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Abstract

Planning in robotics must be considered jointly with Act-
ing. Planning is an open loop activity which produces a plan,
based on action models, the current state of the world and the
desired goal state. Acting, on the other hand, is a closed loop
on the environment activity (to execute command and per-
ceive the state of the world). These two deliberative activities
must be integrated and need to handle time, concurrency, syn-
chronization, deadlines and resources. The timeline represen-
tation for temporal plan space planning and acting is very ex-
pressive; it is also quite flexible for integrating planning and
acting. The ANML language is a recent proposal motivated
by combining the expressiveness of the timeline representa-
tion with the decomposition of HTN methods. This paper re-
ports on FAPE (Flexible Acting and Planning Environment),
to our knowledge the first system integrating an ANML plan-
ner and actor. Our current focus is not efficient temporal plan-
ning per se, but the tight integration of acting and planning,
which is addressed by: (i) extending HTN methods with re-
finements, given by PRS procedures, of planned action prim-
itives into low-level commands, (ii) interleaving the planning
process with acting, the former implements plan repair, ex-
tension and replanning, while the latter follows PRS skills re-
finements, and (iii) executing commands with a dispatching
mechanism that synchronizes observed time points of action
effects and events with planned time.
FAPE has been integrated to a PR2 robot and experimented in
a home-like environment. The paper presents how planning
is performed and integrated with acting, and describes briefly
the robotics experiments and reports on initial performances.

Introduction
Planning is a form of reasoning, through prediction and
search, about future changes that can be produced in a sys-
tem. These changes occur naturally over time. Most contri-
butions to planning abstract away time as state transitions.1
At an abstract level, this is a legitimate approximation as it
simplifies the reasoning. Explicit time is however required
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1This is also the case for many AI approaches about reasoning
on change, e.g., in the LTL, CTL and similar logics, T stands for
time, but time is abstracted out.

in many applications, e.g., for dealing with synchronization
with events and others actors, for managing deadlines and
time-bounded resources, and for handling concurrency.

Temporal planning comes in two main flavors: extended
state space representations and timeline representations. The
former is based on states (i.e., snapshots of the entire system)
and temporally qualified durations between states. The lat-
ter relies on possible evolutions of individual state variables
over time (i.e., partial local views of state trajectories), to-
gether with temporal constraints between elements of time-
lines.

Most recent works on temporal planning favor the
extended state space representation on the basis of
PDDL2.1 (Fox and Long, 2002) with the so-called durative
actions. This drive is explained by the wealth of search tech-
niques and domain independent heuristics that have been
developed for state space planning, resulting in significant
performance improvements. But of a few exceptions, these
planners have however a limited handling of concurrency.
The timeline alternative representation permits naturally to
refer to instants beyond starting and ending points of actions
and to handle various kind of concurrency requirements. It is
also more flexible in the integration of planning and acting.
Timeline planners implement plan-space search algorithms
more often than state-space techniques. These algorithms
have not scaled up as well as state space planners or HTN
planners.

Hierarchical task networks is indeed a planning represen-
tation that accounts for numerous deployed applications of
significant size. HTN planners benefit from domain spe-
cific knowledge expressed as task decomposition methods.
In many domains, methods are very naturally formulated.
Temporal planning with HTN has not developed as well as
with timelines or state space representations.

The Action Notation Modeling Language
(ANML) (Smith et al., 2008) is motivated mainly by
blending the expressive timeline representation with the
decomposition of HTN methods. This paper reports on
FAPE, and its planner implementing the ANML language.
Our motivation is not efficient planning per se, but the
tight integration of acting and temporal planning with task
decomposition embedded on a robotic platform. This is
addressed by:

• extending planning decomposition methods (Planning)



with refinements of planned action primitives into low-
level commands (Acting), these refinements are currently
brought by PRS decomposition procedures,

• interleaving the planning process with acting, the former
implements plan repair, extension and replanning, while
the latter follows PRS refinements,

• executing commands with a dispatching mechanism that
synchronizes observed time points of action effects and
events with planned time.

