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ENSEMBLE KALMAN FILTERS AND GEOMETRIC
CHARACTERIZATION OF SENSITIVITY SPACES FOR
UNCERTAINTY QUANTIFICATION IN OPTIMIZATION

———–
BIJAN MOHAMMADI

———–

Abstract. We present an original framework for uncertainty quantification (UQ)
in optimization. It is based on a cascade of ingredients with growing computational
complexity for both forward and reverse uncertainty propagation. The approach
is merely geometric. It starts with a complexity-based splitting of the indepen-
dent variables and the definition of a parametric optimization problem. Geometric
characterization of global sensitivity spaces through their dimensions and relative
positions by the principal angles between global search subspaces bring a first set
of information on the impact of uncertainties on the functioning parameters on
the optimal solution. Joining the multi-point descent direction and the quantiles
on the optimization parameters permits to define the notion of Directional Ex-
treme Scenarios (DES) without sampling of large dimension design spaces. One
goes beyond DES with Ensemble Kalman Filters (EnKF) after the multi-point
optimization algorithm is cast into an ensemble simulation environment. This for-
mulation accounts for the variability in large dimension. The UQ cascade ends
with the joint application of the EnKF and DES leading to the concept of Ensemble
Directional Extreme Scenarios (EDES) which provides more exhaustive possible
extreme scenarios knowing the Probability Density Function of our optimization
parameters. A final interest of the approach is that it provides an indication of
the size of the ensemble which must be considered in the EnKF. These ingredients
are illustrated on an history matching problem.

1. INTRODUCTION

Forward and backward uncertainty propagation [1, 2, 3] are obviously of great
importance. For instance, taking into account manufacturing uncertainties is of
utmost importance for a design procedure to be efficient as it is impossible to make
sure that the final product will exactly correspond to the design specifications. In
shape optimization, for instance, either in mono or multidisciplinary frameworks,
this uncertainty is rarely accounted for [4, 5].

This question can be formulated through both forward and backward uncertainty
propagation. Indeed, manufacturing uncertainties can be prescribed through prob-
ability density functions of the design parameters (often coming as characteristics
of the product manufacturing process) [7, 8]. They can also be introduced through
uncertainties on the performances of a design (or other observations).

1.1. Context of the work. We consider a generic situation where the simulation
aims at predicting a given quantity of interest j (e.g. the maximum value of a
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variable in a given area) and there are a few functioning u and several control
parameters x involved. The ranges of the functioning parameters define the global
operating/functioning conditions of a given design. This splitting of the independent
variables in two sets is important for the rest of the paper.

The literature on uncertainty quantification (UQ) is huge. In short, in our sit-
uation, forward propagation aims at defining a probability density function for j
knowing those of x and u [19, 20, 21]. This can be done, for instance, through
Monte Carlo simulations or a separation between deterministic and stochastic fea-
tures using Karhunen-Loeve theory (polynomial chaos theory belongs to this class)
[9, 10, 11, 12, 13]. Examples of shape optimization with polynomial chaos and sur-
rogate models during optimization to address the issue of functional evaluations are
given in [14, 15].

Backward propagation aims at reducing models bias or calibrating models pa-
rameters knowing the probability density function of j (or other constraints and
observations) [16, 17, 18]. This can be seen as a minimization problem and Kalman
filters [22] give, for instance, an elegant framework for this inversion assimilating the
uncertainties on the observations.

Our aim is to propose a geometric framework to address, in our particular situa-
tion, the curse of dimensionality of existing approaches related to the explosion of
their computational complexity due to the sampling necessary to access probabilis-
tic information (momentum), even if this can be improved with intelligent sampling
techniques [23, 24]. The different ingredients presented here can be applied with
either high-fidelity or reduced order models, when available [25, 26, 27, 28]. Low-
order models are often used instead of the full models to overcome the computational
complexity of UQ.

After the splitting of the independent variables mentioned above, we define a
multi-point formulation to account for the variability on u. This is feasible because
the size of u is assumed small. We define a global sensitivity space using the sen-
sitivities of j with respect to x for the multi-point problem. Once this space built,
we analyze the dimension of its free generator subspace. Previous works have shown
how to perform this task and how to use this information for adaptive sampling and
robust optimization [29, 30].

The next step is to analyze the impact of different modeling or discretizations
on the results. Different models or solution procedures lead to different sensitivity
spaces. Beyond their respective dimensions, principal angles [32, 33, 34, 35] between
the respective sensitivity spaces permit to measure the deviation due such changes.
The dimensions of the spaces and the angles are interesting measures for both the
epistemic and aleatory uncertainties. Indeed, suppose that, at given modeling pro-
cedure, the dimensions of the sensitivity spaces remain unchanged when enriching
the sampling of the functioning parameter range, this stability would be a first indi-
cation of a low level of sensitivity of the simulations with respect to this parameter.
Once this is established, principal angles between subspaces permit to analyze both
the impact of a given evolution of the modeling on the sensitivity spaces or an en-
richment of our sampling. Eventually, constant dimension and low angles will clearly
indicate a situation of low uncertainty.

These ingredients can be used in a context of multi-point robust analysis of a
system to define worst-case scenarios for its functioning. To this end we combine
a multi-point sensitivity with the probabilistic features of the control parameters
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through their quantiles [7, 36]. These ingredients permit to define the concept of
Directional Extreme Scenarios (DES) without a sampling of large dimension design
spaces.

Ensemble Kalman filters (EnKF) [22, 40, 41, 42, 43, 44] permit to go beyond the
directional uncertainty quantification concept when accounting for the uncertainties
in large dimension. It also permits backward uncertainty propagation assimilating
the uncertainty on the functional and constraints during the design. We propose
to cast our multi-point optimization problem into the ensemble formulation. The
geometric uncertainty quantification construction ends with the joint application
of the EnKF and DES leading to the concept of Ensemble Directional Extreme
Scenarios (EDES) which provides exhaustive possible extreme scenarios knowing
the probability density function of the optimization parameters and this without any
sampling of a large dimensional parameter space. Finally, the geometric information
on the global sensitivity spaces provides lower bounds on the size of the ensemble
which must be considered in the EnKF.

