
HAL Id: hal-01138117
https://hal.science/hal-01138117

Submitted on 6 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robotics and Artificial Intelligence: a Perspective on
Deliberation Functions
Félix Ingrand, Malik Ghallab

To cite this version:
Félix Ingrand, Malik Ghallab. Robotics and Artificial Intelligence: a Perspective on Deliberation
Functions. AI Communications, 2014, 27 (1), pp.63-80. �10.3233/AIC-130578�. �hal-01138117�

https://hal.science/hal-01138117
https://hal.archives-ouvertes.fr

Robotics and Artificial Intelligence:

a Perspective on Deliberation Functions

Félix Ingrand Malik Ghallab
LAAS–CNRS, Université de Toulouse

7, Av. Colonel Roche, 31077 Toulouse, France
E-mail: {felix,malik}@laas.fr

April 3, 2015

Abstract

Abstract: Despite a very strong synergy between Robotics and AI at their
early beginning, the two fields progressed widely apart in the following
decades. However, we are witnessing a revival of interest in the fertile
domain of embodied machine intelligence, which is due in particular to
the dissemination of more mature techniques from both areas and more
accessible robot platforms with advanced sensory motor capabilities, and
to a better understanding of the scientific challenges of the AI–Robotics
intersection.
The ambition of this paper is to contribute to this revival. It proposes an
overview of problems and approaches to autonomous deliberate action in
robotics. The paper advocates for a broad understanding of deliberation
functions. It presents a synthetic perspective on planning, acting, perceiv-
ing, monitoring, goal reasoning and their integrative architectures, which
is illustrated through several contributions that addressed deliberation
from the AI–Robotics point of view.

1 Introduction

Robotics is an interdisciplinary integrative field, at the confluence of several
areas, ranging from mechanical and electrical engineering to control theory and
computer science, with recent extensions toward material physics, bioengineer-
ing or cognitive sciences. The AI–Robotics intersection is very rich. It covers
issues such as:
• deliberate action, planning, acting, monitoring and goal reasoning,

• perceiving, modeling and understanding open environments,

• interacting with human and other robots,

• learning models required by the above functions,

• integrating these functions in an adaptable and resilient architecture.

1

Robotics has always been a fertile inspiration paradigm for AI research, fre-
quently referred to in its literature, in particular in the above topics. The early
days of AI are rich in pioneering projects fostering a strong AI research agenda
on robotics platforms. Typical examples are Shakey at SRI [85] and the Stan-
ford Cart in the sixties, or Hilare at LAAS [36] and the CMU Rover [70] in the
seventies. However, in the following decades the two fields developed in diverg-
ing directions; robotics expanded mostly outside of AI laboratories. Hopefully,
a revival of the synergy between the two fields is currently being witnessed.
This revival is due in particular to more mature techniques in robotics and AI,
to the development of inexpensive robot platforms with more advanced sensing
and control capabilities, to a number of popular competitions, and to a better
understanding of the scientific challenges of machine intelligence, to which we
would like to contribute here.

This revival is particularly strong in Europe where a large number of groups
is actively contributing to the AI–Robotics interactions. For example, out of the
260 members of the Euron network,1 about a third investigate robotics decision
and cognitive functions. A similar ratio holds for the robotics projects in FP6
and FP7 (around a hundred). Many other european groups not within Euron
and projects outside of EU programs are equally relevant to the AI and Robotics
synergy. This focused perspective on deliberative capabilities in robotics cannot
pay a fair tribute to all european actors of this synergy. It illustrates however
several contributions from a few groups throughout Europe.2 Its ambition is
not to cover a comprehensive survey of deliberation issues, and even less of the
AI–Robotics intersection. In the limited scope of this special issue, we pro-
pose a synthetic view of deliberation functions. We discuss the main problems
involved in their development and exemplify a few approaches that addressed
these problems. This “tour d’horizon” allows us to advocate for a broad and
integrative view of deliberation, where problems are beyond search in planning,
and beyond the open-loop triggering of commands in acting. We hope through
this perspective to strengthen the AI–Robotics synergies.

The outline of the paper is the following: five deliberation functions are
introduced in the next section; these are successively addressed through illus-
trative contributions; section 8 is devoted to architecture problems, followed by
a conclusion.

2 Deliberation functions in robotics

Deliberation refers to purposeful, chosen or planned actions, carried out in order
to achieve some objectives. Many robotics applications do not require deliber-
ation capabilities, e.g., fixed robots in manufacturing and other well-modeled
environments; vacuum cleaning and other devices limited to a single task; sur-
gical and other tele-operated robots. Deliberation is a critical functionality for

1http://www.euron.org/
2e.g., from Barcelona, Bremen, Freiburg, Grenoble, Karlsruhe, London, Lille, Linköping,

Munich, Örebro, Osnabrück, Oxford, Rennes, Roma and Toulouse

2

an autonomous robot facing a variety of environments and a diversity of tasks.

Monitoring

Goal Reasoning

Acting Perceiving

Models, data,
and knowledge bases

Environment

User

Planning

Robot’s Platform

Figure 1: Schematic view of deliberation functions.

Several functions can be required for acting deliberately. The frontiers be-
tween these functions may depend on specific implementations and architec-
tures, but it is clarifying to distinguish the following five deliberation functions,
schematically depicted in figure 1:

• Planning : combines prediction and search to synthesize a trajectory in an
abstract action space, using predictive models of feasible actions and of the
environment.

• Acting : implements on-line close-loop feedback functions that process streams
of sensors stimulus to actuators commands in order to refine and control the
achievement of planned actions.

• Perceiving : extracts environment features to identify states, events, and situ-
ations relevant for the task. It combines bottom-up sensing, from sensors to
meaningful data, with top-down focus mechanisms, sensing actions and plan-
ning for information gathering.

• Monitoring : compares and detects discrepancies between predictions and ob-
servations, performs diagnosis and triggers recovery actions.

• Goal reasoning : keeps current commitments and goals into perspective, as-
sessing their relevance given observed evolutions, opportunities, constraints
or failures, deciding about commitments to be abandoned, and goals to be
updated.

These deliberation functions interact within a complex architecture (not de-
picted in Fig. 1) that will be discussed later. They are interfaced with the
environment through the robot’s platform functions, i.e., devices offering sens-
ing and actuating capabilities, including signal processing and low-level control
functions. The frontier between sensory-motor functions and deliberation func-
tions depends on how variable are the environments and the tasks. For example,
motion control along a predefined path is usually a platform function, but navi-
gation to some destination requires one or several deliberation skills, integrating
path planning, localization, collision avoidance, etc.

3

Learning capabilities change this frontier, e.g., in a familiar environment a
navigation skill is compiled down into a low-level control with pre-cached param-
eters. A metareasoning function is also needed for trading off deliberation time
for action time: critical tasks require careful deliberation, while less important
or more urgent ones may not need, or allow for, more than fast approximate
solutions, at least for a first reaction.3

3 Planning

Over the past decades, the field of automated planning achieved tremendous
progress such as a speed up of few orders of magnitude in the performance
of Strips-like classical planning, as well as numerous extensions in representa-
tions and improvements in algorithms for probabilistic and other non-classical
planning [35]. Robotics stresses particular issues in automated planning, such
as handling time and resources, or dealing with uncertainty, partial knowledge
and open domains. Robots facing a variety of tasks need domain specific as
well as domain independent task planners, whose correct integration remains a
challenging problem.

Motion and manipulation planning are key capabilities for a robot, requiring
specific representations for geometry, kinematics and dynamics. Probabilistic
Roadmaps and Rapid Random Trees are well developed and mature techniques
for motion planners that scale up efficiently and allow for numerous extensions
[61]. The basic idea is to randomly sample the configuration space of the robot
(i.e., the vector space of its kinematics parameters) into a graph where each
vertex is a free configuration (away from obstacles) and each edge a direct link
in the free space between two configurations. Initial and goal configurations
are added to this graph, between which a path is computed. This path is then
transformed into a smooth trajectory. Manipulation planning requires finding
feasible sequences of grasping positions, each of which is a partial constraint
on the robot configuration that changes its kinematics [87]. Many other open
problems remain in motion and manipulation planning, such as dynamics and
stability constraints, e.g. for a humanoid robot [46], or visibility constraints to
allow for visual servoing [14].

Task planning and motion/manipulation planning have been brought to-
gether in several work. The Asymov planner [12] combines a state-space planner
with a search in the motion configuration space. It defines places which are both
states, as well as sets of free configurations. Places define bridges between the
two search spaces. The state-space search prunes a state whose corresponding
set of free configurations does not meet current reachability conditions. Asy-
mov has been extended to manipulation planning and to multi-robot planning
of collaborative tasks, such as two robots assembling a table.

The integration of motion and task planning is also explored in [96] with
Angelic Hierarchical Planning (AHP). AHP plans over sets of states with the

3Learning as well as metareasoning are certainly needed for deliberation; they are not
covered here to keep the argument focused.

4

notion of reachable set of states. These sets are not computed exactly, but
bounded, e.g., by a subset and a superset, or by an upper and a lower bound
cost function. A high-level action has several possible decompositions into prim-
itives. A plan of high-level actions can be refined into the product of all feasible
decompositions of its actions. A plan is acceptable if it has at least one fea-
sible decomposition. Given such a plan, the robot chooses opportunistically a
feasible decomposing for each high-level action (AHP refers to the angelic se-
mantics of nondeterminism). The bounds used to characterize reachable sets of
states are obtained by simulation of the primitives, including through motion
and manipulation planning, for random values of the state variables.

A different coupling of a hierarchical task planner to fast geometric sug-
gesters is developed in [45]. These suggesters are triggered when the search in
the decomposition tree requires geometric information. They do not solve com-
pletely the geometric problem, but they provide information that allows the
search to continue down to leaves of the tree. The system alternates between
planning phases and execution of primitives, including motion and manipulation
actions. Online planning allows to run motion or manipulation planners (not
suggesters) in fully known states. The approach assumes that the geometric
preconditions of the abstract actions can be computed quickly and efficiently by
the suggesters, and that the sub-goals resulting from actions decomposition are
executed in sequence (no parallelism). The resulting system is not complete.
Failed actions should be reversible at a reasonable cost. For problems where
these assumptions are met, the system is able to quickly produce correct plans.