The FAPE system currently includes modular compo-
nents to perform Planning and Acting (as introduced in (In-
grand and Ghallab, 2013)).

FAPE includes a first ANML planner that supports a
unique combination of features of least-commitment plan-
space planning, explicit time maintained by a sparse sim-
ple temporal network and hierarchical task decomposition.
There are several motivations for our design choices:

• plan-space planning with least-commitment naturally
supports plan repair, which is essential when acting is a
concern,

• simple temporal network supports efficient consistency
checking and having a sparse network (without saving
constraint propagations) allows us to update temporal re-
lations along with the feedback from execution, and

• hierarchical task decomposition allows for highly scalable
domain adaptable planning.

FAPE has been integrated to a PR2 robot and experi-
mented with in a real home-like environment. This is a work
in progress. A formalization of the planning–acting integra-
tion and a full characterization of the performance of the
system are beyond the scope of this paper. Its contribution is
to present FAPE at the planning, acting, and execution lev-
els, to describe the robotics experiments and report on initial
performances. The outline of the rest of the paper follows
these steps, preceded by a brief section on the state of the art
and an introduction to ANML.

Related work
Numerous planners implements the PDDL2.1 extended state
space representation with durative actions, e.g., RPG, LPG,
LAMA, TGP, VHPOP and Crickey. Among these planners,
COLIN (Coles et al., 2012) is a notable exception that can
manage concurrency and even linear continuous change.

The timeline approach goes back to the IxTeT plan-
ner (Ghallab and Laruelle, 1994) that reasons on chroni-
cles. A chronicle defines time-points, temporal constraints
between its instants, changes in the values of state vari-
ables, persistence of these values over time, and atem-
poral constraints over state variables parameters and val-
ues. Other planners such as RAX-PS (Jónsson et al.,
2000), ASPEN (Rabideau et al., 1999), Europa/IDEA/T-
ReX (Frank and Jónsson, 2003; Muscettola et al., 2002;
Rajan et al., 2009) and APSI (Fratini et al., 2011), rely on
a similar temporal representation with timelines and tokens
representing change and persistence of the values of state
variables over time. Some of these timelines are directly

connected to actions and percepts (to integrate perception).
These systems express temporal constraints in planning op-
erators using the interval algebra. The organization of the
planner along agents (IDEA) or reactors (T-ReX) offers a
hierarchical representation of the domain. Still the action
models representation with compatibilities (temporal con-
straints over state variables), which tends to spread out the
hierarchical decomposition over more than one compatibil-
ities/reactors, makes them tedious to write and difficult to
debug.

The HTN approach is implemented into several plan-
ners, e.g., Sipe (Wilkins, 1988), SHOP2 (Nau et al., 2003),
SIADEX (Castillo et al., 2006). The latter integrates time to
HTN planning without handling concurrency.

ANML (Smith et al., 2008) extends the languages used
in Europa and ASPEN with recent constructs from PDDL
together with HTN task decomposition methods. We are
aware of ongoing developments on the basis of this lan-
guage2, but to our knowledge, FAPE is the first system in-
cluding an ANML planner supporting task decomposition
and temporal planning.

Several systems integrates planning and acting, in partic-
ular with procedure-based approaches to refine actions into
lower level commands with systems such as RAP (Firby,
1987) or PRS (Ingrand et al., 1996). Among these sys-
tems, Cypress (Wilkins and Myers, 1995) (Sipe & PRS),
TCA (Simmons, 1992) (Task Description Language & As-
pen) and XFRM (Beetz and McDermott, 1994) are examples
relevant for our approach. IxTeT-Exec (Lemai-Chenevier
and Ingrand, 2004) and “Configuration Planner” (Di Rocco
et al., 2013) are closer to FAPE since they are based on a
timeline planner, but without decomposition method.

Representation and ANML
The FAPE planner uses ANML as representation language.
ANML is a rich language allowing the user to introduce
planning models in a multitude of ways. While the syntactic
sugar is important from the perspective of knowledge engi-
neering, let us focus this presentation on the fundamental
representations used.