1.2. Summary of this work ingredients and calculation complexity. To sum-
marize this work will propose a cascade of ingredients to account for uncertainties
avoiding any sampling of large dimensional spaces. We insist on the fact a sampling
is only necessary for the functioning parameters u range (see section 2) leading to a
multi-point optimization problem with a linear complexity with respect of the size
of the sampling. One originality is the definition of the direction d in section 2.1. d
is also used, together with quantiles from the PDF of x, to define quantile-based ex-
treme scenarios in section 3. In sections 3 and 4 geometric analysis of the sensitivity
space Sm (space dimension, principal angles) gives some information on the impact
of the variability of x on the results without any extra functional evaluation. To go
beyond directional extreme scenarios and better account for the variability of x, the
previous ingredients are cast into the ensemble Kalman filter framework in section
5. Finally, the geometric analysis ingredients are used for each of the ensemble run
to introduce Ensemble Directional Extreme Scenarios in section 5.3.
Concerning the computational cost of these analysis, one can say that, when using
the same calculation ingredients that for a high-fidelity simulation (i.e. without call-
ing for low-order models or cheaper discretizations), the best calculation complexity
one might think of for a simulation under uncertainty is when its cost is comparable
to the deterministic situation. This is clearly unreachable except if all the extra
effort can be achieved in a fully parallel manner and parallel to the initial deter-
ministic calculation. This permits for the time to solution to remain unchanged
for a simulation when accounting for the presence of uncertainties. This is obvi-
ously the case with Monte Carlo approaches. But these are quite expensive and do
not take advantage of available simulation environments. In particular, when an
adjoint-based optimization environment exists. Hence, we propose an original way
to upgrade existing platform without abandoning what has been built for the deter-
ministic situations and with keeping the time to solution unchanged in the presence
of uncertainties with two sources of parallelism coming from the multi-point formu-
lation to account for the uncertainties on the functioning parameters and from the
EnKF formulation for those on the optimization variables and observation data.
In this work, m being the size of the sampling for the range of u introduced in
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section 2 and q the ensemble size introduced in section 5, the maximum calculation
complexity (to build the Ensemble Directional Extreme Scenarios) at each iteration
of optimization is: 2mq direct and adjoint solutions of the state equation. This is
especially interesting if n, the size of the control parameter x, is large compared to
q.

2. Parametric optimization

We are interested in a class of optimization problems where the cost function
involves a functioning parameter u not considered as a design parameter:

(1) min
x∈Oad

j(x,u), u ∈ I ⊂ IRα,Oad ⊂ IRn.

where x is the design vector belonging to Oad the optimization admissible domain.
Usually, the functioning parameters u are just a few. On the other hand, the size n
of x is usually large. Together, x and u fully describe our system.

This splitting between functioning parameters (or operating conditions) and de-
sign variables is central to our discussion.

In [29, 45] we showed how to use multi-point optimization to address such opti-
mization problem. The aim is to remove, during the optimization, the dependency
in u. This is done minimizing a functional J(x) encapsulating this dependency
expressed through A = {j(x,ul),ul ∈ Im} over Im a given sampling of I:

(2) J = J(A), such that G(A) 6 0.

Several choices are possible for J and G to address the issue of robust design. For
instance, following Taguchi’s definition, one can look for minimal-variance design
or only a given level for the variance. Indeed, a classical approach to extend sin-
gle point design and improve off-design points is to control mean performance and
variance of the functional [6]. One can also look for information about the tails of
the distributions which can be linked to the variance in the Gaussian framework (we
will use this relationship in section 3 in quantile-based extreme scenarios).

To control the first two moments one can choose, for instance, J = µ and G =
σ − σ0 with

(3) µ =
1

m

∑
ul∈Im

j(x,ul).

For the sake of simplicity, we consider a uniform weighting in the sum but more
sophisticated choices are possible and in particular choices which enforce the perfor-
mance we eventually want for the design: constant performance over the functioning
parameters ranges for a robust design [29]. σ0 is the level of variability of the initial
design or of a reference configuration.

We proceed as in First-Order Second Moment (FOSM) methods [46]. σ measures
the deviation between j(x,ul):

(4) σ =
1

m− 1

∑
ul∈Im

(j(x,ul)− µ)2.

We use this definition when the number of functioning parameters α is large. How-
ever, as we want the final performance to be as regular as possible with respect to
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u, we ask, when possible, for σ to also monitor the regularity of the performance
defined for instance adding the following term to (4):

(5)
1

2

∑
ul∈Im

< ∇uj(x,ul),∇uj(x,ul) >,

where <,> is the Euclidean scalar product. When α is small, ∇uj is evaluated by
finite differences on the finite difference grid Im. This is reasonable because u is
of small size and that we assume uniform PDF for u giving a Cartesian grid for a
uniform sampling of the ranges of variation of all the components of u.

Such minimization problems have brought new interest to descent methods and
this not only because of their lower computational complexity than the gradient free
methods [47, 48, 49]. Indeed, we will see that gradients are useful to see what should
actually be the search space in a context of robust multi-point design. More precisely,
the definition of the suitable search space is only possible after identification of
the maximal free generator subspace in the space Sm generated by the gradients
of the functional at the sampling points Im (see section 3). This is the subspace
generated by the orthonormal basis identified by the Gram-Schmidt procedure at
given precision [45, 50]. Indeed, without other information and considering vector
spaces theory, the size of the sampling should be larger than the dimension of the
control space (i.e. m = n + 1) . We noted, however, [30, 29] that the dimension of
the maximal free search subspace is usually much smaller than n.

2.1. A multi-point descent algorithm. We consider an iterative descent algo-
rithm for our constrained minimization problem involving a direct simulation chain
linking the parameters (x,u) to the state y solution of a state equation y = F−1(x,u)
and to a functional j. We assume the functional is enough regular with continuous
gradient in both u and x. When cast into the Kalman filters framework in section
5, y (or some part of it) will be called observation. More sophisticated minimization
algorithms can be used instead of a simple descent method.



Given x0, 0 < ρ, 0 < η � 1, Im, kmax, 0 < ε� 1,

optimization iterations k = 1, ..., kmax

-m parallel state equation solutions yl = F−1(xk,ul), ul ∈ Im ,

-m parallel evaluations of j(xk, y(xk,ul)), ul ∈ Im ,

-m parallel solutions of the adjoint state V equation:

V tFy(yl) = jty, ul ∈ Im,

-m parallel evaluations of ∇xj(xk,ul) = jx + (V tFx)t, ul ∈ Im ,

-define d the descent direction:

d(µ(xk), σ(xk)) = ∇xµ− < ∇xµ,∇xσ > ∇xσ + η∇xσ,

-control parameter variation, xk+1 = xk − ρd,
Stop if ‖d‖ 6 ε,

where a = a/‖a‖ is the normalized vector a and

(6) ∇xµ =
1

m

∑
ul∈Im

∇xj(xk,ul),
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and following the definition chosen for σ we have

(7) ∇xσ =
2

m− 1

∑
ul∈Im

(j(xk,ul)− µ)(∇xj(xk,ul)−∇xµ),

with possibly a second term if the regularity issue is included in the definition of σ:∑
ul∈Im

< ∇uj(xk,ul),∇uxj(xk,ul) >,

where ∇xuj(xk,ul) is obtained from ∇xj(xk,ul) by finite differences on Im, compo-
nent by component, following what has been done for ∇uj.