4 Acting

In contrast to planning that can easily be specified as an offline predictive func-
tion, decoupled from the intricacies of the executing platform, acting is more
difficult to define as a deliberation function. The frequent reference to execu-
tion control is often reductive: there is more to it than just triggering actions
prescribed by a plan. Acting has to handle noisy sensors and imperfect mod-
els. It requires non-deterministic, partially observable and dynamic environment
models, dealt with through closed-loop commands.

To integrate these requirements with those of predictive planning models,
different forms of hierarchization are usually explored. For example (figure 2):
• planning deals with abstract preconditions-effects actions;

• acting refines opportunistically each action into skills and a skill further down
into commands. This refinement mechanism may also use some planning tech-
niques but with distinct state space and action space than those of the planner.

The skill into which an action is refined may change during that action
execution. For example, several navigation skills may offer different localization
or motion control capabilities adapted to different environment features. A
goto(room1) action can be refined into a sequence of different navigation skills.

This hierarchization scheme may rely on distinct knowledge representations,
e.g. STRIPS operators combined to PRS [42] or RAP [27] procedures. In

5

Planning techniques in action refinement

30

Acting

Mission 〈 ..., action, ... 〉
 〈 ..., skill, ... 〉

〈 ..., command, ... 〉

Robot’s platform

Planning

Figure 2: Refining actions into skills.

some cases a single representation is used for specifying planning and acting
knowledge, e.g., Golog [63] or TAL [20] languages. Other approaches use a single
representation seen at different levels of abstractions and refined appropriately,
as in Hierarchical MDPs [38] for example.

Various computational techniques can be used to design a deliberate acting
system. We propose to organize these approaches into five categories (see table
1) presented in the following subsections. Before discussing and illustrating
these approaches, let us introduce the main functions needed to carry out a
planned abstract action.
Refinement In most systems, the plan steps produced by the Planning compo-
nent is not directly executable as a robot command. The goto(room1) action
requires sending commands to the robot to perceive the environment, plan the
path, execute it avoiding dynamic obstacles, etc. The refinement process needs
be context dependent in order to select the most appropriate skills according to
the online observation. It should be able to consider alternative refinements in
case of failure.
Instantiation/Propagation Acting skills are often applicable to a range of
situations. Their models use parameters whose value can be chosen at execution
time or observed in the environment. Chosen or observed value have to be
propagated in the rest of the skills down to the lowest level to issue commands.
Time management/Coordination Acting is performed in a close loop taking
into account the dynamics of the environment. Adequate responses must be
given in a timely manner. Some systems reason about time, deadlines as well as
durations. Other systems handle a more symbolic representation of time with
concurrency, rendez-vous and synchronization.
Handling nondeterminism and uncertainty Actions may have non-nominal
effects. Furthermore, exogenous events in a dynamic environment are seldom
predictable in a deterministic way. Finally, uncertainties in observations have
to be taken into account.
Plan repair Some Acting approaches can repair the plan being executed. This
is often performed using part of the problem search space already developed and
explored by the Planner (hence, with an overlap between acting and planning).
The idea is to solve new flaws or new threats that appeared during execution
by minimizing the changes in the remaining of the plan. Even if repair may
not be more efficient that replanning, there are cases where part of the plan
has already been shared with other agents (robots or humans) which expect the
robot to commit to it.

6

Another important aspect of Acting is how the skills are acquired and used.
Are they completely hand written or learned? Are they used directly as pro-
grams or as specification models from which further synthesis is performed?
Finally, there is the consistency verification issue between the Acting knowl-
edge the Planning knowledge. We will see that some of the proposed formalism
for representing skills are more adapted to validation and verification, even if
this function is not always performed.

4.1 Procedure–based approaches

In procedure-based approaches, action refinement is done with handwritten
skills. In RAP [27], each procedure is in charge of satisfying a particular goal,
corresponding to a planned action. Deliberation chooses the appropriate pro-
cedure for the current state. The system commits to a goal to achieve, trying
a different procedure when one fails. The approach was later extended with
AP [7], integrating the planner PRODIGY [92] producing RAP procedures.

PRS [42] is an action refinement and monitoring system. As in RAP, proce-
dures specify skills to achieve goals or to react to particular events and observa-
tions. The system commits to goals and tries alternative skills when one fails.
PRS relies on a database describing the world. It allows concurrent procedure
execution and multi-threading. Some planning capabilities have been added to
PRS [19] to anticipate paths leading to execution failure. PRS is used on var-
ious robotics platforms to trigger commands, e.g., through GenoM functional
modules services [43].

Cypress [94] results from merging the planner Sipe with PRS. It uses a uni-
fied representation for planning operators and PRS skills, which was extended
into the Continuous Planning and Execution Framework (CPEF) [75]. CPEF
includes several components for managing and repairing plans. The system has
been deployed for military mission planning and execution.

TCA [88] was initially developed to handle concurrent planning and execu-
tion. It provides a hierarchical tasks decomposition framework, with explicit
temporal constraints to allow tasks synchronization. Planning is based on task
decomposition. It is mostly focused on geometrical and motion planning (e.g.,
gait planning, footfall planning for the Ambler robot). The Task Definition
Language (TDL) [89] extends TCA with a wide range of synchronization con-
structs between tasks. It focuses on task execution and relies on systems like
Casper/Aspen for planning.

XFRM [4] illustrates another approach which uses transformation rules to
modify hand written plans expressed in the Reactive Plan Language (RPL).
Unlike the above systems, it explores a plan space, transforming the initial RPL
relying on simulation and probabilities of possible outcomes. It replaces the
currently executed plan on the fly if another one more adapted to the current
situation is found. This approach evolved toward Structured Reactive Con-
trollers (SRC) and Structure Reactive Plan (SRP) [3], but still retains the
XFRM technique to perform planning using transformation rules on SRP. It
has been deployed on a number of service robots at Technical University of

7

Munich.

Most procedure-based approaches focus on the Refinement and Instantia-
tion/Propagation functions of an acting system. XFRM proposes a form of plan
repair in plan space taking into account the probabilities of outcomes, while TDL
provides some synchronization mechanism between skills and commands. All
skills used by these systems are hand written, sometimes in a formalism shared
with the planner (e.g., in Cypress and TCA), but without consistency checking.
The hand written skills map to the robot commands, except for XFRM where
some can be transformed online.

4.2 Automata–based approaches

It seems quite natural to express an abstract action as a program whose I/O
are the sensory-motor signals and commands. PLEXIL, a language for the
execution of plans, illustrates such a representation where the user specifies node
as computational abstraction [93]. It has been developed for space applications
and used with several planners such as CASPER, but it remains fairly generic
and flexible. A node can monitor events, execute commands or assign values to
variables. It may refer hierarchically to a list of lower level nodes. Similarly to
TDL, PLEXIL execution of nodes can be controlled by a number of constraints
(start, end), guards (invariant) and conditions. PLEXIL remains very focused
on the execution part. But of the generated plan, it does not share knowledge
with the planner.

SMACH, the ROS execution system, offers an automata-based approach [6].
The user provides a set of hierarchical automata whose nodes corresponds to
components of the robot and the particular state they are in. The global state
of the robot corresponds to the joint state of all components. ROS actions, ser-
vices and topics (i.e. monitoring of state variables) are associated to automata
states, and according to their value, the execution proceeds to the next appro-
priate state. An interesting property of Automata-based approaches is that the
Acting component knows exactly in which state the execution is, which eases
the deployment of the monitoring function.

Automata-based approaches focus on the coordination function. They can
also be used for refinement and instantiation/propagation. Models are hand-
written. However, the underlying formalism permits possibly a validation func-
tion with automata checking tools.

4.3 Logic–Based approaches

A few systems try to overcome the tedious engineering bottleneck of detailed
hand specifications of skills by relying on logic inference mechanisms for extend-
ing high-level specifications. Typical examples are the Temporal Action Logic
(TAL) approach (to which we’ll come back in section 5) and the situation cal-
culus approach. The latter is exemplified in GOLEX [37], an execution system

8

for the GOLOG planner.
In GOLOG and GOLEX the user specify respectively planning and acting

knowledge in the situation calculus representation. GOLEX provides Prolog
“exec” clauses which explicitly define the sequence of commands a robot has
to execute. It also provides monitoring primitives to check the effects of exe-
cuted actions. GOLEX executes the plan produced by GOLOG but even if the
two systems rely on the same logic programming representation, they remain
completely separated, limiting the planning/execution interleaving.

The Logic-based approaches provides refinement and instantiation/propagation
functions. But their main focus is on the logical specification of the skills, and
the possibility to validate and verify their models. TAL (see section 5) offers
also a Time management handling.

4.4 CSP–based approaches

Most robotics applications require explicit time to handle durative actions, con-
currency and synchronization with exogenous events and other robots, and with
absolute time. Several approaches manage explicit time representations by ex-
tending state-based representations with durative actions (e.g., RPG, LPG,
LAMA, TGP, VHPOP, Crickey). A few of them can manage concurrency and,
in the case of COLIN [15], even linear continuous change. However, tempo-
ral planners that rely on time-lines, i.e., partially specified evolution of state
variables over time, are more expressive and flexible in the integration of plan-
ning and acting than the standard extension of state-based planners. Their
representation ingredients are:
• temporal primitives: point or intervals (tokens),

• state variables, possibly parametrized, e.g., position(object32), and rigid rela-
tions, e.g., connected(loc3, room5),

• persistence of the value of a state variable over time, and the discrete or con-
tinuous change of these values,

• temporal constraints: Allen interval relations or Simple Temporal Networks
over time-points,

• atemporal constraints on the values and parameters of state-variables.
The initial values, expected events and goals are expressed in this representation
as an unexplained trajectory, i.e., some required state-variable changes have
to be accounted for by the planner through actions. These are instances of
operators whose preconditions and effects are similarly expressed by time-lines
and constraints.

Planning proceeds in the plan-space by detecting flaws, i.e., unexplained
changes and possible inconsistencies, and repairing them through additional ac-
tions and constraints. It makes use of various heuristics, constraint propagation
and backtrack mechanisms. It produces partially specified plans, that have no
more flaw but still contain non instantiated temporal and atemporal variables.
This least commitment approach has several advantages permitting to adapt

9

the acting system to the contingencies of the execution context.