The FAPE planner relies on parametrized state variables,
with typed object variables as parameters, and on time-
lines over these state variables. The advantages of the state
variable representation, as in SAS+ (Bäckström and Nebel,
1995) are well known. The state space represented by state-
variables is significantly smaller (we cut out unreachable
states) and planning algorithms strongly benefit from such
reduction as shown in (Helmert, 2009).

ANML allows us to specify the state variables directly in
the planning problem definition. Typing is a natural way
to reduce the combinatorics of the parameters in operators.
FAPE supports typing and single inheritance between types,
as illustrated in this simple example (where < denotes inher-
itance):
type Location;
type Gripper < Location {

boolean empty; };

2In particular at NASA Ames Research Center



type Locatable{
Location myLocation; };

type Robot < Locatable {
variable float battery;
variable Gripper left;
variable Gripper right; };

type Item < Locatable;

The objects of the domain are type instances:
instance Location L1, L2, L3;
instance Robot R1;
instance Item I1;
instance Gripper G1, G2;

Temporally annotated statements are for example:
[start] R1.myLocation := L1;
[50, 70] I1.myLocation == G1 :-> L3;
[end] I1.myLocation == L3;

A temporal annotation is either a time point or interval
defined by two time points. These can be relative to a context
(e.g. an operator, or a planning problem), such as start,
end and all, or absolute time points.

According to the definitions given in (Ghallab et al.,
2004), we define a temporal statement to be an assertion over
the evolution of a parameterized state variable. We consider
three type of statements:
• an event specifies a change of the value of the

state variable. For instance, the ANML statement
[ t1 , t2 ] r .myLocation == l1 :−> l2 represents a change
of the state variable myLocation(r) from l1 to l2 between
time t1 and t2, where r, l1 and l2 are object variables and
t1, t2 are time points. The value of the state variable is
l1 at time t1 and l2 at t2; it is unspecified in ]t1, t2[. An
event referring to a single time point is considered as be-
ing instantaneous, e.g., [ t ] Switch == On :−> Off indi-
cates a value of the switch as On at time t and as Off right
after t.

• a persistence condition specifies a constraint on the value
of a state variable over an interval. For instance, the
ANML statement [ t1 , t2 ] s .myLocation == l3 states
that myLocation(s) keeps the value l3 over the interval
[t1, t2], where s and l3 are object variables and t1, t2 are
time points. For the moment, FAPE only handles equality
and non-equality constraints.3

• an assignment is a special case of event specifying a new
value to a state variable regardless of its previous one. For
instance, the ANML statement [ t ] r .myLocation := l3
states that r will be at location l3 at time t without any
condition on its previous location.
Actions are defined as partially instantiated operators that

may have several possible decompositions into a partially or-
dered set of primitive actions. Effects and preconditions are
represented as temporally annotated statements occurring
between the start and end time of the action. Thus a planing
operator is a tuple (name,maxDuration, P,E,D), where
name is the unique name of the operator, maxDuration is

3Inequality constraints, e.g., <,≤ etc., will be added together
with the management of resources.

the function that can be evaluated into a number at the mo-
ment of operator application and represents its maximal du-
ration (after which the operator is considered to be failed), P
is a set of typed parameters,E is a set of temporal statements
and D is a set of decompositions. Parameters of an operator
are typed object instances as defined in ANML, they are fur-
ther used to impose binding constraints between events and
decomposition operators. A decomposition is a set of par-
tially ordered and partially instantiated operator references
(the action must always occur in the time interval of its par-
ent operator, its parameters are bounded to the values de-
fined in the parent, if any).
action Pick(Robot r, Item i, Location l){

:decomposition{
PickWithGripper(r, r.left, i, l); };

:decomposition{
PickWithGripper(r, r.right, i, l);};};

action PickWithGripper
(Robot r, Gripper g, Item i, Location l){

maxDuration := 10;
[start, end]{ g.empty == true :-> false;

r.myLocation == l;
i.myLocation == l :-> g;

