
HAL Id: hal-01138105
https://hal.science/hal-01138105

Submitted on 1 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Plan-Space Hierarchical Planning with the Action
Notation Modeling Language

Filip Dvo rak, Arthur Bit-Monnot, Félix Ingrand, Malik Ghallab

To cite this version:
Filip Dvo rak, Arthur Bit-Monnot, Félix Ingrand, Malik Ghallab. Plan-Space Hierarchical Planning
with the Action Notation Modeling Language. IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Nov 2014, Limassol, Cyprus. �hal-01138105�

https://hal.science/hal-01138105
https://hal.archives-ouvertes.fr

Plan-Space Hierarchical Planning with the Action Notation Modeling Language

Filip Dvor̆ák†

Faculty of Mathematics and Physics
Charles University in Prague

Prague, Czech Republic
Email: filip@dvorak.fr

Arthur Bit-Monnot∗, Félix Ingrand∗, Malik Ghallab∗

LAAS
CNRS

Toulouse, France
Emails: abitmonn@laas.fr, felix@laas.fr, malik@laas.fr

Abstract—Planning in robotics must be considered jointly
with Acting. Planning is an open loop activity which produces
a plan, based on action models, the current state of the world
and the desired goal state. Acting, on the other hand, is a
closed loop on the environment activity (to execute command
and perceive the state of the world). These two deliberative
activities must be integrated and need to handle time, concur-
rency, synchronization, deadlines and resources. The timeline
representation for temporal plan space planning and acting is
very expressive; it is also quite flexible for integrating planning
and acting. The ANML language is a recent proposal motivated
by combining the expressiveness of the timeline representation
with the decomposition of HTN methods. This paper reports
on FAPE (Flexible Acting and Planning Environment), to our
knowledge the first system integrating an ANML planner and
actor. Our current focus is not efficient temporal planning per
se, but the tight integration of acting and planning, which is
addressed by: (i) extending HTN methods with refinements,
given by PRS procedures, of planned action primitives into
low-level commands, (ii) interleaving the planning process
with acting, the former implements plan repair, extension and
replanning, while the latter follows PRS skills refinements, and
(iii) executing commands with a dispatching mechanism that
synchronizes observed time points of action effects and events
with planned time.

FAPE has been integrated to a PR2 robot and experimented
in a home-like environment. The paper presents how planning
is performed and integrated with acting, and describes briefly
the robotics experiments and reports on initial performances.

Keywords-planning; robotics; HTN; plan-space;

I. INTRODUCTION

Planning is a form of reasoning, through prediction and
search, about future changes that can be produced in a
system. These changes occur naturally over time. Most con-
tributions to planning abstract away time as state transitions.1

At an abstract level, this is a legitimate approximation as it
simplifies the reasoning. Explicit time is however required
in many applications, e.g., for dealing with synchronization
with events and others actors, for managing deadlines and
time-bounded resources, and for handling concurrency.

Temporal planning comes in two main flavors: extended
state space representations and timeline representations. The

1This is also the case for many AI approaches about reasoning on change,
e.g., in the LTL, CTL and similar logics, T stands for time, but time is
abstracted out.

former is based on states (i.e., snapshots of the entire system)
and temporally qualified durations between states. The latter
relies on possible evolutions of individual state variables
over time (i.e., partial local views of state trajectories),
together with temporal constraints between elements of
timelines.

Most recent works on temporal planning favor the
extended state space representation on the basis of
PDDL2.1 [1] with the so-called durative actions. This drive
is explained by the wealth of search techniques and do-
main independent heuristics that have been developed for
state space planning, resulting in significant performance
improvements. But of a few exceptions, these planners have
however a limited handling of concurrency. The timeline
alternative representation permits naturally to refer to in-
stants beyond starting and ending points of actions and
to handle various kind of concurrency requirements. It is
also more flexible in the integration of planning and acting.
Timeline planners implement plan-space search algorithms
more often than state-space techniques. These algorithms
have not scaled up as well as state space planners or HTN
planners.

Hierarchical task networks is indeed a planning repre-
sentation that accounts for numerous deployed applications
of significant size. HTN planners benefit from domain spe-
cific knowledge expressed as task decomposition methods.
In many domains, methods are very naturally formulated.
Temporal planning with HTN has not developed as well as
with timelines or state space representations.

