⊗OS(2E0 − 2Ej))

that is injective and gives a curve Cj in the linear system |L⋆ ⊗KS ⊗OS(2E0 − 2Ej)| = |π⋆OP2(a− 1)⊗

OS((aj − 1)Ej)⊗OS(
∑

k 6=j(ak + 1)Ek)|.

The curves Cj are of degree d = Cj ·OP4(1)|S = µ(L⋆). Denote by C ′
j the sum of irreducible components

of Cj that are not contracted by π and by d′j ≤ d its degree.

C ′
j ∈ |π⋆OP2(bj − 1)⊗OS((a

′
j − 1)Ej)⊗OS(

∑

k 6=j

(a′jk + 1)Ek)|.

As C ′
j − Cj consists of effective exceptional curves bj = a, a′j ≤ aj and a′jk ≤ ak.

As Ej is a line that is not a component of C ′
j , −a′j + 1 = C ′

j · Ej ≤ d′j . Hence, aj ≥ a′j ≥ −d′j + 1 ≥

−d+ 1. The output is d = 3a+
∑

i ai ≥ 3a− 5d+ 5 that is d ≥ a
2 + 5

6 .

If a = 2, as the only bundles L that inject into ΩS are π⋆OP2(−2)⊗OS(−bjEj) with bj ≤ 2, of degree

−6 + bj , we reach the desired inequality.

We now assume a ≥ 3 and 3 ≤ d ≤ 4.

Assume that for some j, C ′
j · Ej ≥ 3. Then d′j ≥ 3. We first observe that C ′

j cannot be a plane curve. In

fact, if C ′
j ⊂ P2, then since S contains C ′

j and is the intersection of two quadrics, it has to contain P2 which

is absurd. There are now two cases: if d′j = 3, then choosing a point x ∈ C ′
j \Ej and the plane P2 generated

by Ej and x, we get #{P2 ∩ C ′
j} ≥ 4, hence a contradiction.

If d′j = 4, if the linear span of C ′
j is the whole P4 then we can choose a line ℓ secant to C ′

j on two points

and disjoint from Ej , and we consider the 3-plane P3 generated by ℓ and Ej . Since #{P3 ∩C ′
j} ≥ 5 we get

a contradiction in this case. If the linear span < C ′
j > of C ′

j is a 3-plane then < C ′
j > ∩S contains C ′

j ∪Ej ,

of degree 5, a contradiction.

Thus, for all j, we have C ′
j ·Ej ≤ 2. Therefore −a′j +1 ≤ 2, a′j ≥ −1. Hence, d = 3a+

∑
ai ≥ 3×3+

5(−1) = 4, with equality occurring if and only if L is isomorphic to π⋆OP2(−3)⊗OS(
∑

Ei) = OP4(−1)|S .

However, we already know that this is not possible.

We now prove stability, namely that L = OS(−2E0+2Ej) is not a subsheaf of ΩQ. Let C = 2E0−
∑

Ei

be the class of the strict transform of the conic in P2 passing through the five points pi. Observe that

L = OP4(−2)⊗OS(2C + 2Ej), thus a section of L∗ ⊗ΩQ is a section of ΩQ(2)|S that vanishes at order 2

along Ej and C .

The proof of Proposition 4.5 will therefore be complete once the following lemma is proved :

Lemma 4.6. Let s ∈ H0(S,ΩQ(2)|S) a non-vanishing section, and let ∆1,∆2 be two secant lines. Then s

does not vanish at order two along ∆1 and ∆2.

We will prove this lemma after some preliminary results. First, let us denote by Q2 a quadric cutting out

S in Q. By simultaneous reduction of quadratic forms, we may assume that the quadric Q is defined by the

identity matrix I and Q2 by some diagonal matrix D2.
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Since H1(S,OS) = 0, the section s lifts to a section s̃ ∈ H0(S,ΩP4(2)|S). We will have to consider

affine cones: let U = C5 \ {0} and let p : U → P4. Whenever Z ⊂ P4 is a subvariety, we denote by

Ẑ = p−1(Z) its affine cone. The section s̃ defines a section ŝ ∈ H0(Ŝ,Ω
U |Ŝ

), which can be written as

ŝ =
∑

i,j ai,jZidZj (Zj denotes the j-th coordinate function on C5). We denote by A the matrix (ai,j).

Since ŝ is the pullback of the section s̃, we have :

Fact 4.7. A+ tA belongs to the span of I and D2.