}; };

The power of hierarchical decomposition (as in HTN) lies
in being able to encode expert level knowledge into the do-
main by making explicit the various possible decomposi-
tions of a task, instead of relying on a search mechanism to
find these possible decompositions from basic action mod-
els. Of course, this also depends of the skill of the program-
mer, yet, our experiences with various formalisms indicate
that HTN are better suited for planning in robotics. While
the refinement of the action can be as simple as the action
Pick we have introduced, one can imagine going further,
e.g., Transport→ TransportByRobot→Move, Pick, Move,
Drop, or even PickWithGripper decomposed with motion
planning techniques.

FAPE internal structures
FAPE planning and acting components rely on several key
data structures that provide efficient handling of state vari-
able evolutions, constraints and plans. In the following sub-
sections we present the timelines, temporal network, con-
straint network and task network.

Timelines and Chronicles
To capture the information on the evolution of state variables
over time, we use timelines with the same semantics as used
in (Ghallab et al., 2004, Sec. 14.3). A timeline is a set of
temporal statements related to a unique state variable. A
timeline Φ is a tuple (x, F,C) where x is a parameterized
state variable, F is a set of temporal statements and C is a
set of temporal constraints and binding constraints over the
time points and object variables in F .

Two essential properties of timelines need to be handled:
consistency and causal support. A timeline (x, F,C) is con-
sistent when the constraints in C are consistent and when no
pair of assertions in F are possibly conflicting. Intuitively,



two assertions are conflicting when they specify two possi-
bly distinct values of x at the same time. This may happen
when the two assertions are allowed to overlap in time with
possibly incompatible values (with straightforward cases re-
lated to conflicts between persistence, events and mixed con-
flicts). Additional temporal or binding constraints, called
separation constraints, may be needed in C to remove pos-
sible conflicts and make the timeline consistent.

A timeline (x, F,C) supports an assertion α when there
is an assertion β ∈ F that can be used as a causal support
for α and when α can be added to the timeline consistently.
More precisely, when α asserts a persistent value v for x or a
change of value from v to v′ starting at time t, we require β
to establish a value w at a time t′ such that t′ < t and w = v
and that this value can persist consistently until t. Here also
additional constraints, i.e., t′ < t and w = v and separation
constraints, can be needed to make the timeline support α.

We define a chronicle as a tuple (T,C) where T is a set of
timelines and C is a set of temporal and binding constraints.
We say that a chronicle is consistent if each timeline in T is
consistent, and the union of constraints in the timelines of T
with those of C is consistent.

Temporal Constraint Network
Dealing with explicit time implies taking into account tem-
poral constraints between identified time points of the plan-
ning process (such as the beginning of an action or the oc-
currence of a contingent event). Repairing plans further
requires the ability of removing constraints to reflect real
events that might be contradictory with our previous knowl-
edge.

Our temporal network manager is based on the Simple
Temporal Problem introduced by (Dechter et al., 1991). It is
encoded as a directed weighted graph in which an edge from
ti to tj with weight wij represents the constraint tj − ti ≤
wij .

Consistency is checked on constraint addition by detect-
ing negative cycles in the graph which is a sufficient and
necessary condition of STN consistency. This step is per-
formed by running, upon constraint addition or removal, an
incremental Bellman-Ford algorithm as presented in (Cesta
and Oddi, 1996). This allows us to efficiently check STN
consistency while keeping a sparse network containing only
constraints that were explicitly stated, thus allowing us to
easily remove constraints from the network.

In general, temporal plans include uncontrollable dura-
tions (e.g. the time for the robot to go from the kitchen to
the living room may vary between 1 and 2 minutes). These
durations should not be squeezed by the planner temporal
propagation and we must use an approach which guarantee
the dynamic controllability (DC) of the plan. We plan to im-
plement the algorithms proposed in (Morris and Muscettola,
2005) to guarantee that the plan remains DC while squeez-
ing controllable duration as needed.