The Action Notation Modeling Language (ANML) [2] is
motivated mainly by blending the expressive timeline rep-
resentation with the decomposition of HTN methods. This
paper reports on FAPE, and its planner implementing the
ANML language. Our motivation is not efficient planning
per se, but the tight integration of acting and temporal
planning with task decomposition embedded on a robotic
platform. This is addressed by:
• extending planning decomposition methods (Planning)

with refinements of planned action primitives into low-
level commands (Acting), these refinements are cur-
rently brought by PRS decomposition procedures,

• interleaving the planning process with acting, the for-

mer implements plan repair, extension and replanning,
while the latter follows PRS refinements,

• executing commands with a dispatching mechanism
that synchronizes observed time points of action effects
and events with planned time.

The FAPE system currently includes modular components
to perform Planning and Acting (as introduced in [3]).

FAPE includes a first ANML planner that supports a
unique combination of features of least-commitment plan-
space planning, explicit time maintained by a sparse sim-
ple temporal network and hierarchical task decomposition.
There are several motivations for our design choices:
• plan-space planning with least-commitment naturally

supports plan repair, which is essential when acting is
a concern,

• simple temporal network supports efficient consistency
checking and having a sparse network (without saving
constraint propagations) allows us to update temporal
relations along with the feedback from execution, and

• hierarchical task decomposition allows for highly scal-
able domain adaptable planning.

FAPE has been integrated to a PR2 robot and experi-
mented with in a real home-like environment. This is a
work in progress. A formalization of the planning–acting
integration and a full characterization of the performance
of the system are beyond the scope of this paper. Its
contribution is to present FAPE at the planning, acting, and
execution levels, to describe the robotics experiments and
report on initial performances. The outline of the rest of the
paper follows these steps, preceded by a brief section on the
state of the art and an introduction to ANML.

II. RELATED WORK

Numerous planners implements the PDDL2.1 extended
state space representation with durative actions, e.g., RPG,
LPG, LAMA, TGP, VHPOP and Crickey. Among these
planners, COLIN [4] is a notable exception that can manage
concurrency and even linear continuous change.

The timeline approach goes back to the IxTeT planner [5]
that reasons on chronicles. A chronicle defines time-points,
temporal constraints between its instants, changes in the val-
ues of state variables, persistence of these values over time,
and atemporal constraints over state variables parameters and
values. Other planners such as RAX-PS [6], ASPEN [7],
Europa/IDEA/T-ReX [8], [9], [10] and APSI [11], rely
on a similar temporal representation with timelines and
tokens representing change and persistence of the values
of state variables over time. Some of these timelines are
directly connected to actions and percepts (to integrate
perception). These systems express temporal constraints in
planning operators using the interval algebra. The organi-
zation of the planner along agents (IDEA) or reactors (T-
ReX) offers a hierarchical representation of the domain.

Still the action models representation with compatibilities
(temporal constraints over state variables), which tends to
spread out the hierarchical decomposition over more than
one compatibilities/reactors, makes them tedious to write
and difficult to debug.

The HTN approach is implemented into several planners,
e.g., Sipe [12], SHOP2 [13], SIADEX [14]. The latter inte-
grates time to HTN planning without handling concurrency.

ANML [2] extends the languages used in Europa and
ASPEN with recent constructs from PDDL together with
HTN task decomposition methods. We are aware of ongoing
developments on the basis of this language2, but to our
knowledge, FAPE is the first system including an ANML
planner supporting task decomposition and temporal plan-
ning.

Several systems integrates planning and acting, in par-
ticular with procedure-based approaches to refine actions
into lower level commands with systems such as RAP [15]
or PRS [16]. Among these systems, Cypress [17] (Sipe &
PRS), TCA [18] (Task Description Language & Aspen) and
XFRM [19] are examples relevant for our approach. IxTeT-
Exec [20] and “Configuration Planner” [21] are closer to
FAPE since they are based on a timeline planner, but without
decomposition method.

III. REPRESENTATION AND ANML

The FAPE planner uses ANML as representation lan-
guage. ANML is a rich language allowing the user to
introduce planning models in a multitude of ways. While
the syntactic sugar is important from the perspective of
knowledge engineering, let us focus this presentation on the
fundamental representations used.