Idle

Idle

Idle

Close

Robot_Nav

Human DinerNurse

dining_roomkitchen Goto

Robot_Manip Idle PickUp

MicroWave

Refrigerator Close Open Close

Close Closed-Cooking Open

PutDo
wn PickUpHolding HoldingIdle PutDo

wn

Idle

Idle

Robot_Nav dining_roomkitchen Goto

Laser_model Idle

Motion Planner

Locomotion Traj. TrackIdle

Idle

Model

Idle

Manipulation
Planner

Idle

Robot_Manip Idle PickUp

Gripper

Right_Arm Untuck Approach

Open

PutDown PickUpHolding HoldingIdle PutDo
wn

Plan
Motion

Open

Clo
sing

Plan Idle

Idle Retract

Closed

Approach Idle Retract

Openi
ng Open Clo

sing Closed Openi
ng Open

Idle Approach Idle Retract

Plan Idle Plan Idle Plan Idle Plan Idle Plan

Idle Approach Idle Retract Tuck

Idle Idle Plan Idle Plan Idle

Mission Reactor

Navigation Reactor

Manipulation Reactor

Figure 3: Example of an IDEA/T-ReX Plan built within three reactors (Mis-
sion reactor, Navigation reactor, Manipulation reactor). Note the timelines
Robot Nav and Robot Manip shared between reactors.

The acting system proceeds like the planner by propagating execution con-
straints, including for observable but non controllable variables (e.g., ending
time of actions). As for any CSP, consistency does not guaranty that all pos-
sible variable values are compatible. Hence the system keeps checking the con-
sistency of the remaining plan, propagating new constraints and triggering a
plan repair when needed. Special attention has to be paid to observed values
of non controllable variables, depending on the requirements of strong, weak or
dynamic controllability [72, 16].

IxTeT [34] is an early temporal planner along this approach that was later
extended with execution capabilities [62]. Planning and acting share the par-
tial plan structure which is dynamically produced during planning phase, and
executed/repaired during the execution phase. An execution failure is seen as
a new flaw in the partial plan space. The repair process minimizes as much as
possible the consequences of a failure on the rest of the plan. Repair requires
invalidating part of the current plan and/or relaxing some constraints. This is
done by memorizing for each causal link the reason why it has been inserted
(with or without a task). Causal links associated to tasks are not removed from
the flawed plan. If the repair does not succeed in some allocated time, the cur-
rent plan is discarded and the planning is restarted from the current situation.
To fill the gap with robot commands and perceptions, PRS is used jointly with
IxTeT for refinement and skills execution.

PS is another early timeline-based planning and acting system. As a compo-
nent of the New Millennium Remote Agent [44, 77, 74], it controlled the Deep
Space One (DS1) probe for a few days. Various components were used on DS1,
PS and EXEC being the one of interest for this section (FDIR will be pre-
sented in section 5). EXEC uses a procedure-based approach, as presented in

10

section 4.1, without execution constraint propagation and reasoning on the cur-
rent plan. In addition to its impressive application success in DS1, this system
inspired the development of two interesting approaches: IDEA (then T-ReX)
and RMPL.

IDEA [73] relies on a distributed approach where planning and acting use
the same representation and differ only in their prediction horizon and allocated
computing time to find a solution. The system is distributed into a hierarchy
of reactors, each being in charge of a particular deliberation function: e.g. mis-
sion planning, robot navigation, robot manipulation, payload management, etc;
each has its own set of timelines, planning horizon, and a computing time quan-
tum. Reactors use the Europa planner to perform the constraint-based temporal
planning. Two reactors may share timelines, accessed and modified by both,
possibly with priorities. The timelines sharing mechanism allows the propaga-
tion of the planning results down to commands and similarly the integration
from precepts to observations. For example, in Figure 3 the timeline robot nav
in the mission reactor will specify on a shared timeline with the navigation re-
actor the sequence of locations the robot must reach. From the mission reactor,
the timeline will be seen as an “execution” one, while for the navigation reactor
it is a “goal”.

In principle the hierarchy of reactors should be able to express a continuum
from planning operators down to commands. However, in practice, the shortest
computing time quantum that could be achieved was in the order of a second,
not fast enough for the command level. Hence, that system had also to resort
to hand programmed skills. Furthermore, the specification and debugging of
action models distributed over several reactors proved to be quite complex and
tedious.

IDEA has been experimented with on several platforms such as the K9 and
Gromit rovers [26]. It led to the development, along a similar approach, of a
system called T-ReX, deployed at MBARI for controlling UAVs [81]. T-ReX
simplifies some of IDEA too ambitious goals. For example in T-ReX, reactors
are organized in such a way that constraint propagation is guaranteed to reach
a fixed point (which was not the case in IDEA). T-ReX also tries to be planner
independent and has been used jointly with APSI [30], yet most implementations
use Europa [28].

RMPL (for Reactive Model-based Programming Language) [41], another
spinoff of the DS1 experiment, proposes a common representation for planning,
acting and monitoring. It combines a system model with a control model (Fig-
ure 4). The former uses hierarchical automata to specify nominal as well as
failure state transitions, together with their constraints. The latter uses reac-
tive programming constructs (including primitives to address constraint-based
monitoring, as in Esterel [18]). Moreover, RMPL programs are transformed into
Temporal Plan Networks (TPN) [95]. The result of each RMPL program is a
partial temporal plan which is analyzed by removing flaws and transformed for
execution taking into account online temporal flexibility. Altogether, RMPL
offers an interesting and original integration of state-based models, procedural
control and temporal reasoning used in satellite control applications.

11

Off

Untucked

Approached

Grasped

Holding

Robot Arm
Model

Untuck

Approach

Grasp

Tuck

Tuck

Withdraw

Ungrasp

Failed

0.1

0.05

0.01

Off

Localized

Tracked

Object Localization
Model

init
Stop

StandBy

Lost

 0.1 Lost

Track

Tracking

Found

Search
t >=30s

Failed

Reinit

PickUpObject()::
((do-watching (RA = holding)
 (do-watching (RA = Failed)

(parallel
(RA = Untucked)
(OL = Search))

(do-watching (OL = Failed)
(OL = Localized))

(when-donext (OL = Localized)
(parallel

(RA = Approached)
(OL = Tracked))

(when-donext ((OL = Tracked) and
 (RA = Approached))
(RA = Grasped)))

)
;;; <Arm recovery>

)
 ;;; Success
)

Figure 4: Example of an RMPL automata (system model on the left) and
program (control model on the right). Note the non nominal outcomes (with
probabilities) of actions in the system model, and the coordination operators in
the control model.

CSP approaches are very convenient for handling time. They provide refine-
ment, instantiation and, for some of them, plan repair (IxTeT, IDEA, T-ReX
and RMPL). They also rely on hand written models of skills which are handled
by various CSP algorithms (STN, constraints filtering). RMPL manages also
nondeterminism by modeling non nominal transitions of the system.

Approaches

ProcedureProcedureProcedureProcedureProcedure

Automata
Graph

Automata
Graph

Logic

CSPCSPCSPCSP

StochasticStochasticStochasticStochastic

FunctionsFunctionsFunctionsFunctionsFunctions

Systems Refinement Instantiation Time handling Nondeterminism Repair

RAP X X
PRS X X
Cypress/CPEF X X
TCA/TDL X X X
XFRM/RPL/SRP X X X X
PLEXIL X X X
SMACH X X X
Golex X X
IxTeT X X X X
RMPL X X X X X
IDEA/T-ReX X X X X
Casper X X X X
MCP X
Pearl X
Robel X
Ressac X

Table 1: Illustrative examples of acting approaches and functions.

4.5 Stochastic–based approaches

The classical framework of Markov Decisional Processes (MDPs) offers an ap-
pealing approach for integrating planning and acting. It naturally handles
probabilistic effects and it provides policies, i.e., universal plans, defined ev-
erywhere. The execution of a policy is a very simple loop: (i) observe current
state, then (ii) apply corresponding action. It can even be extended, in princi-
ple, to partially observable systems (POMDP), as illustrated in the Pearl system
of [79]. That framework works fine as long as the state space, together with its
cost and probability parameters, can be entirely acquired and explicited, and,

12

for POMDPs, remains of small size.4 However, most deliberation problems in
robotics do not allow for an explicit enumeration of their state space, and hence
cannot afford a universal plan. Fortunately, most of these problems are usually
focused on reaching a goal from some initial state s0. Factorized and hierarchi-
cal representations of MDPs [9], together with heuristic search algorithms for
Stochastic Shortest Path (SSP) problems [65], offer a promising perspective for
using effectively stochastic representations in deliberate action.

SSP problems focus on partial policies, closed for the initial state s0 (i.e.,
defined on all states reachable from s0), terminating at goal states. They gener-
alize to And/Or graphs classical path search problems. For very large implicit
search spaces, based on sparse models (few applicable actions per state, few
nondeterministic effects per applicable action, including deterministic actions),
a significant scaling up with respect to classical dynamic programming methods
can be achieved with heuristics and sampling techniques [65].

Most heuristic search algorithms for SSPs are based on a two steps Find&Revise
general framework: (i) Find an unsolved state s in the successors of s0 with cur-
rent policy, and (ii) Revise the estimated value of s along its current best action
(with the so-called Bellman update). A state s is solved when the best (or a
good) goal reaching policy from s has already been found. That framework can
be instantiated in different ways, e.g.,
• with a best-first search, as in AO*, LAO* and their extensions (ILAO*, BLAO*,

RLAO*, etc.)

• with a depth-first iterative deepening search, as in LDFS

• with a random walk along current greedy policy, as in RTDP, LRTDP and
their extensions (BRTDP, FRTDP, SRTDP, etc.)

These algorithms assume an SSP problem with a proper policy closed for s0 (i.e.,
one that reaches a goal state from s0 with probability 1) where every improper
policy has infinite cost. A generalization relaxes this last assumption and allows
to seek a policy that maximizes the probability of reaching a goal state, a very
useful and desirable criteria [52]. Other issues, such as dead-ends (states from
which its not possible to reach a goal) have to be taken care of, in particular in
critical domains [50].