Binding Constraint Network
While planning, new object variables are created when a
new lifted action is inserted into a plan: every parameter of
the action gives birth to a new typed object variable. These

variables appear either as parameters of state variables or as
values of state variables. Separation and causal support con-
straints on these object variables are managed as a binding
constraint network. This constraint network is consistent iff
there exists an instantiation of variables such that all equality
and non-equality constraints are satisfied. We use AC-3 to
maintain the arc-consistency, which is a well-known trade-
off between earliness of the failures and computational per-
formance.

Task Network
A task network is a forest of partially instantiated operators,
where the branches represent the conjunction of actions into
which an action decomposes. We say that the network is
decomposed if all leaves are primitives. A single tree cor-
responds to the decomposition of a single root action. New
trees can be added in the task network when new actions are
added in the current plan. This mechanism combines HTN
techniques with Plan-Space techniques.

The FAPE planner does not support recursive decompo-
sition methods. Recursive methods raise termination and
completeness issues, in addition to complexity issues.

Planning
The planning component of FAPE relies on two mecha-
nisms: task decomposition, as in HTN, and resolver inser-
tion, as in Plan-Space Planning (PSP). A planning problem
is defined as a triple (V,O, sinit), where V is a set of state
variables,O is a set of operators and sinit is the initial search
node. Since we are in plan-space, we do not define a goal
state but an initial search node, which is specified with (i)
a set of initial statements, giving the initial values of state
variable and the expected events and persistences, and (ii)
the plan objectives. The statements in (i) are considered to
be causally supported. Those of (ii) need to be supported by
the plan to be built. They are given as a set of goal state-
ments, temporally qualified with the end time point, and/or
the task to perform (as in HTN), called here the seed action,
e.g.,

action Seed(){
:decomposition{
Transport(anyRobot_, I1, anywhere_, L2);

};
};
[end] I1.myLocation == L3;

In this example, the objective is to achieve the
Transport task and, at the end to have item I1 at location
L3. Note that this specification of the objectives through as-
sertions and a seed action can be redundant, or even incon-
sistent. It is up to the domain designer to make sure that the
domain and problem specification are consistent. While it
may be useful to specify goals for one state variable through
goal statements and use the seed actions for another state
variable, we discourage the domain designer to use both for
a single state variable, where the semantics is not clear —
there is no syntactical construct to temporarily relate seed
actions with goal statements.



The planner search node is a tuple (Φ, T ), where Φ is a
chronicle and T is the task network. We say that a search
node is consistent if both Φ and T are consistent. Planning
proceeds by identifying flaws in a search node and iteratively
applying resolvers until a search node is reached that is con-
sistent and with no flaws.

Flaws and Resolvers
Planning proceeds as in PSP, by addressing the flaws of a
current search node. A search node n = (Φ, T ) may contain
the following flaws:

Open goal. An open goal is any statement in Φ that does
not have a causal support.

Undecomposed actions. An undecomposed action is a
non primitive action appearing as a leaf in the task network;
it needs to be decomposed.

Threats are dealt with incrementally through separation
constraints, that maintain each timeline consistent, and
through causal support constraints.

The resolvers for an undecomposed action flaw are the ex-
isting methods specified for its decomposition. Applying a
method as a resolver consists in expanding the action node
with its specified decomposition with the temporal and bind-
ing constraints inherited by the decomposed action.

An open goal α may have two types of resolvers:
• any assertion β ∈ Φ that can be used to support α; apply-

ing such a resolver consists of adding the causal support
constraints and the separation constraints required to have
α supported.

• an action that provides an assertion β that can be used to
support α. Applying such a resolver requires adding the
action together with the support constraints and separation
constraints.

The newly added action may in turn bring new unsupported
statements.

Notice that there are two ways of inserting an action into a
partial plan: through a decomposition, or directly by adding
an action as a provider of a support for an open goal. The
same action may be added as a provider at some point and
appear through a decomposition at a later point. A possible
redundancy may result from this. The FAPE planner does
not currently implement a merging operation over the task
network. This will be the object of future work.