The FAPE planner relies on parametrized state variables,
with typed object variables as parameters, and on timelines
over these state variables. The advantages of the state
variable representation, as in SAS+ [22] are well known.
The state space represented by state-variables is significantly
smaller (we cut out unreachable states) and planning algo-
rithms strongly benefit from such reduction as shown in [23].

ANML allows us to specify the state variables directly
in the planning problem definition. Typing is a natural way
to reduce the combinatorics of the parameters in operators.
FAPE supports typing and single inheritance between types,
as illustrated in this simple example (where < denotes
inheritance):

type Location;
type Gripper < Location {

boolean empty; };
type Locatable{

Location myLocation; };
type Robot < Locatable {

variable float battery;
variable Gripper left;

2In particular at NASA Ames Research Center

variable Gripper right; };
type Item < Locatable;

The objects of the domain are type instances:

instance Location L1, L2, L3;
instance Robot R1;
instance Item I1;
instance Gripper G1, G2;

Temporally annotated statements are for example:

[start] R1.myLocation := L1;
[50, 70] I1.myLocation == G1 :-> L3;
[end] I1.myLocation == L3;

A temporal annotation is either a time point or interval
defined by two time points. These can be relative to a context
(e.g. an operator, or a planning problem), such as start,
end and all, or absolute time points.

According to the definitions given in [24], we define a
temporal statement to be an assertion over the evolution of
a parameterized state variable. We consider three type of
statements:
• an event specifies a change of the value of

the state variable. For instance, the ANML state-
ment [t1 , t2] r .myLocation == l1 :−> l2 represents
a change of the state variable myLocation(r) from l1
to l2 between time t1 and t2, where r, l1 and l2 are
object variables and t1, t2 are time points. The value
of the state variable is l1 at time t1 and l2 at t2; it
is unspecified in]t1, t2[. An event referring to a single
time point is considered as being instantaneous, e.g.,
[t] Switch == On :−> Off indicates a value of the
switch as On at time t and as Off right after t.

• a persistence condition specifies a constraint on the
value of a state variable over an interval. For instance,
the ANML statement [t1 , t2] s .myLocation == l3
states that myLocation(s) keeps the value l3 over the
interval [t1, t2], where s and l3 are object variables and
t1, t2 are time points.

• an assignment is a special case of event specify-
ing a new value to a state variable regardless of
its previous one. For instance, the ANML statement
[t] r .myLocation := l3 states that r will be at location
l3 at time t without any condition on its previous
location.

Actions are defined as partially instantiated operators that
may have several possible decompositions into a partially
ordered set of primitive actions. Effects and preconditions
are represented as temporally annotated statements occurring
between the start and end time of the action. Thus a planing
operator is a tuple (name,maxDuration, P,E,D), where
name is the unique name of the operator, maxDuration
is the function that can be evaluated into a number at the
moment of operator application and represents its maximal
duration (after which the operator is considered to be failed),

P is a set of typed parameters, E is a set of temporal
statements and D is a set of decompositions. Parameters of
an operator are typed object instances as defined in ANML,
they are further used to impose binding constraints between
events and decomposition operators. A decomposition is a
set of partially ordered and partially instantiated operator
references (the action must always occur in the time interval
of its parent operator, its parameters are bounded to the
values defined in the parent, if any).

action Pick(Robot r, Item i, Location l){
:decomposition{

PickWithGripper(r, r.left, i, l); };
:decomposition{

PickWithGripper(r, r.right, i, l);};};

action PickWithGripper
(Robot r, Gripper g, Item i, Location l){

maxDuration := 10;
[start, end]{ g.empty == true :-> false;

r.myLocation == l;
i.myLocation == l :-> g;

}; };

The power of hierarchical decomposition (as in HTN) lies
in being able to encode expert level knowledge into the do-
main by making explicit the various possible decompositions
of a task, instead of relying on a search mechanism to find
these possible decompositions from basic action models. Of
course, this also depends of the skill of the programmer,
yet, our experiences with various formalisms indicate that
HTN are better suited for planning in robotics. While the
refinement of the action can be as simple as the action Pick
we have introduced, one can imagine going further, e.g.,
Transport→ TransportByRobot→Move, Pick, Move, Drop,
or even PickWithGripper decomposed with motion planning
techniques.

IV. FAPE INTERNAL STRUCTURES

FAPE planning and acting components rely on several
key data structures that provide efficient handling of state
variable evolutions, constraints and plans. In the following
subsections we present the timelines, temporal network,
constraint network and task network.