The definition of the descent direction permits to make sure that both µ and σ
decrease for small descent steps. Indeed, a first order development in x gives:

σ(xk+1)− σ(xk) = ‖∇xσ‖ ∇xσ.(xk+1 − xk) = −ρη‖∇xσ‖ 6 0,

and we have

µ(xk+1)− µ(xk) = ‖∇xµ‖ ∇xµ.(xk+1 − xk) = −ρ‖∇xµ‖ (1− ζ2 + ηζ),

where ζ =< ∇xµ,∇xσ >. Therefore, µ is also decreasing as 1 − ζ2 + ηζ > 0 for
|ζ| 6 1 and 0 < η � 1 as chosen in the algorithm.

The analysis above can be extended to other functions in (2), other than µ and
σ, with

d(J,G) = ∇xJ− < ∇xJ,∇xG > ∇xG + η∇xG,

as far as J and G are such that the quantities in this formula can be defined which
implies that we need the functional and constraint to be differentiable.

3. Geometrical characterization of the global search space

During the iterations of the algorithm above a global sensitivity space can be
defined using the gradients ∇xj(x,ul) ∈ IRn for ul ∈ Im (Im being a m-point
sampling of I):

Sm = Span{∇xj(x,ul), ul=1,...,m ∈ Im} ⊂ IRn×m.

A major quantity of interest is the dimensions p of this subspace as it can be used
to identify if a design is robust or not with respect to u. This dimension depends
obviously on the sampling Im of the range of variation of u. But it also depends on
the modeling (the governing equations) and the way the state equations are solved
(the numerical schemes). Each situation provides a different global sensitivity space.
p is therefore also interesting to quantify the impact of a change in the modelling or
discretization on a design, also called epistemic uncertainty. Indeed, p << m means
that u will have low impact on the sensitivity space Sm for the design xk. Of course,
this is interesting if the dependency between the functional and the parameters
involves a state equation. To illustrate this issue, consider a scalar u, a constant
vector ψ and a functional j(x,u) = ψtx + u. Here, p = 1 is independent of m since
∇xj(x,u) is independent of u.

In the past we showed how to evaluate p using an incomplete Gram-Schmidt or-
thonormalization algorithm. This algorithm is parametric with a threshold to define
the accuracy of the orthonormalization. One notice that new independent directions
appear increasing this precision. This corresponds to the detection of smaller scales
in the gradients which are filtered by a less accurate orthonormalization[29, 45, 50].
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The information on the dimension of Sm for different modelling and/or discretiza-
tions can be completed by the respective positions of the different subspaces through
the principal angles between them. These two sets of information permit to see un-
certainty quantification from a geometric and quite deterministic point of view [45].

Let us briefly recall how to practically compute the principal angles θi ∈ [0, π/2]
[33, 34, 35, 45].

For simplicity, suppose A and B are two subspaces of dimension k of IRn, n > 2k,
although this is not a prerequisite to define the principal angles. Now, let {ai, i =
1, ..., k} and {bi, i = 1, ..., k} be two arbitrary orthonormal bases for A and B.
Consider M being the matrix of the projection operator Pr

A
of B onto A defined

by:

Pr
A

(bi) =
k∑
j=1

< bi, aj > aj, M = (< bi, aj >)i,j.

The principal angles can be linked to this operator through M = GΣH t, where G
and H are orthogonal matrices and Σ = diag(cos(θi)).

As G and H are orthogonal matrices, this is a Singular Vector Decomposition
(SVD) of M . G and H are unknown, but we do not need them to get the principal
angles θi. We recall that the columns of G are the left-singular vectors of M and
eigenvectors of MM t and the columns of H are the right-singular vectors of M
and eigenvectors of M tM . And most important that cos2(θi) are the eigenvalues of
Prt

A
Pr

A
which writes in matrix form as: M tM = (GΣH t)t(GΣH t) = HΣ2H t with

Σ2 = diag(cos2(θi)).
Therefore, to find the principal angles between subspaces A and B, knowing an

orthonormal basis in each subspace, one should calculate M and find the eigenvalues
of M tM and take the square root of them. This last operation is valid as the angles
are between 0 and π/2, and their cosine therefore always positive. In our case, an
orthonormal basis in already available after the Gram-Schmidt orthonormalization
has been used to identify the dimension of global search space Sm.

4. Directional extreme scenarios

We showed how to introduce some geometric characterizations of the global sen-
sitivity spaces built with the gradients of a functional ∇xj(x,ul) for ul ∈ Im a
sampling of a functioning parameter variation range. This was feasible as we as-
sumed there are only a few of such parameters in a system. On the other hand, it is
not possible to account for the variability in the design parameter x ∈ IRn as 1� n.

In [7] we showed how to introduce quantiles such as the Value at Risk (VaR) in
optimization algorithms with the aim of quantifying our confidence on the optimal
solution at low complexity without a sampling of the control space. This concept
can be used in combination with the direction d of section 2.1 to define the notion
of Directional Extreme Scenarios (DES).

We consider that a given control parameter xi=1,...,n represents, with a confidence
level of a, the interval [xi + VaR−a ,xi + VaR+

a ] around xi and VaR−a 6 0 6 VaR+
a .

One expresses then possible deviations from x via two probability density func-
tions (PDF) and the corresponding values at risk. One can make the hypothesis
that the upper and lower bounds of the variations are symmetric, in which case
VaR−a = −VaR+

a . This is typically the case when uncertainties on a parameter fol-
low a Gaussian distribution. Gaussian distributions are interesting as their Values
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at Risk are explicitly known: VaR0.99 = 2.33 and VaR0.95 = 1.65 for N(0, 1) and
VaRa(N(0, σ)) = σVaRa(N(0, 1)).

To summarize x + VaRa(x) is a closed domain in IRn around x:

(8) Ba(x) = {z ∈ IRn : xi + VaR−a (xi) 6 zi 6 xi + VaR+
a (xi), i = 1, .., n}.

The knowledge of the level of uncertainties on x is by itself a problem which we do
not discuss here. Manufacturing uncertainties are usually known through probability
density functions coming as characteristics of the product manufacturing process:
realization within margin errors. These PDFs can also be identified by assimilation
observation data.

