
HAL Id: hal-01138118
https://hal.science/hal-01138118v1

Preprint submitted on 2 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HPP: a new software framework for manipulation
planning

Florent Lamiraux, Joseph Mirabel

To cite this version:
Florent Lamiraux, Joseph Mirabel. HPP: a new software framework for manipulation planning. 2015.
�hal-01138118�

https://hal.science/hal-01138118v1
https://hal.archives-ouvertes.fr


HPP: a new software framework for manipulation planning

Florent Lamiraux1,2 and Joseph Mirabel1,2

Abstract— We present a new open-source software frame-
work (called Humanoid Path Planner – HPP) for path and
manipulation planning. Some features like built-in kinematic
chains and implementation of non-linear constraints make the
framework a good fit for humanoid robot applications. The
implementation of kinematic chains takes into account the
Lie-group structure (rotation in 3D space SO(3)) of robot
configuration spaces. Robots and obstacles can be loaded from
ROS-URDF files. Manipulation problems are modeled by a
graph of constraints. At installation, a corba server is installed.
the server can be controlled by python scripting to define and
solve a problem.

I. INTRODUCTION

Fig. 1: PR2 passing a box from left hand to right hand

This paper presents a new open-source software frame-
work (called Humanoid Path Planner – HPP) for path and
manipulation planning, with some features dedicated to
humanoid robots. The framework is the result of a deep
refactoring work relying on a long standing experience in
developing path planning algorithms. Note that this paper
includes many links to external material (source code, docu-
mentation) that are not active on printed versions.

Unlike other existing open-source frameworks for path
planning [1], [2], [3], the code is distributed into atomic
software packages organized as a dependency tree hierarchy,
with separate repositories. Developments have been focused
on the algorithmic structure and only minimal effort has been
devoted to graphical user interface.

As in Move3D [3], a unique class implements the concept
of roadmap that is used by many path planning algorithms. A

*This work has been partially supported by the national PSPC-Romeo 2
project, has received funding from the European Communitys Seventh
Framework Programme (FP7/2007-2013) under grant agreement n 609206
and n 608849 and from the French agency ANR under grant agreement
13-CORD-002-01.

1CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ de Toulouse, LAAS, F–31400 Toulouse, France

roadmap can therefore be used successively by several path
planning algorithms. This makes our framework – hopefully
– simple and easy to use. Robots and obstacles can be loaded
from URDF files and applications can be controlled via
python scripting.

1) Kinematic chain: Robots are modelled as trees of
joints moving inertial and geometric bodies. As such our
framework is closer to Openrave than to OMPL. Rotations in
3D space are represented by unit quaternions (4 components)
in the robot configuration vector, while angular velocities are
represented by 3D vectors. As such the configuration space
of a robot is a Lie group. Velocity and configuration vectors
do not necessarily have the same dimension.

2) Non-linear constraint: Non-linear constraints like posi-
tion constraint of an end-effector, or quasi-static equilibrium
of a legged robot are modeled at the core level and handled
in the basic implementation of RRT [4] that is provided by
default. This implementation is described in [5].

3) Manipulation: Several concepts already introduced
in [6] have been integrated in order to define and solve
manipulation planning problems. The mains concepts are
composite robots containing a kinematic chain gathering
several robots and objects, a graph structure the nodes of
which define which robot is grasping which object with
which effector. The edges of the graph define the connectivity
between different grasps and provide additional constraints
that should be satisfied along motions. For instance, an object
may be grasped with various relative positions between the
object and the effector (node constraint), but once the objects
is grasped the relative position, between the effector and the
object is fixed during motion (edge constraint).

4) Tutorial: A tutorial explains how to extend the frame-
work to implement a new path planning algorithm. An
example of basic PRM [7] is proposed to new users.

The contribution described in this paper is more the frame-
work and the technical and architectural choices than the
algorithms provided by the framework. The tutorial shows
that implementing a new path planning algorithm only takes
a few tens of lines.

In the following two sections, we describe in more details
the core of the framework and the manipulation part built
on top of the core part. Section IV shows a few examples
of path and manipulation planning problems solved by the
framework.