A. Timelines and Chronicles

To capture the information on the evolution of state vari-
ables over time, we use timelines with the same semantics
as used in [24, Sec. 14.3]. A timeline is a set of temporal
statements related to a unique state variable. A timeline Φ is
a tuple (x, F,C) where x is a parameterized state variable,
F is a set of temporal statements and C is a set of temporal
constraints and binding constraints over the time points and
object variables in F .

Two essential properties of timelines need to be handled:
consistency and causal support. A timeline (x, F,C) is
consistent when the constraints in C are consistent and

when no pair of assertions in F are possibly conflicting.
Intuitively, two assertions are conflicting when they specify
two possibly distinct values of x at the same time. This may
happen when the two assertions are allowed to overlap in
time with possibly incompatible values (with straightforward
cases related to conflicts between persistence, events and
mixed conflicts). Additional temporal or binding constraints,
called separation constraints, may be needed in C to remove
possible conflicts and make the timeline consistent.

A timeline (x, F,C) supports an assertion α when there
is an assertion β ∈ F that can be used as a causal support
for α and when α can be added to the timeline consistently.
More precisely, when α asserts a persistent value v for x or
a change of value from v to v′ starting at time t, we require
β to establish a value w at a time t′ such that t′ < t and
w = v and that this value can persist consistently until t.
Here also additional constraints, i.e., t′ < t and w = v and
separation constraints, can be needed to make the timeline
support α.

We define a chronicle as a tuple (T,C) where T is a set of
timelines and C is a set of temporal and binding constraints.
We say that a chronicle is consistent if each timeline in T
is consistent, and the union of constraints in the timelines
of T with those of C is consistent.

B. Temporal Constraint Network

Dealing with explicit time implies taking into account
temporal constraints between identified time points of the
planning process (e.g. the beginning of an action or the
occurrence of a contingent event). Repairing plans further
requires the ability of removing constraints to reflect real
events that might be contradictory with our previous knowl-
edge.

Our temporal network manager is based on the Simple
Temporal Problem introduced by [25]. It is encoded as a
directed weighted graph in which an edge from ti to tj with
weight wij represents the constraint tj − ti ≤ wij .

Consistency is checked on constraint addition by de-
tecting negative cycles in the graph which is a sufficient
and necessary condition of STN consistency. This step is
performed by running, upon constraint addition or removal,
an incremental Bellman-Ford algorithm as presented in [26].
This allows us to efficiently check STN consistency while
keeping a sparse network containing only constraints that
were explicitly stated, thus allowing us to easily remove
constraints from the network.

In general, temporal plans include uncontrollable dura-
tions (e.g. the time for the robot to go from the kitchen
to the living room may vary between 1 and 2 minutes).
These durations should not be squeezed by the planner
temporal propagation and we must use an approach which
guarantees the dynamic controllability (DC) of the plan. The
EfficientIDC algorithm [27] is used to check the dynamic

controllability of a solution plan. We intend to further
integrate it to incrementally enforce DC while planning.

C. Binding Constraint Network

While planning, new object variables are created when
a new lifted action is inserted into a plan: every parameter
of the action gives birth to a new typed object variable.
These variables appear either as parameters of state vari-
ables or as values of state variables. Separation and causal
support constraints on these object variables are managed
as a binding constraint network. This constraint network is
consistent iff there exists an instantiation of variables such
that all equality and non-equality constraints are satisfied.
We use AC-3 to maintain the arc-consistency, which is a
well-known trade-off between earliness of the failures and
computational performance.

D. Task Network

A task network is a forest of partially instantiated opera-
tors, where the branches represent the conjunction of actions
into which an action decomposes. We say that the network
is decomposed if all leaves are primitives. A single tree
corresponds to the decomposition of a single root action.
New trees can be added in the task network when new
actions are added in the current plan. This mechanism
combines HTN techniques with Plan-Space techniques.

The FAPE planner does not support recursive decom-
position methods. Recursive methods raise termination and
completeness issues, in addition to complexity issues.