Now, we would like to use this information together with the descent direction
d given in algorithm 2.1 to define extreme values for the local variability of the
functional along the direction d. We make the assumption that the functional is
monotonic over Ba(x), continuous and bounded. It is therefore uniformly continu-
ous. This guarantees that a small perturbation in the design parameters will have
small effect on the performance, something which is very reasonable to assume for
any robust design. For the sake of simplicity, on can suppose the functional is convex
in Ba(x). If the functional does not behave as such it would be very hazardous to
pretend providing any robust design.

These assumptions imply that extreme values of the functional over Ba(x) are
reached on ∂Ba(x), the boundary of Ba(x).

The intersection of ∂Ba(x) and d permits to define two Directional Extreme Sce-
narios for x as worst-case scenarios:

(9) (DES) : x± = d ∩ ∂Ba(x).

A sketch of this construction is given in figure 1. The uncertainty domain is of
rectangular shape because we have assumed the components of x are independent
(i.e. the correlation matrix is diagonal, see section 5).

In [7] we showed how this can be linked to the notion of over-solving where it
becomes useless to solve accurately near an optimum when the variation in a control
parameter falls below the level of the variability for this parameter. In other words, in
the presence of uncertainties, one should not distinguish between the points in Ba(x).
This interpretation should also be used to define what me mean by uniqueness of the
solution: one cannot distinguish between the solutions in Ba(x). This construction
meets the ingredients developed in the Unscent Kalman filter approaches [37] and
the extreme directional scenarios can be seen as two of the σ-points there.

The next step is to apply the geometric analysis of section 3 after the definition
of two global sensitivity spaces S±m at x± using ∇xj(x

±,ul) for ul ∈ Im following
the same procedure than for Sm. The respective dimensions p± of these spaces and
their respective position through the principal angles between them give precious
information on the impact of local variability on x on the global search space [45, 50].
For instance, if the dimensions are the same and angles small, this would mean
that variability in x will have very little impact on the design. Also, from the
calculation complexity point of view, it is important that these have been built
without a sampling of our parameter space of dimension n for x.
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Figure 1. Sketch of Directional Extreme Scenarios (DES) given by
x± = d∩∂Ba(x) and Ensemble Directional Extreme Scenarios (EDES)
Dq ∩ ∂Ba(x) given (16). The grey zone is not necessary connected.

In some situations, we might be interested in going beyond just extreme scenarios
and include the treatment of the uncertainties on the control parameters and obser-
vation data in the optimization solution. Kalman filters provide an elegant frame-
work for such developments. Also, in section 5.3 we go beyond the assumptions
above for j over Ba(x) using the Ensemble Directional Extreme Scenarios (EDES)
where the construction will be applied with the different directions {dl, l = 1, ..., q}
built for the ensemble simulation. This propose an ensemble of worst case scenar-
ios as a local sampling of ∂Ba(x). The history matching example in section 6 will
show a situation where the DES construction is not enough, indeed, and that the
ensemble simulation is necessary for a more exhaustive sampling. Still, 2q (q being
the ensemble size) the size of this sampling remains negligible compared to n the
dimension of the design space. In addition, we will have some confidence on the
choice of q through the dimensional analysis of the global sensitivity space Dq.

5. Extended and Ensemble Kalman filters

The Kalman filter (KF) [22] provides solution for state estimation of linear sys-
tems under Gaussian noise and permits to sequentially assimilate observation data.
Extended Kalman filters (EKF) based on the use of the Jacobians of the forecast and
observation operators with respect to the state permit to extend the Kalman filter
analysis to the case of nonlinear systems [40, 41, 42]. To avoid the introduction of
these Jacobians, Ensemble Kalman filters (EnKF) [43, 44] introduce an approxima-
tion of the error matrices using statistics generated through scenarios run in parallel.
Our aim is to cast our multi-point minimization into an EnKF formulation.
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Let us recall the EKF and EnKF algorithms for the sequential solution xk of the
following nonlinear dynamical system under uncertainties and assimilating observa-
tions yk.

(10) xk+1 = f(xk,Uk) + qk, yk+1 = g(xk) + rk,

where xk, qk ∈ IRn, Uk ∈ IRν and yk, rk ∈ IRπ. We usually have n > ν and n > π as
we would like to be able to control a system with less control than the size of the
system and also there are usually less available observations than this size. Kalman
filters are for Gaussian noises and we assume that qk and rk are stationary zero-mean
Gaussian perturbations with covariance matrices Q and R. The initial condition x0

and qk and rk are also assumed uncorrelated.
Defining the Jacobians Ak = ∇xf(xk,Uk) and Ck = ∇xg(xk), the EKF algorithms

is made of an assimilation (upperscript a) and a forecast (upperscript f) step:
(11)

EKF :

{
Assimilation: xak = xfk +Kk(yk − g(xfk)), P a

k = (I −KkCk)P
f
k ,

Forecast: xfk+1 = f(xak,Uk), P f
k+1 = AkP

a
kA

t
k +Q,

where Kk = P f
xyk

(P f
yyk

)−1, P f
xyk

= P f
k C

t
k and P f

yyk
= CkP

f
k C

t
k + R. We recover

the original Kalman filter algorithm if f and g are linear (f(xk,Uk) = Akxk +
BkUk, g(xk) = Ckxk).

The EnKF algorithm intends to avoid the progression steps for P a
k and P f

k requir-
ing the Jacobians of f and g. Instead, taking advantage of q parallel forecast for

an ensemble of states (xf1k , ...,x
fq
k ), the progression steps above are replaced by the

following estimation of the forecast and assimilation states error covariance matrices:

P f
k ∼

1

q − 1
Ef
k (Ef

k )t, P a
k ∼

1

q − 1
Ea
k(Ea

k)t,

where Ef
k and Ea

k are vectors of the deviation of each of the ensemble member from

the mean previsions xfk = (1/q)
∑q

i=1 xfik and xfa = (1/q)
∑q

i=1 xaik :

Ef
k = (xf1k − xfk , ...,x

fq
k − xfk), Ea

k = (xa1k − xak, ...,x
aq
k − xak).

The same procedure is applied to generate from forecast observations (yfik = g(xfik ))

the error output vector Ey
f
k = (yf1k − yk, ..., y

fq
k − yk) which permits to define the

following approximation for the forecast observation error covariance matrices:

P f
xyk
∼ 1

q − 1
Ef
k (Ey

f
k)
t and P f

yyk
∼ 1

q − 1
Ey

f
k(Ey

f
k)
t.

The ensemble initialization is based on the probability density functions for x and
y:

xfi0 = x0 + qi0, yi0 = y0 + ri0, i = 1, ..., q.