II. CORE PART

In this section, we describe the main concepts imple-
mented in the core part of the framework. More details can

http://projects.laas.fr/gepetto/index.php/Software/Hpp
https://github.com/humanoid-path-planner
http://projects.laas.fr/gepetto/hpp/hpp-doc/index.html
http://projects.laas.fr/gepetto/hpp/hpp-doc/index.html
http://projects.laas.fr/gepetto/hpp/hpp-doc/graph-dependency.html
http://projects.laas.fr/gepetto/hpp/hpp-corbaserver/doxygen-html/index.html
https://github.com/humanoid-path-planner/hpp-core/blob/df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/diffusing-planner.cc#L104
http://projects.laas.fr/gepetto/hpp/hpp_tutorial/doxygen-html/index.html
https://github.com/humanoid-path-planner/hpp_tutorial/blob/7b8565ee37570f5c7dd733318ccbeb413a16e3d1/src/tutorial.cc#L53


type configuration space velocity space
translation R R (linear velocity)
unbounded rotation S1 ⊂ R2 (unit complex R (angular velocity)

number)
bounded rotation R (angle) R (angular velocity)
3D orientation S3 ⊂ R4 (unit quaternion) R3 (angular velocity)

TABLE I: types of joints provided by default with represen-
tation of their configuration space and their tangent space.

be found on the project page1. HPP is a collection of software
packages developed in C++ for the algorithmic part and in
python for the scripting control part. Installation is handled
by cmake. Each package has its own repository hosted on
github.

A. Kinematic chain

Kinematic chains are implemented in hpp-model as
a tree of joints moving inertial and geometrical objects.
Geometrical objects are modeled by a slightly modified
version of fcl library[8]. We thus rely on this library for
distance computations and collision checking.

1) Lie Group structure: The configuration space of
a robot is the Cartesian product of the configuration
spaces of its joints and possibly of a vector space called
ExtraConfigSpace and described later. Table I displays
the default joint types provided by hpp-model. Users can
also specialize the abstract class Joint to define their own
joint type. The configuration space of a robot is therefore a
Lie-group. Configuration and velocity vectors do not neces-
sarily have the same dimension. The representation is robust
to singularities induced by minimal representations like (roll,
pitch, yaw) for SO(3) and do not suffer discontinuity when
unbounded rotations cross π. Functions are provided to
manipulate configuration and velocity vectors:

• integrate (q, q̇) computes the configuration reached
from q after applying velocity q̇ during unit time,

• difference (q2, q1) computes the velocity that leads
from q1 to q2 in unit time.

These two functions enable us to generalize most operations
that are usually defined on vector spaces like linear inter-
polation or extension from a configuration toward another
configuration (for RRT).

B. Differentiable functions

We have taken great care in modelling differentiable func-
tion that is a fundamental concept in motion planning. Paths
are (piecewise) differentiable functions from time to the
configuration space. Non-linear constraints are differentiable
functions from the configuration space to a vector space that
should be equal to a constant value. These abstract classes
should be derived by users in order to express their own type
of constraints or paths. Default implementations are provided
for common constraints (position of center of mass, position
/ orientation constraint on an effector) and two implementa-
tions of path are provided as a straight interpolation in the
configuration space and as a concatenation of paths.

1http://projects.laas.fr/gepetto/index.php/Software/Hpp

C. Steering method

Steering methods are represented by an abstract class that
maps to a pair of configurations a continuous path between
these configurations. Specializing this class enables users
to plan motions for non-holonomic systems for instance.
The default steering method returns the straight interpolation
between the input configurations.

D. Extra configuration space

The dimension of the configuration of a robot is defined
by the tree of joints of the robot. For some applications
like kino-dynamic motion planning, it might be neces-
sary to plan in the state space. For that, users can add
an ExtraConfigSpace of appropriate dimension to the
robot in order to store the velocity. Thus, roadmap nodes
contain states instead of configurations. Together with a
steering methods that link states, it is possible to implement
classical kino-dynamic motion planning algorithms [4], [9],
[10], [11].

III. MANIPULATION

In this section, we present the hpp-manipulation
package. The package implements a planner for manipulation
planning problems. It is made up by the following features,
detailed later in this section:

• a definition of a manipulation planning problem with
extra information;

• a model of interaction between robots and objects;
• a basic implementation of placement validation;
• an algorithm to solve manipulation problems.

A. Definition of the problem

A manipulation problem is defined by:
• Robots with end-effectors;
• Objects with handles;
• Environments with contact surfaces.
[6] has shown the high level of complexity of this problem.

To our best knowledge, there has not been any significant
breakthrough in the field that would provide an efficient
algorithm able to solve this problem in the general case. The
current version of HPP does not provide such an algorithm.
Instead, HPP provides tools to model the problem. To the
above list of elements a manipulation problem is defined by,
we add the following element required by our solver to find
a solution:

• A set of states and actions.
A state represents a relationship between robots and ob-

jects. Typically, an end-effector grasping a handle is a state.
An action represents a transition between two states. From
this, we build a graph called “constraint graph”, the nodes
being states and the edges being actions.