V. PLANNING

The planning component of FAPE relies on two mecha-
nisms: task decomposition, as in HTN, and resolver inser-
tion, as in Plan-Space Planning (PSP). A planning problem
is defined as a triple (V,O, sinit), where V is a set of state
variables, O is a set of operators and sinit is the initial search
node. Since we are in plan-space, we do not define a goal
state but an initial search node, which is specified with (i)
a set of initial statements, giving the initial values of state
variable and the expected events and persistences, and (ii)
the plan objectives. The statements in (i) are considered to
be causally supported. Those of (ii) need to be supported
by the plan to be built. They are given as a set of goal
statements, temporally qualified with the end time point,
and/or the task to perform (as in HTN), called here the seed
action, e.g.,

action Seed(){
:decomposition{
Transport(anyRobot_, I1, anywhere_, L2);

};
};
[end] I1.myLocation == L3;

In this example, the objective is to achieve the
Transport task and, at the end to have item I1 at location

L3. Note that this specification of the objectives through
assertions and a seed action can be redundant, or even
inconsistent. It is up to the domain designer to make sure
that the domain and problem specification are consistent.
While it may be useful to specify goals for one state variable
through goal statements and use the seed actions for another
state variable, we discourage the domain designer to use both
for a single state variable, where the semantics is not clear
— there is no syntactical construct to temporarily relate seed
actions with goal statements.

The planner search node is a tuple (Φ, T), where Φ is a
chronicle and T is the task network. We say that a search
node is consistent if both Φ and T are consistent. Planning
proceeds by identifying flaws in a search node and iteratively
applying resolvers until a search node is reached that is
consistent and with no flaws.

A. Flaws and Resolvers

Planning proceeds as in PSP, by addressing the flaws of a
current search node. A search node n = (Φ, T) may contain
the following flaws:

Open goal. An open goal is any statement in Φ that does
not have a causal support.

Undecomposed actions. An undecomposed action is a non
primitive action appearing as a leaf in the task network; it
needs to be decomposed.

Threats are dealt with incrementally through separation
constraints, that maintain each timeline consistent, and
through causal support constraints.

The resolvers for an undecomposed action flaw are the
existing methods specified for its decomposition. Applying
a method as a resolver consists in expanding the action
node with its specified decomposition with the temporal and
binding constraints inherited by the decomposed action.

An open goal α may have two types of resolvers:
• any assertion β ∈ Φ that can be used to support
α; applying such a resolver consists of adding the
causal support constraints and the separation constraints
required to have α supported.

• an action that provides an assertion β that can be used
to support α. Applying such a resolver requires adding
the action together with the support constraints and
separation constraints.

The newly added action may in turn bring new unsupported
statements.

Notice that there are two ways of inserting an action into a
partial plan: through a decomposition, or directly by adding
an action as a provider of a support for an open goal. The
same action may be added as a provider at some point and
appear through a decomposition at a later point. A possible
redundancy may result from this. The FAPE planner does
not currently implement a merging operation over the task
network. This will be the object of future work.

B. Search

Given that a search node π is a solution if it is consistent
and with no flaws, search proceeds by identifying flaws
of π (i.e. its open goals and undecomposed actions) and
applying a resolver for one selected flaw while maintaining
the resulting search node consistent.

For the purposes of demonstration, we stick, for the
moment, to the PSP recursive nondeterministic schema [24].

Algorithm 1 Main PSP Algorithm
function PSP(π)

flaws ← OpenGoals(π) ∪ UndecomposedLeaves(π)
if flaws = ∅ then return (π)
end if
select any flaw φ ∈ flaws
resolvers ← Resolve(φ,π)
if resolvers = ∅ then return failure
end if
nondeterministically choose a resolver ρ ∈ resolvers
π ← Apply(ρ,π)
return PSP(π)

end function

The PSP algorithm (See Algorithm 1) at each step of
the recursion deterministically chooses a flaw to resolve
(selection is done with the simple min-domain heuristic) and
then chooses nondeterministically the resolver as follows:
• if the application of a resolver returns a failure then

another recursion with a different resolver is performed
• if all resolvers were tried unsuccessfully then a failure

is returned to the previous choice point
We can as well modify the non-determinism to reach the

optimal solution with regard to some objective function.
In practice, our current implementation uses a best-first
search strategy, with the number of open goals as a distance
evaluation to a consistent search node.