The assimilation and the forecast steps are then the same for the EKF (and also the
KF) and each of the ensemble members in EnKF except that the approximations
above are used in the definition of the Kalman gain matrix Kk:

(12) EnKF :


Ensemble Assimilation: xaik = xfik +Kk(y

i
k − g(xfik )),

Ensemble Forecast:

{
xfik+1 = f(xaik ,Uk) + qik,

yik+1 = yk+1 + rik+1,
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The ensemble calculations are independent and can therefore be carried out in a
fully parallel manner. The algorithm is in particular interesting when it succeeds
with an ensemble of size q << n.

5.1. Optimization and Kalman filters. Our aim is to cast the optimization al-
gorithm given in section 2.1 into the Kalman filters formulation. We will be using
the ensemble Kalman filter because the systems are nonlinear in our context. We
would like to use this approach for robust optimal design accounting for uncertain-
ties in the optimization parameters x and observations y. These gather physical
state variables and the constraints which will be seen as observations y. These can
be, for instance, global or partial information on x with associated uncertainties.
The choice of the ensemble Kalman filter over the extended Kalman filter is because
EKF would require the Hessian of j and the Jacobian of the governing equations
and the constraints. These are not always available or easy to get. Our aim is to be
able to account for the uncertainties using existing platforms.

The multi-point descent algorithm given in section 2.1 controlling the first and
second momentum of a functional can be seen as iterations of:

xk+1 = f(xk,Uk) + qk, yk+1 = g(xk) + rk,

where the solution of the governing equations F (and other possible equality con-
straints) are gathered as observations in yk. Uk ∈ IRm represents the sampling of the
range of the functioning parameter u and is given by Uk = (u1, ..., , um) ∈ IRm×α

(i.e. ν = m × α). Recall that we have u ∈ Im ⊂ I ⊂ IRα with m the size of the
sampling. qk and rk represent the uncertainties on xk and yk. These are zero-mean
Gaussian with covariance matrices Q and R. In the sequel the approach is therefore
limited to the Gaussian framework.

5.2. Illustration on quadratic minimization under equality constraints. Let
us start with a simple optimization problem under equality constraints and with-
out any governing equation involved. We consider the minimization of a quadratic
functional under two equality constraints:

j0(x,u) =
1

2

n∑
i=1

(xi − u
i

n
)2, c1(x) =

n/2∑
i=1

xi −
1

2
= 0, c2(x) =

n∑
i=n/2+1

xi − 1 = 0.

The size of the optimization problem is n = 100. Let us start with u = 1 being a
constant and not given over an interval I ⊂ IR. Without constraints the optimal
solution is obviously xi = i/100. With constraints and in the absence of noise this
can be solved considering a functional of the form:

(13) j(x,u) = j0(x,u) +
1

2
c21(x) +

1

2
c22(x).

First order optimality condition for j leads to a n × n linear system Ax = b(u)
where Ai,i = 2, Ai 6=j = 1 when i&j 6 n/2 or i&j > n/2 and Ai 6=j = 0 elsewhere and
bi = u i/n− 1/2 for i 6 n/2 and bi(u) = u i/n− 1 for i > n/2. The solution of this
system is shown in figure 2.

In the presence of uncertainties on the optimization parameter x and the con-
straints ci, this can be cast into the Kalman filter formalism (classical here as we
are in a linear dependency situation) with ci seen as two observations because these
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constraints can be considered as a priori global information on xk, and only partially
satisfied (noise is the error one commits on the equality constraints):

(14) f(xk,uk) = xk − ρ∇xj(xk,uk) y1k = c1(xk), y2k = c2(xk),

where ∇xj(xk,uk) = Axk − b(uk) with Uk = uk = u and ρ = 0.01. The Gauss-
ian uncertainties on the optimization parameter xk and constraints y1,2k are given
through their correlation matrices Q = 0.02I100 and R = 0.05I2. Figure 2 shows
comparisons between the unperturbed solution and when uncertainties on the op-
timization parameters and the constraints realizations have been reduced by the
EnKF algorithm. Ensembles of size 5 to 20 have been tested and the convergence
histories for the deviations between the assimilation and forecast ensemble solutions
and the deviation between ensemble solutions at given time k-index.

5.2.1. Parametric quadratic minimization under equality constraints. Now consider
the situation where u is no longer a constant but belongs to an interval I = [0.8, 1.8].
As we discussed in section 2, this is quite representative of what we often have in
practical situation with u being a functioning parameter and we would like the
optimal solution to be robust with respect to u: the functional to be as much as
possible flat on its domain of variation, for instance. We consider Im a m = 20
points uniform sampling of I and J(x) = µ defined in (3) and with j(x,ul) given by
(13). With the notations above, the first order optimality condition leads this time
to Ax =

∑
u∈Im b(u). As for the constant u case, this can be cast into the Kalman

filter formalism in the presence of uncertainties on the optimization parameter x
and the constraints ci with ∇xJ(xk,uk) = (Axk −

∑
u∈Im b(u))/m and the size

of the control Uk = (uk1, ...,u
k
m) being now m. The multi-point descent direction

d(µ, σ) can be built as in section 2.1 and the multi-point descent algorithm can be
cast into the Kalman filter framework replacing ∇xj(xk,uk) by d in (14). Figure
2 shows comparisons between the mono-point and this parametric minimization for
ensembles of size 5 to 20. The parametric solution proposed by the multi-point
minimization deviates quite from the deterministic solution. Even if this might
appear being counter-intuitive, this means that it should be more difficult to fit the
data in a parametric inverse problem. We will recover this behavior in section 6 for
a history matching problem.

5.3. Geometry of the global EnKF search space and ensemble size. At this
point one can take advantage of the descent directions ∇xj(x

l
k,u) or d(µ(xlk), σ(xlk))

built during our ensemble simulations and proceed as in section 3 to analyze the
geometric characteristics of the related global search space Dq in the context of
single point optimization (for a single u value):

Dq = Span{∇xj(x
l
k,u), l = 1, ..., q} ⊂ IRn×q,

or multi-point (when u ∈ I) optimization:

Dq = Span{d(µ(xlk), σ(xlk)), l = 1, ..., q} ⊂ IRn×q.

An important interest of these spaces is to provide information on what should be
the size of the ensemble in EnKF. This question is treated empirically in practice in-
creasing the size q until the EnKF iterations succeed. An ensemble can be considered
as enough rich if dim(Dq) < q.
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Figure 2. Mono-point (left column) and parametric (right column)
quadratic minimization under equality constraints: comparison be-
tween the unperturbed solution and when uncertainties on the op-
timization parameters and the constraints realizations have been re-
duced by the EnKF algorithm.