Heuristic search algorithms in SSPs are more scalable than dynamic pro-
gramming techniques for MDP planning, but they still cannot address large
domains, with hundreds of state variables, unless these domains are carefully
engineered and decomposed. Even a solution policy for such problems can be
of a size so large as to make its enumeration and memorization challenging to
current techniques. However, such a solution contains many states of very low
probability that would almost never be visited. Various sampling and approxi-
mation techniques offer promising alternatives to further scale up probabilistic
planning.

Among these approaches, determinization techniques transform each non-
deterministic actions into several deterministic ones (the most likely or all pos-

4A POMDP is an MDP on the belief space, whose size is exponential in that of the state
space. The latter is already of size kn, for a domain with n state variables.

13

sible ones), then it plans deterministically with these actions, online and/or
offline. For example, the RFF planner [90] generates an initial deterministic
plan, then it considers a fringe state along a non-deterministic branch of that
plan: if the probability to reach that state is above a threshold, it extends the
plan with a deterministic path to a goal or to an already solved state.

Similar ideas are developed in sampling approaches. Among their advan-
tages is the capability to work without a priori estimates of the probability
distributions of the domain, as long as the sampling is drawn from these same
distributions. Bounds on the approximation quality and the complexity of the
search have been obtained, with good results on various extensions of algorithms
such as LRTDP and UCT , e.g. [49, 11, 51].

Although MDPs are often used in robotics at the sensory motor level, in
particular within reinforcement learning approaches, SSP techniques are not as
widely disseminated at the deliberative planning and acting level. Contributions
are mostly on navigation problems, e.g., the RESSAC system [91]. On sparsely
nondeterministic domains where most actions are deterministic but of a few are
probabilistic, the approach called MCP [64] reduces with deterministic planning
a large problem into a compressed MDP. It has tested on a simulated multi-robot
navigation problem.

Finally, let us mention promising heterogeneous approaches where task plan-
ning is deterministic and SSP techniques are used for the choice of the best skill
refining an action, given the current context. An illustration is given by the
ROBEL system [71] with a receding horizon control.

5 Monitoring

The monitoring function is in charge of (i) detecting discrepancies between pre-
dictions and observations, (ii) classifying these discrepancies, and (iii) recov-
ering from them. Monitoring has at least to monitor the planner’s predictions
supporting the current plan. It may have also to monitor predictions made when
refining plan steps into skills and commands, as well as to monitor conditions
relevant for the current mission that are left implicit in planning and refinement
steps. The latter are, for example, how calibrated are the robot’s sensors, or
how charged are its batteries.

Although monitoring functions are clearly distinct from action refinement
and control functions, in many cases the two are implemented by the same
process with a single representation. For example, the early Planex [25] performs
a very simple monitoring through the iterated computation of the current active
kernel of a triangle table. In most procedure-based systems there are PRS, RAP,
ACT or TCA constructs that handle some monitoring functions. However,
diagnosis and recovery functions in such systems are usually limited and ad
hoc.

Diagnosis and recovery are critical in applications like the DS1 probe, for
which FDIR, a comprehensive monitoring system, has been developed [74]. The
spacecraft is modeled as a fine grained collection of components, e.g., a thrust

14

valve. Each component is described by a graph where nodes are the normal func-
tioning states or failure states of that component. Edges are either commands or
exogenous transition failures. The dynamics of each component is constrained
such that at any time exactly one nominal transition is enabled but zero or more
failure transitions are possible. Models of all components are compositionally
assembled into a system allowing for concurrent transitions compatible with
constraints and preconditions. The entire model is compiled into a temporal
propositional logic formula which is queried through a solver. Two query modes
are used: (i) diagnosis, i.e., find most likely transitions consistent with the ob-
servations, and (ii) recovery, i.e., find minimal cost commands that restore the
system into a nominal state. This approach has been demonstrated as being
effective for a spacecraft. However, it is quite specific to cases where monitoring
can be focused on the robot itself, not on the environment, and where reliability
is a critical design issue addressed through redundant components permitting
complex diagnosis and allowing for recovery actions. It can be qualified as a
robust proprioceptive monitoring approach. It is unclear how it could handle
environment discrepancies, e.g., a service robot failing to open a door.

Other robotics monitoring systems are surveyed in [78] and characterized into
three classes: analytical approaches, data-driven approaches and knowledge-
based approaches. The former rely on planning and acting models, such as
those mentioned above, but also control theory models and filtering techniques
for low-level action monitoring. Data-driven approaches rely on statistical clus-
tering methods for analyzing training data of normal and failures cases, and
pattern recognition techniques for diagnosis. Knowledge-based approaches ex-
ploit specific knowledge in different representations (rules, chronicles, neural
nets, etc.), which is given or acquired for the purpose of monitoring and diag-
nosis. This classification of almost 90 different contributions to Monitoring in
robotics is inspired from the field of industrial control, where Monitoring is a
well studied issue. However, the relationship between Monitoring, Planning and
Acting was not a major concern in the surveyed contributions.

That relationship is explored in [29] on the basis of plan invariants. Several
authors have synthesized state-reachability conditions, called invariants, from
the usual planning domain specifications. Invariants permit a focus and a speed-
up of planning algorithms, e.g., [84, 5]. Going further, [29] proposes extended
planning problems, where the specifications of planning operators are augmented
by logical formula stating invariant conditions that have to hold during the ex-
ecution of a plan. Indeed, planning operators and extended invariants are two
distinct knowledge sources that have to be modeled and specified distinctly.
These extended invariants are used to monitor the execution of a plan. They
allow to detect infeasible actions earlier then their planned execution, or vio-
lated effects of action after their successful achievement. Furthermore, extended
invariants allow to monitor effects of exogenous events and other conditions not
influenced by the robot. However, this approach assumes complete sensing and
perfect observation function. No empirical evaluation has been reported.

Along the same line, the approach of [24] has been tested on a simple office
delivery robot. It relies on a logic-based representation of a dynamic envi-

15

ronment using the fluent calculus [86]. Actions are described by normal and
abnormal preconditions. The former are the usual preconditions. The latter are
assumed away by the planner as default; they are used as a possible explanation
by the monitor in case of failure. E.g., delivery of an object to a person may fail
with abnormal preconditions of the object being lost or the person not being
traceable. Similarly, abnormal effects are specified. Discrepancies between ex-
pectations and observations are handled by a prioritized non-monotonic default
logic, which generates explanations ranked using relative likelihood. That sys-
tem handles incomplete world model and observation updates performed either
while acting or on demand from the monitoring system through specific sensory
actions.

The idea of using extended logical specifications for Planning and Monitoring
has been explored by several others authors in different settings. The interesting
approach of [8] uses domain knowledge expressed in description logic to derive
expectations of the effects of actions in a plan to be monitored during execution.
An interesting variant is illustrated in [60] for a hybrid architecture, combining
a behavior-based reactive control with model-based deliberation capabilities.
At each cycle, concurrent active behaviors are combined into low-level controls.
At a higher level, properties of the robot behaviors are modeled using Linear
Temporal Logic (LTL). LTL formula express correctness statements, execution
progress conditions, as well as goals. A trace of the robot execution, observed or
predicted at planning time, is incrementally checked for satisfied and violated
LTL formula. A delayed formula progression technique evaluates at each state
the set of pending formula. It returns the set of formula that has to be satisfied
by any remaining trace. The same technique is used both for Planning (with
additional operator models and some search mechanism) and for Monitoring.
The approach has been tested on indoor navigation tasks with robots running
the Saphira architecture [54].

A very comprehensive and coherent integration of Monitoring to Planning
and Acting is illustrated in the approach used in the Witas project [21]. That
system demonstrates a complex Planning, Acting and Monitoring architecture
embedded on autonomous UAVs. It has been demonstrated in surveillance and
rescue missions. Planning relies of TALplanner [58], a forward chaining planner
using the Temporal Action Logics(TAL) formalism for specifying planning op-
erators and domain knowledge. Formal specifications of global constraints and
dependencies, as well as of operator models and search recommendations, are
used by the planner to control and prune the search. These specifications are
also used to automatically generate monitoring formula from the model of each
operator, and from the complete plan, e.g., constraints on the persistence of
causal links. This automated synthesis of monitoring formula is not systematic
but rather selective, on the basis of hand programmed conditions of what needs
to be monitored and what doesn’t. In addition to the planning domain knowl-
edge, extra monitoring formula are also specified in the same highly expressive
temporal logic formalism.

The TAL-based system produces plans with concurrent and durative actions
together with conditions to be monitored during execution. These conditions are

16

evaluated on-line, at the right moment, using formula progression techniques.
When actions do not achieve their desired results, or when some other conditions
fail, a recovery through a plan repair phase is triggered. Acting is performed by
Task Procedures, which provide some level of action refinement through classical
concurrent procedural execution, down to elementary commands. Altogether,
this system proposes a coherent continuum from Planning to Acting and Moni-
toring. The only component which does not seem to rely on formal specifications
is the Acting function which uses hand written Task Procedures. However the
lack of flexible action refinement is compensated for by specifying planning oper-
ators (and hence plan steps) at a low-level of granularity. For example, there are
five different fly operators in the UAV domain corresponding to different con-
texts, specifying context-specific control and monitoring conditions, and being
mapped to different Task Procedures.

6 Perceiving

Situated deliberation relies on data reflecting the current state of the world.
Beyond sensing, perceiving combines bottom-up processes from sensors to in-
terpreted data, with top-down focus of attention, search and planning for infor-
mation gathering actions. Perceiving is performed at:
• the signal level, e.g., signals needed in control loops ,

• the state level : features of the environment and the robot and their link to
facts and relations characterizing the state of the world, and

• the history level, i.e., sequences or trajectories of events, actions and situations
relevant for the robot’s mission.

The signal level is usually dealt with through models and techniques of con-
trol theory. Visual servoing approaches [13] for tracking or handling objects and
moving targets offer a good example of mature techniques that can be considered
as tightly integrated into the basic robot functions. Similarly for simultaneous
localization and mapping techniques, a very active and well advanced field in
robotics, to which numerous publications have been devoted, e.g., [2, 69]. These
geometric and probabilistic techniques, enriched with topological and semantic
data, as for example in [56, 57, 53], may involve deliberation and can be quite
effective.