A node contains constraints a configuration should sat-
isfy to be in the represented state. These constraints are
“configuration constraints”. An edge contains constraints a
motion should satisfy to perform the represented action.
These constraints are “motion constraints”.

http://projects.laas.fr/gepetto/index.php/Software/Hpp
http://www.cmake.org
https://github.com/humanoid-path-planner
http://projects.laas.fr/gepetto/hpp/hpp-model/doxygen-html/index.html
https://github.com/flexible-collision-library/fcl
http://projects.laas.fr/gepetto/hpp/hpp-core/doxygen-html/index.html
http://projects.laas.fr/gepetto/hpp/hpp-constraints/doxygen-html/index.html
http://projects.laas.fr/gepetto/hpp/hpp-core/doxygen-html/index.html
http://projects.laas.fr/gepetto/hpp/hpp-core/doxygen-html/index.html
http://projects.laas.fr/gepetto/hpp-doc-release/v1.0/hpp/hpp-manipulation/doxygen-html/index.html
http://projects.laas.fr/gepetto/hpp-doc-release/v1.0/hpp/hpp-manipulation/doxygen-html/index.html


Fig. 2: Example of level sets of two constraints f and g in
the configuration space. A manipulation path leading from
one level set to another is represented, with its elementary
paths. A dashed line, resp. solid, represents an elementary
path in a level of f , resp. g. Note that every elementary path
lie in a unique level set.

The notions of “configuration constraints” and “motion
constraints” come from their effects on the configuration
space. Constraints in HPP are defined by a differentiable
function f . The level sets of f are submanifold of the
configuration space. “configuration constraints” select only
one of those level sets whereas “motion constraints” does not.
For instance, the grasping constraints between a two fingers
gripper and a cylindrical pole can be detailed as follow, z-
axis being the cylinder main axis:

• translation along z-axis and rotation around z-axis are
“motion constraints”;

• translation along x and y axes and rotation around x
and y axes are “configuration constraints”;

The difference between “motion constraints” and “configu-
ration constraints” is detailed later.

Robots, objects, their end-effectors and handles and con-
tact surfaces are parsed from URDF and SRDF files. The de-
scription syntax is defined in hpp-manipulation-urdf.
A python interface allows the user to create grasping con-
straints between an end-effector and a handle. The “con-
straint graph” is thus built through the python interface.

B. Manipulation planning concepts

The concepts implemented in HPP for manipulation
planning were introduced in [6]. Let us define two “mo-
tion constraints” f and g, and the level set Lf0(f) =
{q ∈ C|f(q) = f0}. “Motion constraints” are built such that
their level sets represent sets of configurations accessible to
each other by the action represented by the constraint. For
instance, f can represent the position of an object being
manipulated. The robot manipulating the object can move

freely while the object stands still, that is to say while f is
constant, i.e. while the motion lies in a level set of f .

Figure 2 shows a configuration space and several level sets
of f and g. Assume f returns the position of an object - f1,
f2 and f3 being valid placement of the object - and g returns
a parameter uniquely identifying a grasp between the robot
and the object.

Figure 2 also shows a possible path where the object goes
from f1 to f3, i.e. goes from Lf1(f) to Lf3(f). The object
cannot move without being grasped and the grasp cannot
change while the object is not in a valid placement. Thus,
the solution must be a sequence of path in Lfi(f) and Lgi(g).
Using the framework developed in [6], the solution is a
sequence of transit and transfer paths.

Figure 2 also shows a nice illustration of the difference
between configuration constraints and motion constraints.
Configuration constraints are intrinsic to a state and they will
never change. “Motion constraints” have a reference that:

• is constant along a path;
• varies from one path to another.

They generate a foliation of the configuration space [6].
To picture the problem, one can think of navigation

inside a multi-storey building. To move between different
floors, you must find the intersection between the stairs
and the floor. Once you are in some stairs, you must go
through a floor if you need to take another stairs. Here,
the set {Lf1(f), . . . , Lfn(f)} is the set of floors and the
set {Lg1(g), . . . , Lgn(g)} is the set of stairs. An example of
motion constraint is stay in the floor and its reference is the
floor number.