In addition to their respective dimensions, principal angles between two spaces
Dq and Dq′ show how much deviation appears between subspaces for different en-
semble sizes. This permits to define a new concept of convergence for the ensemble
simulation.
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This geometric construction can be used to define possible extreme scenarios in-
troducing quantiles such as the value at risk (VaR) as presented in section 4. More
precisely, ensemble directions dlk = d(µ(xlk), σ(xlk)), l = 1, ..., q permits to define a
sampling of what one might call an extreme scenarios region around a mean inversion
solution xk:

(15) Dq ∩ ∂Ba(xk),

where xk = (1/q)
∑q

l=1 xlk. Hence, applying the Directional Extreme Scenarios
(DES) concept to the each of the ensemble directions provides a sampling of the
extreme scenarios region through the following Ensemble Directional Extreme Sce-
narios:

(16) (EDES) : {(xlk)±, l = 1, .., q} = {dlk ∩ ∂Ba(xk), l = 1, ..., q}.
A sketch of this construction is given in figure 1 and compared to the situation

presented in section 4. These extreme scenarios will be illustrated in the examples
of section 6 and compared to the results by simple DES when the Ensemble Kalman
filter is not used and the uncertainty of x only accounted for through two directional
VaR-based extreme scenarios (in mono and multi-point situations for u) permitting
for low-complexity analysis of the impact of variability in x on the inversion.

6. Application to a history matching problem

We consider an inverse problem appearing in several science and engineering do-
mains such as electroencephalography (EEG) inverse source localization and history
matching in reservoir modeling [2]. We discuss this latter problem.

Reservoir simulation is a major activity for many oil companies. It starts with
building the initial geological reservoir and fluid models and their discrete versions.
These can be either PDE-based or relying on reduced order models, for instance
involving response surfaces. Our reservoir model is PDE based but other solutions
can be envisaged and this choice is not central to our discussion. In all cases, and
as for many models in science and engineering, one should be aware that reservoir
models are not reality and have inevitable errors also called reducible or epistemic
uncertainties.
After the reservoir model is established, it must be improved through history match-
ing which must include a quantification of uncertainties. This step consists of ad-
justing the model of a reservoir until it closely reproduces its past behavior available
through the historical production and pressures data which are both noisy. These
are not reducible and are called aleatory uncertainties.

In addition to these data, observations and constraints (which can be considered
as a priori information and somehow as observations) are also available. Examples
of such are well logs and information there on the core, seismic data, geological and
production scenarios, etc.

Previous works exist on the application of ensemble Kalman filter methods to
history matching problems (see [51, 52, 53] and references therein). EnKF being
in the class of Monte Carlo simulation methods, it is usually stated that EnKF is
suitable as it avoids gradient based minimization algorithms which can be trapped by
local minima. We think that one should take advantage of the gradients information
when available and rather than dropping gradient-based minimization algorithms
cast them into the EnKF framework. Gradient information also reduces the risk
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for a pure EnKF estimates to deviate strongly from petrophysical properties. In
addition, thanks to the knowledge of the dynamic global sensitivity spaces built
during EnKF iterations, one have a good estimation of what the ensemble size
should be.

To illustrate our purposes we consider a synthetic case with two injection and two
productions wells in a 100m× 100m domain. We consider a simple time dependent
Darcy-like model [54] over a domain Ω linking a single phase pressure p to the flow
velocity v (gravity is neglected):

(17) ∂tp +∇.v =
∑
i=1,2

uiδsi , v = −x∇p,

which is solved on a 100 × 100 cartesian mesh following [55] and using a second
order time integration. The literature on the solution of this equation is very rich.
A particular choice of a numerical scheme is not central to our discussion. The
algorithm given in section 2.1 requires the adjoint of the governing equation in
order to make the cost of sensitivity evaluation independent of the size n of the
optimization space for x. To make the code development as automatic as possible,
the adjoint solver has been generated using automatic differentiation by Tapenade

[56, 57].
In equation (17) x describes the soil characteristics and our aim is its identifi-

cation. More precisely, x = k(µφ)−1 with k(m2) the permeability, µ(bar . hour)
the fluid viscosity and 0 < φ 6 1 is the porosity of the soil. An a priori available
information on x is that it must be piecewise constant over a number of plateau
ωi. This is accounted for through a projection step on x. We have here an ex-
ample of information provided by geophysicists from seismic observations. Hence,
the optimization parameter K over the computation mesh is projected over this
representation defining a set of couples {(Ki, ωi), i = 1, ..., np} where

Ki =
1

|ωi|

∫
ωi

x(s)ds, ∪ni=1 ωi = Ω.

In the examples presented here, ωi describes transverse strips as shown in figure 3
and we have a number of plateau np 6 n with n = 100 the size of the optimization
space. This a priori information is very useful for an efficient ensemble simulation
permitting to keep the ensemble size low as shown in figure 5.

In addition to the information above we have well logs and x is known at wells
and this information defines the observation equations:

yi=1,...,4
k = xk(si)− x∗(si) = 0, at si the locations of the 4 wells.

The control variables u ∈ IR2
+ represents the injection pressure at the two injection

wells s1,2. This is an example where u ∈ IR2
+ in j(x,u) of section 2.

We aim at recovering x minimizing:

j(x,u) =
∑
i=3,4

∫ T

0

(pi(t,x,u)− p∗i (t))
2dt,

from histories p∗i=3,4(t) recorded at production wells s3,4. p
∗
i (t) is uncertain but this

uncertainty is assumed small in comparison to what expected on the permeability
and the observations. The physical time (100 hours) over which these histories have
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been recorded and used for history matching is different from the k-index time in
the EnKF iterations. These correspond to optimization iterations.

The uncertainties on the optimization parameters xk and constraints y1,...,4k are
both assumed Gaussian with correlation matrices Q = 0.02I100 and R = 0.05I4.

Our aim is to identify x by our gradient-based+EnKF inversion approach account-
ing for the different uncertainties in a mono-point situation and when the control u
is defined through its range of variation.
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Figure 3. Target x after projection and definition of the set
{(Ki, ωi), i = 1, ..., 10} where K(= k(µφ)−1), field pressure at t = 100h
and pressure histories p∗i=3,4(t) recorded at production wells s3,4 over
100 hours and used as target for inversion.

6.1. Mono-point inversion under uncertainties. Before considering the geo-
metric analysis of the global sensitivity spaces in a multi-point situation, let us show
an example of the results one gets with the EnKF-based inversion in a mono-point
configuration defined with constant values over time for the two components of the
control u at 1 bar and 1.3 bar at injection wells. These are not realistic values and
are just illustrative. The governing equation being linear in p, there is no difficulty
in considering larger values for the injection pressure and the inversion will succeed
as far as the target pressure histories are compatible.