But of the above areas, methods for designing perceiving functions remain
today a limiting factor in autonomous robotics, a hard and challenging issue to
which surprisingly not enough efforts have been devoted. The building blocks
for such a function can to be taken from the fields of signal processing, pattern
recognition and image analysis, which offer a long history of rich developments.
However, the integration of these techniques within the requirements of auton-
omy and deliberation remains a bottleneck.

The anchoring problem provides an excellent illustration of the complexity
of integrating pattern recognition methods with autonomous deliberate action.
As defined in [17], anchoring is the problem of creating and maintaining over
time a correspondence between symbols and sensor data that refer to the same

17

physical object. Planning and other deliberation functions reason on objects
through symbolic attributes. It is essential that the symbolic description and
the sensing data agree about the objects they are referring to. Anchoring con-
cerns specific physical objects. It can be seen as a particular case of the symbol
grounding problem, which deals with broad categories, e.g., any “chair”, as op-
posed to that particular chair-2. Anchoring an object of interest can be achieved
by establishing and keeping an internal link, called an anchor, between the per-
ceptual system and the symbol system, together with a signature that gives
estimate of some of the attributes of the object it refers to. The anchor is based
on a model that relates relations and attributes to perceptual features and their
possible values.

Establishing an anchor corresponds to a pattern recognition problem, with
the challenges of handling uncertainty in sensor data and ambiguity in models,
dealt with for example through maintaining multiple hypotheses. Ambiguous
anchors are handled in [47] as a planning problem in a space of belief states,
where actions have causal effects that change object properties, and observation
effects that partition a belief state into several new hypotheses. There is also the
issue of which anchors to establish, when and how, in a bottom-up or a top-down
process. Anchors in principle are needed for all objects relevant to the robot
mission. These objects can only be defined by intension (not extensively), in a
context-dependent way. There is also the issue of tracking anchors, i.e., taking
into account objects properties that persist across time or evolve in a predictable
way. Predictions are used to check that new observations are consistent with
the anchor and that the updated anchor still satisfies the object properties.
Finally, reacquiring an anchor when an object is re-observed after some time is
a mixture of finding and tracking; if the object moves it can be quite complex
to account consistently of its behavior.

The dynamics of the environment is a strong source of complexity, e.g., as
we just saw in the anchor tracking and re-acquiring problems. This dynamics is
itself what needs to interpreted for the history level: what an observed sequence
of changes means, what can be predicted next from past evolutions. In many
aspects, research at this history level is more recent. It relates to acting in and
understanding environments with rich semantics, in particular involving human
and man–robot interactions, e.g., in applications such as robot programming by
demonstration [1] or video surveillance [40, 31].

The survey of [55] covers an extensive list of contributions to action and plan
recognition. These are focused on (i) human action recognition, (ii) general
activity recognition, and (iii) plan recognition level. The understanding is that
the former two sets of processing provide input to the latter. Most surveyed
approaches draw from two sources of techniques:
• Signal processing : Kalman and other filtering techniques, Markov Chains, Hid-

den Markov Models. These techniques have been successfully used in particular
for movement tracking and gesture recognition[97, 67].

• Plan recognition: deterministic [48, 83] or probabilistic [32] planning tech-
niques, as well as parsing techniques [82].

18

Most plan recognition approaches assume to get as input a sequence of sym-
bolic actions. This assumption is reasonable for story understanding and docu-
ment processing applications, but it does not hold in robotics. Usually actions
are sensed only through their effects on the environment.

The Chronicle recognition techniques [22, 33] are very relevant at the history
level of the Perceiving function. A chronicle recognition system is able to sur-
vey a stream of observed events and recognize, on the fly, instances of modeled
chronicles that match this stream. A chronicle is a model for a collection of
possible scenarios. It describes patterns of observed events, i.e., change in the
value of state variables, persistence assertions, non occurrence assertions and
temporal constraints between these assertions. A ground instance of a chronicle
can be formalized as a nondeterministic timed automata. Chronicles are simi-
lar to temporal planning operators. The recognition is efficiently performed by
maintaining incrementally a hypothesis tree for each partially recognized chron-
icle instance. These trees are updated or pruned as new events are observed or
as time advances. Recent development have added hierarchization and focus on
rare events with extended performances [23].

Very few systems have been proposed for designing and implementing a com-
plete Perceiving function, integrating the three levels mentioned earlier of signal,
state and history views. DyKnow [39] stands as a clear exception, noteworthy
by its comprehensive and coherent approach. This system addresses several
requirements: the integration of different sources of information, of hybrid sym-
bolic and numeric data, at different levels of abstraction, with bottom-up and
top-down processing; it manages uncertainty, reasons on explicit models of its
content and is able to dynamically reconfigure its functions.

These challenging requirements are addressed as a data-flow based publish-
and-subscribe middleware architecture. DyKnow views the environment as con-
sisting of objects described by a collection of features. A stream is a set of
time-stamped samples representing observations or estimations of the value of
a feature. It is associated with a formally specified policy giving requirements
on its content such as: frequency of updates, delays and amplitude differences
between two successive samples, or how to handle missing values.

A stream is generated by a process which may offer several stream generators
synthesizing streams according to specific policies. Processes have streams as
input and output. They are of different types, such as primitive processes,
that are directly connected to sensors and databases; refinement processes, that
subscribe input streams and provide as output more combined features, e.g.,
a signal filter or a position estimator fusing several raw sensing sources and
filtered data; or configuration processes that allow to reconfigure dynamically
the system by initiating and removing processes and streams, as required by the
task and the context, e.g., to track a newly detected target.

DyKnow uses a specific Knowledge Processing Language (KPL) to specify
processes, streams and corresponding policies. KPL allows to refer to objects,
features, streams, processes, and time, together with their domains, constraints
and relationships in the processing network. Formal specifications in KPL de-
fines a symbol for each computational unit, but they do not define the actual

19

function associated with this symbol. Their semantics is taken with respect to
the interpretation of the processing functions used. They allow to describe and
enforce streams policies. They also support a number of essential functions,
e.g., synchronize states from separate unsynchronized streams; evaluate incre-
mentally temporal logic formulas over states; recognize objects and build up
anchors to classify and update interpretation as new information becomes avail-
able; or follow histories of spatio-temporal events and recognize occurrences of
specified chronicle models.

DyKnow has been integrated to the TALplanner system [21] discussed ear-
lier. This system is queried by planning, acting and Monitoring functions to
acquire information about the current contextual state of the world. It provides
appropriate and highly valuable focus of attention mechanisms, linking mon-
itoring or control formulas to streams. It has been deployed within complex
UAV rescue and traffic surveillance demonstration.

7 Goal reasoning

!"#$ %&'()&*$ *&+&%('$,-$./&*&$ (**012.3,4*$
310'.(4&,0'56$34$7,4.%(*.$.,$1(45$&--,%.*$./(.$-,70*$
,4$%&'()348$,4'5$*,1&$*09*&.$,-$./&*&$(**012.3,4*:$$
!"#"$%&'&(#&)* "'+&$,'%"'#(;$ <'(**37('$ 2'(44348$
(**01&*$./(.$ &(7/$ -0.0%&$ *.(.&$ 3*$ =&.&%134&=$ 95$./&$
(7.3,4$ &)&70.&=$ 34$./&$ 70%%&4.$ *.(.&:$ -,'#&'."')/*
012''&'.$%&'()&*$./3*$95$8&4&%(.348$7,4=3.3,4('$2'(4*$
./(.$ (%&$ &)&70.&=$,4'5$ >/&4$ (4$ (7.3,4$ =,&*$ 4,.$
(7/3&+&$ 3.*$ 34.&4=&=$ &--&7.*$?"&(%=&4$ "#* 213$ @AABC:$
D47&%.(34.5$ 34$ -0.0%&$ *.(.&$ 2%&=37.3,4$ 3*$,-.&4$
7(2.0%&=$ (*$ 02$#&21* ,4("$+24&1&#/6$ >/37/$ 7(4$ 9&$
1,=&'&=$0*348$E(%F,+$=&73*3,4$2%,7&**&*$?G0.&%1(4$
HIIJC:$ K3F/(7/&+$ (4=$ L.&4.M$?@AAIC$,9*&%+&$./(.$
./&*&$(22%,(7/&*$*7('&$2,,%'56$(4=$7(44,.$347,%2,%(.&$
=,1(34N*2&73-37$ /&0%3*.37$ F4,>'&=8&$ (9,0.$./&$
&4+3%,41&4.:$ O,$ (==%&**$./3*6$./&3%$ G<GG$ 2'(44&%$
34*.&(=$ %&(*,4*$ (9,0.$ 2%&-&%&47&*$9&.>&&4$04F4,>4$
+('0&*$,-$./&$*.(.&$>/&4$8&4&%(.348$./&$2'(4:$
5#2#&)*"'+&$,'%"'#(;$#4,./&%$7'(**37('$(**012.3,4$ 3*$
./(.$./&$ &4+3%,41&4.$ =,&*$ 4,.$ 7/(48&$,./&%$./(4$
./%,08/$./&$ &)&70.3,4$,-$ (8&4.$ (7.3,4*:$ G'(4$
1,43.,%348$ 7(4$ 9&$ 0*&=$.,$ =&.&7.$ 7/(48&*$ 34$./&$
&4+3%,41&4.$./(.$7(4$7(0*&$2'(4$-(3'0%&:$P,%$&)(12'&6$
&')$"%"'#21* 012''"$(* 2'(4$ -,%$ ($ -3)&=$.31&$ /,%3M,46$
&)&70.&$./&$2'(46$(4=$./&4$8&4&%(.&$($4&>$2'(4$-%,1$
./&$70%%&4.$ *.(.&:$O/3*$2%,7&**$7,4.340&*$04.3'$ ($8,('$
.(.&$ 3$ %&(7/&=:$ P,%$ &)(12'&6$ <GQP$?E5&%*$ HIIIC$
8&4&%(.&*$2'(4*$.,$(7/3&+&$(3%$ *02&%3,%3.5$ 34$13'3.(%5$
7,19(.$ (4=$ %&2'(4*$ >/&4$ 04&)2&7.&=$ &+&4.*$,770%$
=0%348$ &)&70.3,4$?&:8:6$ ($ 2'(4&$ 3*$ */,.$ =,>4C:$ L,1&$
%&7&4.$ (22%,(7/&*$ 34*.&(=$ -,70*$ *,'&'5$,4$ =54(137$
%&2'(44348$?&:8:6$ R,OS3"Q$ %&8&4&%(.&*$,4'5$ 2(%.$,-$
3.*$2'(4$>/&4$(4$(7.3,4$-(3'*$?#5(4$"#*21:$@AATCC:$$
!&()$"#"* "66")#(;$ <,12'&)$ &4+3%,41&4.*$ (%&$ *09U&7.$