Search
Given that a search node π is a solution if it is consistent and
with no flaws, search proceeds by identifying flaws of π (i.e.
its open goals and undecomposed actions) and applying a re-
solver for one selected flaw while maintaining the resulting
search node consistent. For the purposes of demonstration,
we stick, for the moment, to the PSP recursive nondetermin-
istic schema (Ghallab et al., 2004).

The PSP algorithm (See Algorithm 1) at each step of the
recursion deterministically chooses a flaw to resolve (selec-
tion is done with the simple min-domain heuristic) and then
chooses nondeterministically the resolver as follows:
• if the application of a resolver returns a failure then an-

other recursion with a different resolver is performed

Algorithm 1 Main PSP Algorithm
function PSP(π)

flaws← OpenGoals(π) ∪ UndecomposedLeaves(π)
if flaws = ∅ then return (π)
end if
select any flaw φ ∈ flaws
resolvers← Resolve(φ,π)
if resolvers = ∅ then return failure
end if
nondeterministically choose a resolver ρ ∈ resolvers
π← Apply(ρ,π)
return PSP(π)

end function

• if all resolvers were tried unsuccessfully then a failure is
returned to the previous choice point

We can as well modify the non-determinism to reach the
optimal solution with regard to some objective function. In
practice, our current implementation uses a best-first search
strategy, with the number of open goals as a distance evalu-
ation to a consistent search node.

Acting
In a system like FAPE, Acting and Planning are integrated.
Acting, is more complex than just Execution of platform
commands. Often, the actions in the plan are still at a too
high level to be directly executed on the platform. From
our point of view, we consider in FAPE the basic functions
relevant to Acting, and introduced in (Ingrand and Ghallab,
2013), to include: refinement, instantiation, time manage-
ment and coordination, non determinism and uncertainty,
plan repair. In the current FAPE implementation, they are
all but one (non determinism and uncertainty) handled.

Acting refines online an action into a collection of closed-
loop functions, referred to here as skills; a skill processes
a sequence (or a continuous stream) of stimulus input from
sensors and output to actuators, in order to trigger motor
forces and control the correct achievement of chosen ac-
tions. We currently use PRS procedures to refine fully in-
stantiated plan actions into motor commands, as well as to
perceive the environment and inform the Planner of impor-
tant changes. PRS skills also provide some local action re-
coveries for situations where the procedure can handle an
alternative way to perform the action (e.g. to consider an al-
ternative grasping pose, or an alternative path to reach a par-
ticular location). For our PR2 implementation, the basic mo-
tor commands and perception are provided by ROS actions,
nodes and also GenoM3 (Mallet et al., 2010) modules. We
plan to integrate other skill execution frameworks which can
handle different type of acting representation (MDP, DBN,
FSM, etc).

For dispatching, fully instantiated and scheduled actions
are passed to the Acting component according to their start-
ing time. The planner maintains a partially instantiated plan
(only the necessary binding and temporal constraints are ap-
plied), which represents a set of valid plans (time and object
variables are instantiated when needed). Actions selected for



execution are found by taking the ones whose preconditions
are met and whose start times fit in an execution window
(e.g. we want to get actions that can be started in the next x
seconds). The temporal variables and constraints of those
actions are instantiated and the actions are then returned.
Further calls instantiate more and more actions while the
future instantiation of the actions not yet scheduled is kept
as open as possible. Once an action is finished, acting re-
ports the actual end date of its execution. This exact date is
then integrated in the current plan, and the temporal propa-
gation, as described in the “Temporal Constraint Network”
section, is performed. The action fails if it take less or more
time than planned. Such temporal failure is reported to the
planner which can then attempt to repair the plan accord-
ingly. Note that in the general case, the acting component
can also inform the planner that an action is taking too long,
yet, wait for the planner to plan and send an abort action
as a result of this problem (the acting component does not
take the freedom to abort an action which is running late).
An action can also fail because the skill failed (e.g. despite
multiple attempts, the robot cannot grasp an object, or reach
a location). The acting component then retrieves a descrip-
tion of the changes of the world that occurred and send it
to the planner which integrate these “unexpected” state vari-
able transitions in its plan.