To be sure the problem is admissible, an unperturbed target solution has been
generated with a piecewise constant permeability distribution with np = 10 plateau
(shown in figure 3).

We consider three ensembles of size q = 10, 20 and 40. Figure 4 shows the differ-
ence between the target x and p and the mean ensemble estimates for the ensemble
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of size 40. It also shows the deviation between ensemble solutions. These results
permit to see the regions of maximum deviation between the EnKF estimates and
also between these EnKF estimates and the solution by a deterministic inversion
(i.e. when the inversion does not account for the uncertainties on the data and
observations). It is also interesting to see that the target pressure histories at pro-
duction wells s3,4 are well recovered by the ensemble mean solution. But that the
uncertainty on the production at the two wells are different.

Figure 5 shows the histories over time k-index of the deviation between the en-
semble analysis and forecast EnKF estimates and the root-mean-square deviation of
the forecast estimates for three ensembles of size q = 10, 20 and 40. This problem
is more complex than the quadratic minimization of section 5.2. We have the same
level of uncertainties in both problems and the same size of the problem (n = 100).
Still an ensemble of size 20 seems to produce convergent statistics. This can be
explained with our geometric analysis. Figure 5 also shows the outcome of the
Gram-Schmidt algorithm detecting independent directions in the global sensitivity
space Dq = Span{∇xj(x

l
k,u), l = 1, ..., q} for q = 20 and 40 as defined in section

5.3 and eventually their dimensions which remain below 10. This gives an indication
on how to choose the ensemble size in EnKF.

The figure also illustrates the application of the concept of principal angles be-
tween subspaces to estimate the relative position of the global sensitivity spaces D20

and D40. In addition to the dimension of the spaces, these angles provide addi-
tional information on the impacts on the search spaces due to an enrichment of the
ensemble.

6.1.1. Var-based Directional Extreme Scenarios in the mono-point case. As described
in section 5.3, the EnKF inversion permits to define a sampling of the extreme sce-
narios region (15). We also saw in section 4 how to define two VaR-based directional
extreme scenarios during a gradient based minimization. We would like to compare
the outcome of the two approaches with the EnKF analysis considered as the refer-
ence solution.

Knowing the Gaussian probability density function for xk, we define two VaR-
based scenarios along ∇xj(xk,u):

(xk)
± = ∇xj(xk,u) ∩ ∂B0.95(xk),

where xk = xk−1 − ρ∇xj(xk−1,u) with ∂B0.95 is the boundary of the VaR0.95-based
variability ball defined by (8) around xk. Knowing the correlation matrix Q of
Gaussian variables xk, the extreme scenarios have their ith component defined by:

(18) (xk)
±|

i
= xk|i(1±Q

∇xj(xk,u)

‖∇xj‖
|
i
).

In our case Q is diagonal (Q = 0.02I100) and from section 4 we have

VaR0.95(N(0, 0.02)) = 0.02 VaR0.95(N(0, 1)) = 0.02× 1.65 = 0.033,

which defines the value of the ith component of x±k following the sign of the ith

component of ∇xj(xk,u): (xk)
±|

i
= xk|i(1± 0.033 sgn(∇xj)i). In the same way, 2q

(xlk)
± VaR-based Ensemble Directional Extreme Scenarios can be defined applying

(18) to each of the ensemble members xlk, l = 1, ..., q.
Figure 6 shows pressure histories for these ensemble extreme scenarios after an

inversion with an ensemble of size q = 40 giving 80 scenarios {(xl30)±, l = 1, ..., 40}



19

after 30 iterations of EnKF. As reported in figure 4, the production at well 4 is more
sensitive to the variability in x than at well 3. The figure also compares these with
the pressure histories for the two VaR-based scenarios (x30)

± by (18). This low-
complexity estimation of the impact of the variability in x gives satisfactory bounds
in this single-point situation. The situation is less satisfactory in the multi-point
situation justifying ensemble simulations.
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Figure 4. Inversion with EnKF (ensemble of size 40) in a mono-
point u case. Differences between the ensemble mean solutions from
the target x and the field pressure p(t = 100h) and the deviation
between ensemble solutions. Target pressure histories at production
wells s3,4 are well recovered by the ensemble mean but uncertainties
on the production histories do not follow the same pattern.
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estimates during EnKF-gradient iterations and the RMS of EnKF
xfk estimates. The histories of the Gram-Schmidt orthonormalization
during ensemble iterations (middle-left) and the dimension of the free
subspace generator for spaces D20 and D40 (middle-right) explains why
an ensemble of size 10 seems to be efficient. Lower: principal angles
between subspaces D20 and D40 defined in section 5.3.

6.2. Multi-point inversion under uncertainties. Now, we consider the two
components of the control u (pressure at injection wells) not anymore single val-
ued but each defined through an interval with a uniform PDF: u ∈ I = [0.8, 1.2] ×
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Figure 6. Inversion with EnKF (ensemble of size 40) in a mono-
point u case. Upper: pressure histories for ensemble extreme scenarios
(xl30)

±, l = 1, ..., 40 described in section 6.1.1. Production at well 4 is
more sensitive to the variability in x. Lower: pressure histories for the
two VaR-based scenarios given by (18) with a single-point gradient
based minimization (no ensemble simulation involved).

[1.1, 1.5]. We would like to have the inversion to be robust also with respect to this
variability. The multi-point minimization algorithm given in section 2.1 is cast into
the Kalman filters framework as described in section 5.1 to control the first two
moments µ and σ of j defined in section 2 accounting for the variability on both x
and u.

We consider again three ensembles of size q = 10, 20 and 40. The multi-point
optimization of 2.1 is defined for Im being a 10× 10 sampling of I.

Figure 7 shows the histories over time k-index of the deviation between the en-
semble analysis and forecast EnKF estimates and the root-mean-square deviation
of the forecast estimates for three ensembles of size 10, 20 and 40. Figure 7 also
shows the outcome of the Gram-Schmidt algorithm detecting independent directions
in the global sensitivity space Dq = Span{d(µ(xlk), σ(xlk)), l = 1, ..., q} defined in
section 5.3 and eventually its dimension which remains below 15. This is often larger
than what we had in the mono-point situation in figure 5, but sometimes smaller
(at given iteration) and would then mean that in these situations the multi-point
direction constructed to account for the variability on u actually reduces the effect
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of the variability on x. In all cases, this explains why an ensemble of size 10 is
clearly not enough rich. The figure also illustrates the application of the concept of
principal angles between subspaces to estimate the relative orientation of the global
sensitivity spaces D20 and D40 for the ensemble sizes of 20 and 40. These spaces are
generated by the 20 (resp. 40) directions d(µ(xlk), σ(xlk)) as described in section 5.3.
In addition to the dimension of the spaces, these angles provide additional informa-
tion on possible impacts on the search spaces due to an enrichment of the ensemble.
In the present case, the angles increase with the EnKF iterations which mean that
one needs more accuracy with convergence and that the additional information by
the ensemble of 40 is not present in what available with an ensemble simulation of
size 20.