/&('./6$ (4=$ -0&'$ (''$ 7(4$ 7,4.340,0*'5$ 7/(48&$,+&%$
.31&:$R,>&+&%6$ -&>$ *5*.&1*$ 7(4$2%,7&**$ 7,4.340,0*$
&--&7.*$?&:8:6$<VKWX$7(4$2'(4$0*348$=0%(.3+&$(7.3,4*$$
>3./$'34&(%$7,4.340,0*$&--&7.*$?<,'&*$"#*2136$@AAICC:$$
5#2#&)* .,21(;$ <'(**37('$ 2'(44348$ (**01&*$./(.$./&$
8,('*$ (%&$ (''N,%N4,./348$ (4=$ *.(.37:$ W-$ 4,$ 2'(4$ 7(4$
(7/3&+&$ (''$,-$./&$ 8,('*6$./&4$ 7'(**37('$ 2'(44&%*$>3''$
-(3':72#&21* (2#&(62)#&,'* 012''&'.$?GLGC$ %&'()&*$./3*$
(''N,%N4,./348$ 7,4*.%(34.6$ (4=$ 34*.&(=$ -,70*&*$,4$
8&4&%(.348$ 2'(4*$./(.$ (7/3&+&$ *,1&$
8,('*$?3:&:6$./&$2'(4$./(.$83+&*$./&$1()3101$.%(=&N,--$
9&.>&&4$.,.('$ (7/3&+&=$ 8,('$ 0.3'3.3&*$ (4=$.,.('$
3470%%&=$ (7.3,4$ 7,*.C$?+(4$ =&4$ Y%3&'$ "#* 213$ @AAJC:$
V./&%$ %&*&(%7/&%*$ /(+&$ (==%&**&=$./&$ '313.(.3,4*$,-$
.(.37$ 8,(':$ P,%$ &)(12'&6$ <,==348.,4$ (4=$ K07F$
?@AAJC$ 9&*.,>&=$ (8&4.*$ >3./$ %,#&+2#&,'(6$ >/37/$
8&4&%(.&$ 8,('*$ 34$ %&*2,4*&$.,$ *2&73-37$ *.(.&*:$ P,%$

9(..&%5$7/(%8&$-(''*$9&',>$ZA[6$
./&4$ ($ 8,('$.,$ (..(34$ ($ -0''$ 9(..&%5$ 7/(%8&$ >3''$ 9&$
8&4&%(.&=$?E&4&80MM3$ (4=$ K07F$ @AATC:$ #4,./&%$
(22%,(7/$ 3*$.,$ ('',>$ -,%$ 8,('*$.,$ %&-&%&47&$,9U&7.*$
./(.$ (%&$ 04F4,>4$ (.$ 2'(44348$.31&:$ 80"'* 9,$1:*

;<2'#&6&":* .,21($ 7,1934&$ 34-,%1(.3,4$ (9,0.$ *&4*348$
,9U&7.*$ (4=$ 8&4&%(.348$ 8,('*$ 34.,$ (4$ &)3*.348$ GLG$
5.&1$?O('(1(=020'($ "#* 213$ @AAIC:$ L313'(%'56$
!,'=1(4$?@AAIC$=&*7%39&*$($*5*.&1$>3./$043+&%*(''5$
\0(4.3-3&=$ 8,('*$./(.$ ('',>*$ 2'(44348$ -,%$ *&.*$,-$
&4.3.3&*$ >/,*&$ 7(%=34('3.5$ 3*$ 04F4,>4$ (.$ 2'(44348$
.31&:$ L&+&%('$ *5*.&1*$?&:8:6$ GQ<#L$?R(>&*$ &.$ ('6$
@AAICC$ 8&4&%(.&$ 8,('*$ (.$ &)&70.3,4$.31&$ 9(*&=$,4$ ($

$
$ #'./,08/$./&*&$ (**012.3,4*$ 7/(%(7.&%3M&$ 7,12'&)$
&4+3%,41&4.*6$4,4&$,-$./&*&$2%&+3,0*$&--,%.*$%&'()$(''$
-,0%$*310'.(4&,0*'56$>/37/$3*$./&$-,70*$,-$!"#:$$
$ O/&%&$ 3*$ ($ %37/$ /3*.,%5$,-$ =&+&',2348$ (8&4.$
(%7/3.&7.0%&*$ -,%$ 347%&(*348'5$ *,2/3*.37(.&=$
&4+3%,41&4.*6$ &:8:6$ O#<#WSNLV#S$?],4&*$ "#* 213$
HIIIC:$ D4'3F&$ %&(7.3+&$ (%7/3.&7.0%&*6$ *07/$ (*$
W<#SDL$?K(48'&5$ (4=$ </,3$ @AA^C6$!"#$ *&2(%(.&*$
&4+3%,41&4.('$ (4=$ 8,('$ %&(*,4348$ -%,1$ (7.3,4$
&'&7.3,46$ >/37/$ 2&%13.$ (==3.3,4('$ %&-'&7.3,4$ (*$
%&\03%&=:$$S&7&4.'56$</,3$?@AHAC$/(*$9&&4$>,%F348$,4$
&).&4*3,4*$.,$./&$ W7(%0*$ (%7/3.&7.0%&$ >/37/$ 7%&(.&$
8,('*$ 0*348$ 7,4*.%(34.N'3F&$ 8,('$ =&*7%32.3,4*6$
P0%./&%1,%&6$./&$ 8,('*$ 7,4*3=&%&=$ /&%&$ 1(5$ =3--&%$
09.(4.3(''5$-%,1$./&$70%%&4.$8,('*$(4=$7,4*&\0&4.'5$
*/,0'=$ 4,.$ 9&$ 7,4*3=&%&=$ *098,('*:$ O/&5$ 1(5$ 9&$
(0.,4,1,0*'5$8&4&%(.&=6$(4=$34+,'+&$,9U&7.*$./(.$(%&$
4,.$ F4,>4$,%$ (+(3'(9'&$ 04.3'$ &)&70.3,4$.31&:$ _&$
=&.(3'$./&$!"#$-%(1&>,%F$34$L&7.3,4$B:$$

!"!#$%&'()*+,-.#/01%.%23##
<,) $?@AATC$WXOSV$*5*.&1$2%,+3=&*$./&$34*23%(.3,4$
-,%$*&+&%('$7,47&2.*$34$8,('N=%3+&4$(0.,4,15$>3./$3.*$
-,70*$,4$ 34.&8%(.&=$ 2'(443486$ &)&70.3,46$ (4=$ 8,('$
%&(*,4348:$_&$&).&4=$./&*&$ 3=&(*$(4=$7,4*3=&%$./&1$
(*$($8&4&%('$(8&4.$-%(1&>,%F:$
!"#$ 3*$($7,47&2.0('$1,=&'$,-$,4'34&$2'(44348$ 34$

(0.,4,1,0*$ (8&4.*:$ P380%&$ H$ 3''0*.%(.&*$ /,>$!"#!

4+50*-#6;$#$<,47&2.0('$E,=&'$-,%$!,('N"%3+&4$#0.,4,15!

1549

Figure 5: GDA Model with its different components, from [68].

Goal reasoning is mostly concerned with the management of high-level goals
and the global mission. Its main role is to manage the set of objectives the
system wants to achieve, maintain or supervise. It may react to new goals given
by the user or to goal failure reported acting and monitoring. In several imple-
mentations, this function is embedded in the planning or acting functions. It
clearly shares similarities with the monitoring function. Still, Goal Reasoning
is not akin to planning as it does not really produce plan, but merely estab-
lish new goals and manage existing one which are then passed to the planner.
Similarly to monitoring, it continuously checks unexpected events or situations.
These are analyzed to assess current goals and possibly establish new goals.

20

Some systems have a dedicated component to perform this high-level function.
For example, Goal Driven Autonomy (GDA) approaches model and reason on
various and sometime conflicting goals an agent may have to consider. GDA
reasoning focus on goal generation and management. In [68], the authors in-
stantiate the GDA model in the ARTUE agent which appropriately responds to
unexpected events in complex simulations and games environment. As shown
on figure 5, their system includes a classical planner; when it executes a plan,
it detects discrepancy (Discrepancy Detector), generates an explanation, may
produce a new goal (Goal Formulator) and finally manages the goals currently
under consideration by the system. The Goal Manager can use different ap-
proaches to decide which goal to keep (e.g., using decision theory to balance
conflicting goals).

Similarly, in [80] the authors point out that planning should be considered
from a broader point of view and not limited to the sole activity of generating
an abstract plan with restrictive assumptions introduced to scope the field and
make the problem more tractable. They propose the Plan Management Agent
(PMA) which, beyond plan generation, provides extra plan reasoning capabili-
ties. The resulting PMA system heavily relies on temporal and causal reasoning,
and is able to plan with partial commitments, allowing to further refine a plan
when needed.

Goal reasoning has been deployed in a number of real experiments. Notably
in the DS1 New Millenium Remote Agent experiment [74] and in the CPEF
framework [75]. Yet, overall, the goal reasoning function is not often developed.
It is nevertheless needed for complex and large systems managing various long
term objectives while taking dynamically into account new events which may
trigger new goals.

8 Integration and Architectures

Beyond the integration of various devices (mechanical, electrical, electronical,
etc), robots are complex systems including multiple sensors, actuators and in-
formation processing modules. They embed online processing, with various
real time requirement, from low-level servo loops up to deliberation functions
which confer the necessary autonomy and robustness for the robot to face the
variability of tasks and environment. The software integration of all these com-
ponents must rely on an architecture and supporting tools which specify how
theses components communicate, share resources and CPUs, and how they are
implemented on the host computer(s) and operating systems.