Considering we have a plan and one of the actions in the
plan fails during the execution, the plan-repair consists of
the following steps:

1. Removing the action from the task network.
2. Removing all the statements introduced by the failed ac-

tion from the timelines which shall generate new flaws.
3. Running the PSP algorithm until the flaws are resolved.
Our repair approach is limited to the removal of just the one
failing action, we do not consider cascades of other potential
failures. There certainly are cases when the repair does not
find a plan and we need to replan, making the repairing a
wasted effort. However, most of the time repairing the plan
is much faster than replanning and the overall benefit for
the responsiveness of a real-time system is significant, as we
shall show in the following section.

Experimental Setup and Results
FAPE is designed to be used as an embedded system. The
current implementation has been experimented on a PR2
(Figure 1) to plan service robot type of tasks. For example,
the PR2 moves around in an apartment and detects objects
which are misplaced (e.g. a video tape in the bedroom, or
a book on the dining table) picks them up and stores them
away in their proper location (respectively by the TV set,
and in the bookshelf).

In the current setup, we rely on some of PR2 basic capa-
bilities4: navigating in a household like environment; recog-
nizing objects; picking them up and putting them down. Ac-
tions are dispatched just in time to PRS which executes them
when their start time has arrived. PRS monitors the proper

4http://wiki.ros.org/pr2 navigation
http://wiki.ros.org/pr2 tabletop manipulation apps

Figure 1: The PR2 Robot.

execution and reports success or failure. In case of failure,
the proper relevant state variable values are sent back to the
planner as an ANML block which needs to be introduced
into the current plan, leading to repair or replan. The implicit
behavior of the actor is always to repair the plan, while the
replanning is only called once the repair fails completely.

The real-world scenarios we have used were not as de-
manding as we needed to stress-test the planner, therefore
we have generated a spectrum of much larger problems and
ran experiments on them. One of the positive discoveries
is that the planning time is linearly dependent on the num-
ber of objects in the system — problems with hundreds of
objects are completely planned in less than a second, thou-
sands of objects do not increase the planning time over ten
seconds. This is caused mainly by our non-ground represen-
tation, where the combinatorial explosion on operators does
not occur. Figure 2 reports on experiments conducted with
increasing length of the plan. It should be noted that the
planning problem at hand, while realistic in robotics, is sim-
ple and cannot be compared to traditional planning bench-
marks. As expected, the planning time increases rapidly
with the length of the plan up to a 20 actions threshold where
the planner no longer finds plan.

To thoroughly test the complete system, we also wrote
a simple simulator in PRS which randomly simulates ac-
tion failures (navigation does not reach the final destina-
tion, pickup misses or drops the object, etc), and out of
bound time execution (the action takes less or more than the
planned duration interval) on a domain with multiple robots.
We show that, independently of the number of search nodes
generated while producing the initial plan, the FAPE plan-
ning component is able to find a trivial repair in a matter of
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Figure 2: Planning time on simple navigation, pick and place
problems with a hundred object constants. Timeout occurred
for three instances with a plan length of 20. Over twenty
actions in the plan, the planner has a high ratio of timeouts.

Number of instances
nrepair ≤ 15 102 (82.2%)

15 < nrepair < nplanning 7 (5.7%)
nrepair ≥ nplanning 6 (4.8%)

repair failed 9 (7.3%)

Table 1: Number of search nodes generated while repairing
the plan (nrepair) with respect to the number of nodes gen-
erated while producing the initial plan (nplanning). Over the
experiment, nplanning has an average value of 319.

milliseconds in the vast majority of cases. Table 1 reports
on the number of plan space search nodes explored while
repairing a plan compared to the ones explored while gener-
ating the initial plan. This result is particularly important as
it shows that repairing the plan instead of replanning often
saves significant computational effort, which is even more
crucial in embedded planning, where the responsiveness of
the planner often directly projects into the system perfor-
mance. Furthermore, repairing the plan allows entities that
are not affected by the failure (such as other robots) to keep
acting while the plan is being repaired.