C. Constraint graph

DS − COMRDS − COML

SS − COML

DS

SS − COMR

Fig. 3: “Constraint graph” for HRP-2 walking quasi-
statically. DS stands for Double Support, SS for Single
Support, COM for Center Of Mass, COML for COM on
left foot and COMR for COM on right foot. A solid edge,
resp. dashed, represents a basic edge, resp. a “level set edge”.

In HPP, a solution to a manipulation planning problem
is a sequence of constrained paths. Each of this constrained
paths refers to an edge of the “constraint graph”. Figure 3
shows the “constraint graph” used to generate a quasi-static
walk for HRP-2.

• The node DS represents HRP-2 standing on its two feet.
• The node DS − COML represents the robot on its left

foot, its right foot being on the ground. From that state,
it is possible to lift the right foot from the ground while
keeping the balance.

http://projects.laas.fr/gepetto/hpp/hpp-manipulation-urdf/doxygen-html/index.html


• The node SS − COML represents the robot on its left
foot, the right being unconstrained.

• The two other nodes DS−COMR and SS−COMR are
their equivalent for the right foot.

Note that the graph is symmetric.
A configuration of the robot is in a node when it satisfies

its constraints. As it may satisfy several node constraints, and
to ensure that a configuration will never be in two nodes,
these latter are prioritized. The set of configuration in DS−
COML is included in the set of configuration satisfying the
constraints of node DS. To be accessible, DS−COML must
have a higher priority than DS. The order of priority, from
high to low, for the graph in Figure 3 is: DS − COMR,
DS − COML, SS − COMR, SS − COML, DS . So far, no
automatic way of sorting the nodes has been implemented.

Several types of edges have been implemented in HPP and
are explained in further details in section III-F. Among their
common properties are:

• their ability to deduce a configuration from a random
configuration, reachable from an initial configuration, ;

• their ability to generate a feasible path between reach-
able configurations of the two end nodes;

• the probability for an outgoing edge of a node to be
selected with respect to the other outgoing edges of the
same node.

D. Placement validation

Objects have an intrinsic property of placement. Some
objects are always in a valid placement, for instance a door,
whereas others are not. In order to generate feasible paths,
an object must be either grasped by the robot or stand still
in a valid placement.

HPP has a basic implementation of this feature
based on contact surfaces. The environment descrip-
tion file must contain meta data defining where an
object can be put. Object description files must also
contain meta data defining where contacts may occur.
Based on this information, the constraint builds pairs
of (environment contact surface, object contact surface). For
each pair, a distance is computed based on the contact
normals and centers. The constraint value is the relative
transformation between the elements of the pair with the
shortest distance.

E. Manipulation RRT

A manipulation planner has been developed in HPP. The
pseudo-code is given in Algorithm 1. The original version
of RRT [4] cannot solve a manipulation problem because it
cannot sample configuration on a submanifold that has a zero
volume inside the configuration space; neither it deals with
the task scheduling problem of a manipulation problem.

The main idea of the “manipulation RRT” algorithm is to
integrate the discrete task scheduling problem into the motion
planning problem. This is done by using the information
stored in the “constraint graph”. A pseudo-code of the
algorithm is shown in Algorithm 1 and 2. It is a modified
version of the RRT algorithm.

Algorithm 1 Manipulation RRT

1: function EXPLORETREE(q0)
. Randomly exploring Random Tree from q0 using the
constraint graph

2: T .init(q0)
3: for i = 1→ K do
4: qrand ← RAND(CS)
5: qnear ← NEAREST(qrand,T )
6: e← CHOOSEEDGE(qnear)
7: path← CONSTRAINEDEXTEND(qnear, qrand, e)

8: if last step failed then Continue
9: end if

10: T .INSERTPATH(path)
11: end for
12: end function

Lines 6 and 7 of Algorithm 1 differ from the classic RRT.
• Line 6: an outgoing edge of the node that contains qnear

is randomly chosen. The choice honors the probabilities
of the edges.

• Line 7: it refers to Algorithm 2. It generates a configu-
ration that is in Lf(qnear)(f) where the edge constraints
yield f .

Algorithm 2 extends a configuration in a level set of the
configuration from which we extend.

Algorithm 2 Constrained extention

. Extend qnear towards qrand while staying on the
level set defined by edge and qnear

1: function CONSTRAINEDEXTEND(qnear,qrand,edge)
2: f ← edge.MOTIONCONSTRAINT
3: f .SETREFERENCE(qnear)
4: qnew ← f .APPLYCONSTRAINTS(qrand)
5: p← edge.BUILDPATH(qnear,qnew)
6: p← GETLONGESTNONCOLLIDINGPATHFROM(p)
7: return p
8: end function

F. Different types of edges

Additionally to the basic edge, which does not do more
than what has already been said, two others types of edges
have been introduced: the “waypoint edge” and “level set
edge”.