Various architectures have been proposed to tackle this task, among which
the following:
• Reactive architectures, e.g. the subsumption architecture [10], are composed of

modules which close the loop between inputs (e.g. sensors) and outputs (e.g.
effectors) with an internal automata. These modules can be hierarchically
organized and can inhibit other modules or weight on their activity. They do
not rely on any particular model of the world or plans to achieve and do not

21

support any explicit deliberative activities. Nevertheless, there are a number
of work, e.g. [59], which rely on them to implement deliberative functions.

• Hierarchical architectures are probably the most widely used in robotics [43, 76,
20]. They propose an organization of the software along layers (two or three)
with different temporal requirements and abstraction levels. Often, there is a
functional layer containing the low-level sensors–effectors–processing modules,
and a decision layer containing some of the deliberation functions presented
here (e.g. planning, acting, monitoring, etc).

• Teleo-reactive architectures [26, 66] are more recent. They propose an in-
tegrated planning–acting paradigm which is implemented at different levels,
from deliberation down to reactive functions, using different planning–acting
horizons and time quantum. Each planner–actor is responsible for ensuring
the consistency of a constraint network (temporal and atemporal) whose state
variables can be shared with other planners–actors to provide a communication
mechanism.

Beyond architecture paradigms, it is interesting to note that some robotics
systems have achieved an impressive level of integration of numerous deliber-
ation functions on real platforms. The Linkoping UAV project [20] provides
planning, acting, perception, monitoring with formal representations all over
these components. The NMRA on the DS1 probe [74] also proposed planning,
acting, and FDIR onboard. IDEA and T-ReX, providing planning and acting
have been used respectively on a robot [26] and an AUV [66].

9 Conclusion

Autonomous robots facing a variety of open environments and a diversity of
tasks cannot rely on the decision making capabilities of a human designer or
teleoperator. To achieve their missions, they have to exhibit complex reasoning
capabilities required to understand their environment and current context, and
to act deliberately, in a purposeful, intentional manner. In this paper, we have
referred to these reasoning capabilities as deliberation functions, closely inter-
connected within a complex architecture. We have presented an overview of the
state of the art for some of them.

For the purpose of this overview, we found it clarifying to distinguish these
functions with respect to their main role and computational requirements: the
perceiving, goal reasoning, planning, acting and monitoring functions. But let
us insist again: the border line between them is not crisp; the rational for
their implementation within an operational architecture has to take into account
numerous requirements, in particular a hierarchy of closed loops, from the most
dynamic inner loop, closest to the sensory-motor signals and commands, to the
most “offline” outer loop.

Consider for example the relationship between planning and acting. We ar-
gued that acting cannot be reduced to “execution control”, that is the triggering
of commands mapped to planned actions. There is a need for significant deliber-
ation to take place between what is planned and the commands achieving it (Fig.

22

2). This acting deliberation may even rely on the same or on different planning
techniques as those of the planner, but it has to take into account different state
spaces, action spaces and event spaces than those of the planner. However, if
we insisted to distinguish these two levels, there is no reason to believe that just
two levels is the right number. There can be a hierarchy of planning–acting lev-
els, each refining a task planned further up into more concrete actions, adapted
to the acting context and foreseen events. It would be convenient and elegant
to address this hierarchy within a homogeneous approach, e.g., HTN or AHP.
But we strongly suspect that conflicting requirements, e.g., for handling uncer-
tainty and domain specific representations, favor a variety of representations
and approaches.

Many other open issues, briefly referred to in this paper, give rise to numer-
ous scientific challenges. The relationship from sensing and acting to perceiving
is clearly one of these bottleneck problems to which more investigation efforts
need to be devoted. Acting in an open world requires going from anchoring to
symbol grounding, from object recognition to categorization. A development
perspective is to make robots query when needed and benefit from the growing
wealth of knowledge available over the web, within ontologies of textual and
symbolic relations, as well as of images, graphical and geometric knowledge.

Deliberation functions involve several other open issues that we have not
discussed in this overview, among which the noteworthy problems of:
• metareasoning : trading off deliberation time for acting time, given how critical

and/or urgent are the context and tasks at hand;

• interaction and social behavior that impact all functions discussed here, from
the perceiving requirements of a multi-modal dialogue, to the planning and
acting at the levels of task sharing and plan understanding for multi-robots
and man-robot interaction;

• learning which is the only hope for building the models required by deliberation
functions and which has a strong impact on the architecture that would permit
to integrate these functions and allow them to adapt to tasks and environments
the robot is facing.

We believe that the AI–Robotics synergy is becoming richer and more com-
plex, and it remains today as fruitful for both fields as it used to be in their
early beginning. We do hope that this overview will attract more practitioners
to the challenging problems of their intersection.

Acknowledgements

We thank the editors of this special issue and the reviewers for their highly
valuable feedback.

23

References

[1] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping
(SLAM): part II. IEEE Robotics and Automation Magazine, 13(3):108 –
117, 2006.

[3] M. Beetz. Structured reactive controllers: controlling robots that perform
everyday activity. In Proceedings of the annual conference on Autonomous
Agents, pages 228–235. ACM, 1999.

[4] M. Beetz and D. McDermott. Improving Robot Plans During Their Exe-
cution. In Proc. AIPS, 1994.

[5] S. Bernardini and D. Smith. Finding mutual exclusion invariants in tem-
poral planning domains. In Seventh International Workshop on Planning
and Scheduling for Space (IWPSS), 2011.

[6] J. Bohren, R. Rusu, E. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise,
L. Mosenlechner, W. Meeussen, and S. Holzer. Towards autonomous robotic
butlers: Lessons learned with the PR2. In Proc. ICRA, pages 5568–5575,
2011.

[7] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack.
Experiences with an Architecture for Intelligent, Reactive Agents. Jour-
nal of Experimental and Theoretical Artificial Intelligence, 9(2/3):237–256,
April 1997.

[8] A. Bouguerra, L. Karlsson, and A. Saffiotti. Semantic Knowledge-Based
Execution Monitoring for Mobile Robots. In Proc. ICRA, pages 3693–3698,
2007.

[9] C. Boutilier, T. Dean, and S. Hanks. Decision-Theoretic Planning: Struc-
tural Assumptions and Computational Leverage. Journal of AI Research,
11:1–94, May 1999.

[10] R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2:14–23, 1986.

[11] L. Busoniu, R. Munos, B. De Schutter, and R. Babuska. Optimistic plan-
ning for sparsely stochastic systems. IEEE Symposium on Adaptive Dy-
namic Programming And Reinforcement Learning, pages 48–55, 2011.

[12] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate
motion, manipulation and task planning. International Journal of Robotics
Research, 28(1):104–126, 2009.

24

[13] F. Chaumette and S. Hutchinson. Visual servo control, part ii: Advanced
approaches. IEEE Robotics and Automation Magazine, 14(1):109–118,
2007.

[14] F. Chaumette and S. Hutchinson. Visual servoing and visual tracking. In
B. Siciliano and O. Khatib, editors, Springer Handbook of Robotics, pages
563–583. Springer, 2008.

[15] A. J. Coles, A. Coles, M. Fox, and D. Long. COLIN: Planning with Con-
tinuous Linear Numeric Change. Journal of AI Research, 2012.

[16] P. Conrad, J. Shah, and B. Williams. Flexible execution of plans with
choice. In Proceedings of ICAPS, 2009.

[17] S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem.
Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

[18] E. Coste-Maniere, B. Espiau, and E. Rutten. A task-level robot program-
ming language and its reactive execution. In Proc. ICRA, 1992.

[19] O. Despouys and F. Ingrand. Propice-Plan: Toward a Unified Framework
for Planning and Execution. In European Workshop on Planning, 1999.

[20] P. Doherty, J. Kvarnström, and F. Heintz. A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft systems.
Autonomous Agents and Multi-Agent Systems, 19(3), 2009.

[21] P. Doherty, J. Kvarnström, and F. Heintz. A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft systems.
Autonomous Agents and Multi-Agent Systems, 19(3):332–377, 2009.

[22] C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: Represen-
tation and algorithms. Proc. IJCAI, 13:166–166, 1993.

[23] C. Dousson and P. Le Maigat. Chronicle recognition improvement using
temporal focusing and hierarchization. In Proc. IJCAI, pages 324–329,
2007.

[24] M. Fichtner, A. Großmann, and M. Thielscher. Intelligent execution mon-
itoring in dynamic environments. Fundamenta Informaticae, 57(2-4):371–
392, 2003.

[25] R. Fikes. Monitored Execution of Robot Plans Produced by STRIPS. In
IFIP Congress, Ljubljana, Yugoslavia, August 1971.

[26] A. Finzi, F. Ingrand, and N. Muscettola. Model-based executive control
through reactive planning for autonomous rovers. In Proc. IROS, volume 1,
pages 879–884, 2004.

[27] R. Firby. An Investigation into Reactive Planning in Complex Domains.
In Proc. AAAI, pages 1–5, 1987.

25

[28] J. Frank and A. Jónsson. Constraint-based attribute and interval planning.
Constraints, 8(4):339–364, 2003.

[29] G. Fraser, G. Steinbauer, and F. Wotawa. Plan execution in dynamic
environments. In Innovations in Applied Artificial Intelligence, volume
3533 of LNCS, pages 208–217. Springer, 2005.

[30] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, and R. Rasconi. Apsi-
based deliberation in goal oriented autonomous controllers. In 11th Sym-
posium on Advanced Space Technologies in Robotics and Automation (AS-
TRA), 2011.

[31] F. Fusier, V. Valentin, F. Brémond, M. Thonnat, M. Borg, D. Thirde,
and J. Ferryman. Video understanding for complex activity recognition.
Machine Vision and Applications, 18:167–188, 2007.

[32] C. Geib and R. Goldman. A probabilistic plan recognition algorithm based
on plan tree grammars. Artificial Intelligence, 173:1101–1132, 2009.

[33] M. Ghallab. On chronicles: Representation, on-line recognition and learn-
ing. In International Conference on Knowledge Representation and Rea-
soning, pages 597–606, 1996.

[34] M. Ghallab and A. Mounir Alaoui. Managing efficiently temporal relations
through indexed spanning trees. In Proc. IJCAI, pages 1297–1303, 1989.

[35] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgann Kaufmann, October 2004.

[36] G. Giralt, R. Sobek, and R. Chatila. A multi-level planning and navigation
system for a mobile robot: a first approach to HILARE. In Proc. IJCAI,
pages 335–337, 1979.