Future work
As far as we know, FAPE is the first system including a
planner supporting most ANML features – combination of
HTN planning and explicit time representation; and plan-
space planning. It integrates acting together with planning
and both decisional functionalities rely on the same internal
representation. Each functionality is critical with regard to
the efficiency of the whole system and as such it deserves our
attention in future development. The planner shall benefit
significantly from the addition of proper resource manage-
ment similar to the one implemented in IxTeT (Laborie and

Ghallab, 1995), a stronger heuristic, as well as the addition
of specific and domain dependent planners (e.g. motion or
manipulation planner). Meanwhile the Acting system will
provide other acting framework than the PRS refinement
procedures used for now (e.g. MDP policies (Morisset and
Ghallab, 2008), DBN (Infantes et al., 2010), etc). We also
plan to implement and compare new models of interleaving
planning and acting, where we would concentrate on the de-
cision making between alternative action refinement, repair-
ing and replanning — how to recognize and predict when
one is preferred to the other. Similarly, we plan to investi-
gate the inclusion of delayed methods decomposition. The
planner, instead of expanding all tasks down to the action
leaves may delay and delegate some designated decomposi-
tion to the acting component.

We have designed but not yet experimentally tested new
control mechanics for decomposition that bring the domain
designer more power to fine tune the search and also provide
more support for embedded planning. All of the extensions
are part of method definition, we call those extensions hard,
soft and weak.

The hard extension is an additional condition (a temporal
statement) that tells the planner if the method needs to be de-
composed (if the condition does not hold then we do not de-
compose the method and it does not invalidate consistency).
The extension allows a multitude of control use-cases to be
introduced, e.g. we may start decomposing certain methods
only once we get close to their execution — this is the case
for the navigation action that can be abstracted as a motion
from a to b, until we approach the time of the action and need
refine it into a sequence of path following actions that would
be otherwise unnecessary to keep in the plan in advance.

The soft extension allows us to define priorities of decom-
positions — we simply assign a priority to every method
then we try expand those with the highest priority first, we
can see this extension as an explicit heuristic entered by the
domain designed or the real-time environment.

The weak extension represents a look ahead for a decom-
position of a method, its main purpose is to propagate new
time bounds and constraints. Having a method with sev-
eral possible decompositions (we call the regular decom-
positions hard), we add at most one weak decomposition.
The weak decomposition method is then always performed
when we add the method to the plan and it is non-colliding
with any hard decomposition that is chosen later during the
search.

We do not directly support conditional decomposition
(conditions for each hard decomposition in a method),
which can be simulated by using more methods — for each
conditional decomposition we instead add a new method
having just one decomposition but having the conditional
statements as its event, then the original method decomposes
into one of the method representing the original conditional
decompositions.

While we currently support multi-agent planning (there
can be any number of robots in the system that perform their
actions in parallel), we are particularly interested in extend-
ing the system towards multi-agent planning where actions
of some of the entities are not controllable, which shall allow



us to reason and plan human-robot interactions.

Conclusion
We have introduced FAPE, a new framework that integrates
Planning and Acting to be embedded in autonomous real-
time system such as robots. Using ANML as an input plan-
ning langage, we have the expressivity to plan for complex
temporal plans with requirements on concurrent actions in
dynamic and changing environments and we also allow the
user to improve and fine-tune the efficiency of the system by
introducing task decompositions which can efficiently prune
the search in plan space. We have experimented both Plan-
ning and Acting in simulation with large problems and on a
PR2 robot which performs service robot type of activities.
The development of FAPE continues as a multi-institutional
effort to provide a planning/acting system, which we would
like to see positioned as a system capturing the state-of-the-
art of planning, integrating domain specific planners while
maintaining the expressivity of ANML and ease of integra-
tion with different type of acting components.
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