We want to understand the scheme-theoretic vanishing locus of s. As a set, it is described by :

Fact 4.8. Let u ∈ Ŝ and x = [u] ∈ S. Then s(x) = 0 if and only if u is an eigenvector of A.

Proof. The quadratic form Q yields an identification of C5 with its dual. Moreover, ŝ(u) identifies in the

basis dZj to the column vector Au. Since the coordinates have been chosen so that the matrix of Q is I , the

tangent space of Q̂ at u has equation u itself. Thus s(x) vanishes if and only if these two linear forms define

the same hyperplane, in other words if and only if Au is a multiple of u. �

At first order, the vanishing of s is characterized by :

Fact 4.9. Let x = [u] ∈ S such that Au = 0 and u 6∈ Im(A). Let X = [U ] ∈ TxS, with U ∈ TuŜ. Then,

the derivative dsx(X) vanishes if and only if AU = 0.

Proof. As the proof of Fact 4.8 shows, Ω
Q̂,x

identifies with C5/C · u. The statement then follows from the

fact that dsx(X) = AX ∈ C5/C · u ≃ ΩQ̂,x. �

We now prove Lemma 4.6. Let π be the plane generated by ∆1 and ∆2. Since s vanishes along ∆1 and

∆2, by Fact 4.8, π̂ must be included in an eigenspace of A. Replacing A by A − λ · I does not change the

section s, thus we can assume that π̂ ⊂ kerA. Therefore the rank of A is at most 2.

Assume first that A has rank 2. Let x = [u] ∈ (∆1 ∪∆2) \ PImA. Since s vanishes at order two along

∆1 ∪∆2, by Fact 4.9, we have TuŜ ⊂ kerA, and so equality of these subspaces. Since we may assume that

x is not the intersection point ∆1 ∪∆2, we get a contradiction with the following fact :

Fact 4.10. We have S ∩ π = ∆1 ∪∆2. For x ∈ ∆1 \∆2, TxS 6= π.

Here, TxS ⊂ P4 denotes the embedded tangent space.

Proof. Let Q′ be any quadric containing S. We have Q′ ∩ π = ∆1 ∪∆2 or Q′ ∩ π = π, for degree reasons.

The first point follows. Assume now that x ∈ ∆1 \∆2 and that TxS = π. Let ℓ be a line through x and a

point y in ∆2 \∆1. Once again, if Q′ is a quadric containing S, then ℓ ∩Q′ has multiplicity at least 2 at x

(ℓ ⊂ π = TxS ⊂ TxQ′) and one at y, thus ℓ ⊂ Q′. This implies that ℓ ⊂ S, contradicting the first point of

the Fact. �

Assume now that A has rank 1. We will use the following observation :

Fact 4.11. Let B be a square matrix which is the sum of an alternate matrix and a diagonal matrix. Assume

that rkB = 1. Then, up to a permutation of the rows and columns, B can be written as a bloc-diagonal

matrix

(
β 0
0 0

)
, with β a rank 1 matrix of order 2.
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Proof. Write B = (bi,j). Since a coefficient of B is non zero, a diagonal coefficient of B must be non zero,

and assume that b1,1 6= 0. If all the other diagonal coefficients are 0, then we have bi,j = 0 for (i, j) 6= (1, 1)

and the fact is true. In the other case, assume that b2,2 6= 0. We have b1,3+b3,1 = b2,3+b3,2 = b1,2+b2,1 = 0

and b1,1b2,3 − b2,1b1,3 = b1,1b3,2 − b3,1b1,2 = 0, with b1,1, b2,2, b1,2 and b2,1 different from 0. It follows that

b1,3 = b2,3 = b3,2 = b3,1 = 0. Similarly, all the coefficients bi,j are 0 except when i, j ≤ 2. �

Now, A satisfies the hypothesis of Fact 4.11, and moreover the diagonal of A is a linear combination of I

and D2. This implies that a linear combination of I and D2 has rank at most 2, contradicting the smoothness

of S (in fact, S is smooth if and only if the quadrics in the pencil it defines all have rank at least 4). This

ends the proof of Lemma 4.6.

To complete the proof of Proposition 4.5, one has to consider rank 2 subsheaves in ΩQ. This case follows

from the case of rank 1 subsheaves by the fact that ΩQ is self-dual (see the end of the proof of Proposition

4.3).
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GÉNÉRAL LECLERC, CS 74205, 35042 RENNES CÉDEX, FRANCE
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