[37] D. Hähnel, W. Burgard, and G. Lakemeyer. GOLEX—bridging the gap
between logic (GOLOG) and a real robot. In KI-98: Advances in Artificial
Intelligence, pages 165–176. Springer, 1998.

[38] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier.
Hierarchical solution of Markov decision processes using macro-actions.
In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
pages 220–229, 1998.

[39] F. Heintz, J. Kvarnström, and P. Doherty. Bridging the sense-reasoning
gap: DyKnow-Stream-based middleware for knowledge processing. Ad-
vanced Engineering Informatics, 24(1):14–26, 2010.

[40] S. Hongeng, R. Nevatia, and F. Bremond. Video-based event recognition:
activity representation and probabilistic recognition methods. Computer
Vision and Image Understanding, 96(2):129–162, 2004.

26

[41] M. Ingham, R. Ragno, and B. Williams. A Reactive Model-based Program-
ming Language for Robotic Space Explorers. In International Symposium
on Artificial Intelligence, Robotics and Automation for Space, 2001.

[42] F. Ingrand, R. Chatilla, R. Alami, and F. Robert. PRS: A High Level
Supervision and Control Language for Autonomous Mobile Robots. In
IEEE International Conference on Robotics and Automation, 1996.

[43] F. Ingrand, S. Lacroix, S. Lemai-Chenevier, and F. Py. Decisional Au-
tonomy of Planetary Rovers. Journal of Field Robotics, 24(7):559–580,
October 2007.

[44] A. Jónsson, P. Morris, N. Muscettola, K. Rajan, and B. Smith. Planning
in Interplanetary Space: Theory and Practice. In International Conference
on AI Planning Systems, 2000.

[45] L. Pack Kaelbling and T. Lozano-Perez. Hierarchical task and motion
planning in the now. In Proc. ICRA, pages 1470–1477, 2011.

[46] O. Kanoun, J-P. Laumond, and E. Yoshida. Planning foot placements for
a humanoid robot: A problem of inverse kinematics. International Journal
of Robotics Research, 30(4):476–485, 2011.

[47] L. Karlsson, A. Bouguerra, M. Broxvall, S. Coradeschi, and A. Saffiotti. To
secure an anchor – a recovery planning approach to ambiguity in perceptual
anchoring. AI Communications, 21(1):1–14, 2008.

[48] H. Kautz and J. Allen. Generalized plan recognition. In Proc. AAAI, pages
32 – 37, 1986.

[49] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. Machine Learning,
49:193–208, 2002.

[50] A. Kolobov, Mausam, and D. Weld. SixthSense: Fast and Reliable Recog-
nition of Dead Ends in MDPs. Proc. AAAI, April 2010.

[51] A. Kolobov, Mausam, and D. Weld. LRTDP vs. UCT for Online Proba-
bilistic Planning. In Proc. AAAI, 2012.

[52] A. Kolobov, Mausam, D. Weld, and H. Geffner. Heuristic search for gen-
eralized stochastic shortest path MDPs. Proc. ICAPS, 2011.

[53] K. Konolige, E. Marder-Eppstein, and B. Marthi. Navigation in hybrid
metric-topological maps. In Proc. ICRA, 2011.

[54] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti. The saphira archi-
tecture: A design for autonomy. Journal of Experimental and Theoretical
Artificial Intelligence, 9:215–235, 1997.

27

[55] V. Kruger, D. Kragic, A. Ude, and C. Geib. The meaning of action: a review
on action recognition and mapping. Advanced Robotics, 21(13):1473–1501,
2007.

[56] B. Kuipers and Y. Byun. A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations. Robotics and
Autonomous Systems, 8(1-2):47–63, 1991.

[57] B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, and F. Savelli. Local
metrical and global topological maps in the hybrid spatial semantic hierar-
chy. In Proc. ICRA, pages 4845–4851, 2004.

[58] J. Kvarnström and P. Doherty. TALplanner: A temporal logic based for-
ward chaining planner. Annals of Mathematics and Artificial Intelligence,
30(1):119–169, 2000.

[59] K. Ben Lamine and F. Kabanza. History checking of temporal fuzzy logic
formulas for monitoring behavior-based mobile robots. In 12th IEEE In-
ternational Conference on Tools with Artificial Intelligence, 2000. ICTAI
2000., pages 312–319, 2000.

[60] K. Ben Lamine and F. Kabanza. Reasoning about robot actions: A model
checking approach. In M. Beetz, J. Hertzberg, M. Ghallab, and M. Pollack,
editors, Advances in Plan-Based Control of Robotic Agents, volume 2466 of
LNCS, pages 123–139, 2002.

[61] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[62] S. Lemai-Chenevier and F. Ingrand. Interleaving Temporal Planning and
Execution in Robotics Domains. In Proc. AAAI, 2004.

[63] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog:
A logic programming language for dynamic domains. Journal of Logic
Programming, 31:59–84, 1997.

[64] M. Likhachev, G. Gordon, and S. Thrun. Planning for markov decision
processes with sparse stochasticity. Advances in Neural Information Pro-
cessing Systems (NIPS), 17, 2004.

[65] Mausam and A. Kolobov. Planning with Markov Decision Processes: An
AI Perspective. Morgan & Claypool, July 2012.

[66] C. McGann, F. Py, K. Rajan, J. Ryan, and R. Henthorn. Adaptive Control
for Autonomous Underwater Vehicles. In Proc. AAAI, page 6, April 2008.

[67] T. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-
based human motion capture and analysis. Computer Vision and Image
Understanding, 104(2-3):90–126, 2006.

[68] M. Molineaux, M. Klenk, and D. Aha. Goal-driven autonomy in a Navy
strategy simulation. In Proc. AAAI, pages 1548–1554, 2010.

28

[69] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam 2.0: An
improved particle filtering algorithm for simultaneous localization and map-
ping that provably converges. In Proc. IJCAI, pages 1151–1156, 2003.

[70] H. Moravec. The Stanford Cart and the CMU Rover. Technical report,
CMU, February 1983.

[71] B. Morisset and M. Ghallab. Learning how to combine sensory-motor
functions into a robust behavior. Artificial Intelligence, 172(4-5):392–412,
March 2008.

[72] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with
temporal uncertainty. In Proc. IJCAI, pages 494–502, 2001.

[73] N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt. A Unified
Approach to Model-Based Planning and Execution. In Proceedings of the
International Conference on Intelligent Autonomous Systems, 2000.

[74] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote Agent: to
boldly go where no AI system has gone before. Artificial Intelligence, 103:5–
47, 1998.

[75] K. Myers. CPEF: Continuous Planning and Execution Framework. AI
Magazine, 20(4):63–69, 1999.

[76] I. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin.
CLARAty and Challenges of Developing Interoperable Robotic Software.
In Proc. IROS, October 2003.

[77] B. Pell, E. Gat, R. Keesing, N. Muscettola, and Ben Smith. Robust Periodic
Planning and Execution for Autonomous Spacecraft. In Proc. IJCAI, 1997.

[78] O. Petterson. Execusion monitoring in robotics: a survey. Robotics and
Autonomous Systems, 53:73–88, 2005.

[79] J. Pineau, M. Montemerlo, M. Pollack, N Roy, and S. Thrun. Towards
robotic assistants in nursing homes: Challenges and results. Robotics and
Autonomous Systems, 42(3-4):271–281, March 2003.

[80] M. Pollack and J. Horty. There’s more to life than making plans: plan
management in dynamic, multiagent environments. AI Magazine, 20(4):71,
1999.

[81] F. Py, K. Rajan, and C. McGann. A systematic agent framework for
situated autonomous systems. In Proc. AAMAS, pages 583–590, 2010.

[82] D. Pynadath and M. Wellman. Probabilistic state-dependent grammars
for plan recognition. In Proc. Uncertainty in Artificial Intelligence, pages
507–514, 2000.

29

[83] M. Ramirez and H. Geffner. Plan recognition as planning. In Proc. IJCAI,
pages 1778 – 1783, 2009.

[84] J. Rintanen. An iterative algorithm for synthesizing invariants. In Proc.
AAAI, pages 806–811, 2000.

[85] C. Rosen and N. Nilsson. Application of intelligent automata to reconnais-
sance. Technical report, SRI, November 1966.

[86] E. Sandewall. Features and Fluents. Oxford university Press, 1995.

[87] T. Siméon, J-P. Laumond, J. Cortés, and A. Sahbani. Manipulation plan-
ning with probabilistic roadmaps. International Journal of Robotics Re-
search, 23(7-8):729–746, 2004.

[88] R. Simmons. Structured control for autonomous robots. IEEE Transactions
on Robotics and Automation, 10(1):34–43, 1994.

[89] R. Simmons and D. Apfelbaum. A task description language for robot
control. In Proc. IROS, 1998.

[90] F. Teichteil-Königsbuch, U. Kuter, and G. Infantes. Incremental plan aggre-
gation for generating policies in MDPs. In Proc. AAMAS, pages 1231–1238,
2010.

[91] F. Teichteil-Königsbuch, C. Lesire, and G. Infantes. A generic framework
for anytime execution-driven planning in robotics. In Proc. ICRA, pages
299–304, 2011.

[92] M. Veloso and P. Rizzo. Mapping planning actions and partially-ordered
plans into execution knowledge. In Workshop on Integrating Planning,
Scheduling and Execution in Dynamic and Uncertain Environments, pages
94–97, 1998.

[93] V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons, and K. Tso.
Plan execution interchange language (PLEXIL) for executable plans and
command sequences. In Proceedings of the 9th International Symposium
on Artificial Intelligence, Robotics and Automation in Space, 2005.

[94] D. Wilkins and K. Myers. A common knowledge representation for plan
generation and reactive execution. Journal of Logic and Computation,
5(6):731–761, 1995.

[95] B. Williams and M. Abramson. Executing reactive, model-based programs
through graph-based temporal planning. In Proc. IJCAI, 2001.

[96] J. Wolfe, B. Marthi, and S. Russell. Combined task and motion planning
for mobile manipulation. In Proc. ICAPS, 2010.

[97] Y. Wu and T. Huang. Vision-Based Gesture Recognition: A Review, volume
1739 of LNCS, pages 103–116. Springer-Verlag, 1999.

30