Figure 8 shows the difference between the target x and p and the mean ensemble
estimates for the ensemble of size 40, to be compared with figure 4 in the mono-
point situation for u. The inversion gives a very different estimation for x when
the control u is not anymore single valued. Also field deviations between the EnKF
estimates and between these EnKF estimates and the solution by a deterministic
inversion are different from what obtained in the mono-point situation showing the
utility of the multi-point formulation. The pressure histories at production wells s3,4
also deviate more from the targets which were recovered by both the inversions in
the deterministic and uncertain mono-point cases. The deviation is not the same
for the two wells. One should have in mind that there is no guarantee an inversion
finding a distribution of x maximizing the likelihood with respect to the uncertain
parameters and observation data would produce a design giving the deterministic
target pressure output. Indeed and surprisingly, despite one has lower deviation be-
tween ensemble pressure simulations for well 3 (Figure 8, lower-right), the inversion
under uncertainty produces a solution farther from the deterministic target than for
well 4. This is a kind of information which help discriminating between different
production points in term of reliability and necessary monitoring.

As in the mono-point situation, these can be compared to the two scenarios ob-
tained by the Directional Extreme Scenarios (DES) concept presented in section
5.3 which permits a low-complexity quantification of the uncertainties due to the
variability on x.

6.2.1. Var-based Directional Extreme Scenarios in the multi-point case. We proceed
with the same analysis than in section 6.1.1 in the single-point situation but us-
ing the directions d(µ(xk), σ(xk)) instead of ∇xj(xk,u) and the multi-point control
algorithm of section 2.1 instead of a simple descent for j as presented earlier.

Figure 9 (to be compared to figure 6 in the mono-point case) shows pressure
histories for the ensemble extreme scenarios after an inversion with the multi-point
optimization algorithm of 2.1 and an ensemble of size q = 40 after 30 iterations
of EnKF. The figure also compares these with the pressure histories for the two
directional VaR-based scenarios (x30)

± defined by:

(19) (x30)
± = x30(1±Q

d(µ(x30), σ(x30))

‖d(µ, σ)‖
).

This low-complexity estimation does not give satisfactory bounds for the extreme
scenarios in this multi-point situation. This is unfortunate as otherwise there would
be no need for an ensemble analysis to access the extreme scenarios. This situation
shows that we need to be cautious, especially when uncertainties are present in both



23

x and u. In these cases, the variability in the search direction d(µ(xl), σ(xl)) is larger
than what we have in the mono-point situation with ∇xj(x

l,u) for l = 1, ..., q. This
can also be seen from increasing principal angles comparing figures 5 and 7. Indeed,
when accounting for the variability in u (i.e. going from mono to multi-point) the
angles between subspaces D20 and D40 increase as an indication of larger variability.
As a consequence, when accounting for the uncertainty on u we need to a posteriori
define the worst case scenarios from a more exhaustive ensemble analysis.

7. CONCLUDING REMARKS

In order to be easily integrated in engineering environments and quantify our
confidence on the optimal solution without intensive sampling of large dimensional
parameter spaces a cascade of geometric uncertainty quantification concepts, with
growing computational complexity, has been introduced.

The analysis starts with the geometric characterization of global sensitivity spaces
through their dimensions and relative positions by the principal angles between
global search subspaces. Then, joining a multi-point descent direction and extreme
values information from the probability density functions of design variables the
concept of Directional Extreme Scenarios (DES) has been introduced.

The construction goes beyond DES with Ensemble Kalman Filters (EnKF) after
the multi-point optimization algorithm is cast into an ensemble simulation environ-
ment. This permits to account for the variability on the functioning parameters
through the multi-point formulation and for the variability on the optimization pa-
rameters and observation data through the ensemble Kalman filter formulation.

The UQ cascade ends with the joint application of the EnKF and DES leading
to the concept of Ensemble Directional Extreme Scenarios (EDES) which provides
exhaustive possible extreme scenarios knowing the Probability Density Function of
the optimization parameters and this without a sampling of the admissible space.

These ingredients have been illustrated on an history matching application. The
interest of casting a multi-point minimization algorithm into an EnKF framework
has been demonstrated when simple directional extreme scenarios do not provide
satisfactory bounds for the impact of the uncertainties on the optimization param-
eters on the results.

The method (both the DES and EDES constructions) can theoretically be applied
to any level of uncertainty on x. But this will increase the regularity constraints
on the functional over Ba(x) as discussed in section 3 and 5.3. Also, the Kalman
ensemble size will need to be much larger as the dimension of the ensemble sensitivity
space Dq will certainly increase due to this variability.

The Gaussian framework is necessary for the Kalman filter framework. But, the
other ingredients of the paper can be applied to non-Gaussian situations: dimen-
sional analysis, principal angles, quantile-based extreme scenarios as far as one can
(even by numerical integration of tabulated laws) find the a-quantiles quantifying
the tail of the PDFs.

The framework presented features several sources of natural parallelism making
the time to solution comparable to a mono-point deterministic inversion.

Looking at the bigger picture, this analysis shows the importance of considering all
sources of variability in the problem to make sure the global search space is neither
too large nor too small. The latter should obviously be avoided for the design to be
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robust. But, the former tells us that a more efficient design is maybe possible better
monitoring the design space.
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Figure 7. Inversion with EnKF (ensemble of size 10, 20 and 40) in
a multi-point u configuration. Deviation between EnKF analysis and
forecast estimates during EnKF-gradient iterations and the RMS of
EnKF xfk estimates. The histories of the Gram-Schmidt orthonormal-
ization during ensemble iterations for the ensemble of size 40 (middle-
left) and the dimension of the free subspace generator for space Dq

(middle-right) to be compared to figure 5. Lower: principal angles
between subspaces D20 and D40 defined in section 5.3.
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Figure 9. Inversion with EnKF (ensemble of size 40) in a multi-
point u case. Upper: pressure histories for ensemble extreme scenarios
(xl30)

±, l = 1, ..., 40 described in section 6.1.1. Lower: pressure histo-
ries for the two directional VaR-based scenarios given by (19) with
the muti-point minimization algorithm 2.1 (no ensemble simulation
involved) inefficient in this multi-point case.