1) Waypoint Edge: to the basic edge, this edge adds way-
points in order to specify how a specific action is performed.
For instance, one can specify a pre-grasping operation or the
action to be done when a tool is being grasped. Waypoints
are nodes of the “constraint graph” that can have only one
ingoing and one outgoing basic edge. They correspond to
states that make sense only in a succession of states. For
instance, a pre-grasping posture precedes a grasping posture.



There is no randomness in what to do next. Figure 4 shows
a “waypoint edge” with one waypoint. The two edges are
basic edges. When using this edge to generate reachable
configurations, resp. feasible paths, the solver will generate:

• reachable configurations qw in the waypoint node, resp.
feasible paths to the waypoint node;

• from qw, reachable configurations in the goal node, resp.
feasible paths to the goal node;

Node 1 Node 2Waypoint

Fig. 4: Example of “waypoint edge”, with one waypoint.

The difference between using “waypoint edge” and using
two basic edges and a node is in most cases efficiency. With
waypoints, the solver computes in one step what it would
compute in as many steps as there are edges.

2) Level Set Edge: “level set edge” has been introduced to
deal with a problem that is specific to manipulation planning
and the foliation of the configuration space. Algorithm 1
shows the “manipulation RRT” algorithm. The solver builds
a tree on both the initial and goal configurations. Every
time a configuration is added to a tree, the solver tries
to connect both trees. For the trees to be reachable, they
must have visited a common leaf of the foliation, i.e. they
must have a common Lfcommon

(f) or Lgcommon
(g), with

the notations of Figure 2. If both the set Range(f) and
Range(g) are not countable, the “manipulation RRT” has
a zero probability of finding a common element in either
Range(g) and Range(f).

The “level set edge” remembers the level sets that have
been visited by each connected component of the roadmap.
It uses then this information to generate reachable configu-
rations on a level set that has been visited by a connected
component different from the connected component of the
node from which we extend. On Figure 2, a “level set edge”
acting in Lgref (g) will remember the set of Lfref (f) visited
by other connected components and will target Lgref (g) ∩
Lfother

(f). This strategy ensures that the two connected
components have a non-zero probability of meeting.

Note that the “level set edge” targets the intersection but
the generated path, valid regarding the manipulation rules,
may be colliding and the “manipulation RRT” will shorten it
from its end to have a collision-free path. It means a “level
set edge” may generate paths that do not make connected
component visible one from each other.

In Figure 3, a dashed line represents a “level set edge”.
Note the every “level set edge” is accompanied by a basic
edge, so that we are sure the “manipulation RRT” will not
only try to connect connected components directly but will
also explore randomly level sets.

IV. EXAMPLES

HPP software has been successfully run on various ex-
amples two of which are presented here. Both examples are
using hpp-manipulation package.

WL

WL WRWL WR

Right grasp

Right and left grasps

No grasp

Left grasp

WR

Fig. 5: Constraint graph describing PR2 manipulating a
box with 2 hands. It is composed of 4 main nodes and
6 waypoints. Waypoint WR corresponds to configurations
where PR2 right hand is at 5cm from the box, the axis of
the end-effector and the handle of the box being aligned.
Waypoint WL is similar with the left hand.

Computed paths are available here. Note that optimization
for hpp-manipulation is still under developments so
solution paths are not optimal.

A. PR2

In this example, PR2 manipulates a box. The problem
has been designed such that it must pass the box from its
left hand to its right hand without releasing the box. This
example shows that, with a well-designed “constraint graph”,
the algorithm can generate a manipulation path with a narrow
passage - the set of configuration where PR2 holds the box
with its two hands is highly constrained.

The input of the problem is:
• Robot: PR2, its two hands being considered, its wheels

being locked - it cannot navigate in the kitchen;
• Object: a box, with two possible grasps;
• Environment: a kitchen, with contact surfaces on the

table, allowing the box to be put on it;
• Constraint Graph: shown in Figure 5;
• Initial configuration: the box is in a valid placement on

the table, reachable only by PR2 left hand;
• Goal configuration: the box is in a valid placement on

the table, reachable only by PR2 right hand.
Note that, in this case, as there is only two ways of

grasping the box, the solver does not need a “level set edge”
to make the two connected components meet. A “level set
edge” would have been required if there had been an infinite
number of grasps, for instance, by allowing the rotation
around the axis going through the two fingers.

The “constraint graph” in Figure 5 has no edge from Right
grasp to No grasp and from Left grasp to No grasp. They
correspond to putting the ball on the table. This example
aims at showing PR2 passing the box from one hand to the
other. We thus did not allow PR2 to release the box. There
is also no edge looping on Right and left grasps because it
is not very useful in this example, though adding it would

http://projects.laas.fr/gepetto/hpp-doc-release/v1.0/hpp/hpp-manipulation/doxygen-html/index.html
http://homepages.laas.fr/jmirabel/raw/examples/videos.html


Fig. 6: HRP-2 walking quasi-statically.

not change much. There is no edge between Right grasp and
Left grasp because it is not considered as an elementary step.

B. HRP-2

In this example, HRP-2 makes a few steps in a quasi-static
equilibrium. The example aims at showing the planner ability
to explore and find common level sets. Thus, the problem has
been designed not to be achievable in only one step, but in
such a way that common intermediate steps have to be found
by the exploration from both ends of the paths.

The input of the problem is:
• Robot: HRP-2, its two feet can be on the ground, with

three possible balance constraints;
• Object: None;
• Environment: None;
• Constraint Graph: shown in Figure 3;
• Initial configuration: HRP-2 is on its two feet, the COM

between its feet.
• Goal configuration: the same as the initial configuration,

shifted 50cm forward.
The foliated structure of the configuration space comes

from the feet positions. Each of them is creating a foliation
of the configuration space. Assume z-axis to be parallel to
the gravity. Then, when a foot is on the floor, it is completely
defined by x and y coordinates. Thus, the underlying problem
is to find a common (x, y) for one of the feet. In Figure 3,
the two edges from SS − COML to DS − COML represent
a basic edge and a “level set edge”. This allows the planner
both to explore new random foot positions on the ground
and to look for common foot positions.

V. CONCLUSION

The framework described in this paper aims at helping
developers to implement their own path planning solution.
Although it shares common features with already existing
frameworks, we believe that original features like Lie-group
representation for configuration space better fit some ap-
plications like aerial vehicle acrobatic motion planning for
instance.

On-going developments concern the implementation of
various path planning algorithm, and the implementing of
path optimization techniques.

REFERENCES

[1] R. Diankov and J. J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Caneggie Mellon University,
Pittsburgh, Pennsylvania, Tech. Rep., 2008.

[2] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[3] T. Siméon, J. Laumond, and F. Lamiraux, “Move3d : a generic plat-
form for path planning,” in 4th International Symposium on Assembly
and Task Planning, 2001.

[4] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[5] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and
J.-P. Laumond, “Dynamic walking and whole-body motion planning
for humanoid robots: an integrated approach,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.
[Online]. Available: http://hal.archives-ouvertes.fr/hal-00654175

[6] T. Simon, J.-P. Laumond, J. Corts, and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,” International Journal of
Robotics Research, vol. 23, no. 7/8, July 2004.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, August 1996.

[8] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE, 2012, pp. 3859–3866.

[9] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for
rapidly exploring state space,” in International Conference on Robotics
and Automation (ICRA), 2010.

[10] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-
Pérez, “Lqr-rrt*: Optimal sampling-based motion planning with
automatically derived extension heuristics,” in IEEE International
Conference on Robotics and Automation, May 2012, pp. 2537–2542.
[Online]. Available: http://lis.csail.mit.edu/pubs/perez-icra12.pdf

[11] M. Bharatheesha, W. Caarls, W. Wolfslag, and M. Wisse, “Distance
metric approximation for state-space rrts using supervised learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2014.

http://ompl.kavrakilab.org
http://hal.archives-ouvertes.fr/hal-00654175
http://lis.csail.mit.edu/pubs/perez-icra12.pdf

	INTRODUCTION
	Kinematic chain
	Non-linear constraint
	Manipulation
	Tutorial

	Core part
	Kinematic chain
	Lie Group structure

	Differentiable functions
	Steering method
	Extra configuration space

	Manipulation
	Definition of the problem
	Manipulation planning concepts
	Constraint graph
	Placement validation
	Manipulation RRT
	Different types of edges
	Waypoint Edge
	Level Set Edge


	Examples
	PR2
	HRP-2

	Conclusion
	References