VI. ACTING

In a system like FAPE, Acting and Planning are inte-
grated. Acting, is more complex than just Execution of
platform commands. Often, the actions in the plan are
still at a too high level to be directly executed on the
platform. From our point of view, we consider in FAPE the
basic functions relevant to Acting, and introduced in [3],
to include: refinement, instantiation, time management and
coordination, non determinism and uncertainty, plan repair.
In the current FAPE implementation, they are all but one
(non determinism and uncertainty) handled.

Acting refines online an action into a collection of closed-
loop functions, referred to here as skills; a skill processes
a sequence (or a continuous stream) of stimulus input from
sensors and output to actuators, in order to trigger motor
forces and control the correct achievement of chosen actions.

We currently use PRS procedures to refine fully instantiated
plan actions into motor commands, as well as to perceive the
environment and inform the Planner of important changes.
PRS skills also provide some local action recoveries for
situations where the procedure can handle an alternative way
to perform the action (e.g. to consider an alternative grasping
pose, or an alternative path to reach a particular location).
For our PR2 implementation, the basic motor commands
and perception are provided by ROS actions, nodes and
also GenoM3 [28] modules. We plan to integrate other skill
execution frameworks which can handle different type of
acting representation (MDP, DBN, FSM, etc).

For dispatching, fully instantiated and scheduled actions
are passed to the Acting component according to their
starting time. The planner maintains a partially instantiated
plan (only the necessary binding and temporal constraints
are applied), which represents a set of valid plans (time
and object variables are instantiated when needed). Actions
selected for execution are found by taking the ones whose
preconditions are met and whose start times fit in an ex-
ecution window (e.g. we want to get actions that can be
started in the next x seconds). The temporal variables and
constraints of those actions are instantiated and the actions
are then returned. Further calls instantiate more and more
actions while the future instantiation of the actions not yet
scheduled is kept as open as possible. Once an action is
finished, acting reports the actual end date of its execution.
This exact date is then integrated in the current plan, and
the temporal propagation, as described in the “Temporal
Constraint Network” section, is performed. The action fails
if it take less or more time than planned. Such temporal
failure is reported to the planner which can then attempt to
repair the plan accordingly. Note that in the general case, the
acting component can also inform the planner that an action
is taking too long, yet, wait for the planner to plan and
send an abort action as a result of this problem (the acting
component does not take the freedom to abort an action
which is running late). An action can also fail because the
skill failed (e.g. despite multiple attempts, the robot cannot
grasp an object, or reach a location). The acting component
then retrieves a description of the changes of the world that
occurred and send it to the planner which integrate these
“unexpected” state variable transitions in its plan.

Considering we have a plan and one of the actions in the
plan fails during the execution, the plan-repair consists of
the following steps:

1) Removing the action from the task network.
2) Removing all the statements introduced by the failed

action from the timelines which shall generate new
flaws.

3) Running the PSP algorithm until the flaws are re-
solved.

Our repair approach is limited to the removal of just the one

failing action, we do not consider cascades of other potential
failures. There certainly are cases when the repair does not
find a plan and we need to replan, making the repairing a
wasted effort. However, most of the time repairing the plan
is much faster than replanning and the overall benefit for
the responsiveness of a real-time system is significant, as
we shall show in the following section.

VII. EXPERIMENTAL SETUP AND RESULTS

FAPE is designed to be used as an embedded system. The
current implementation has been experimented on a PR2
to plan service robot type of tasks. For instance, the PR2
moves around in an apartment and detects objects which
are misplaced (e.g. a video tape in the bedroom, or a book
on the dining table) picks them up and stores them away in
their proper location (respectively by the TV set, and in the
bookshelf).

In the current setup, we rely on some of PR2 basic
capabilities3: navigating in a household like environment;
recognizing objects; picking them up and putting them
down. Actions are dispatched just in time to PRS which
executes them when their start time has arrived. PRS mon-
itors the proper execution and reports success or failure. In
case of failure, the proper relevant state variable values are
sent back to the planner as an ANML block which needs
to be introduced into the current plan, leading to repair or
replan. The implicit behavior of the actor is always to repair
the plan, while the replanning is only called once the repair
fails completely.
//NOTE FROM ARTHUR: Integrate new experiments//

To thoroughly test the complete system, we also wrote a
simple simulator in PRS which randomly simulates action
failures (navigation does not reach the final destination,
pickup misses or drops the object, etc), and out of bound
time execution (the action takes less or more than the
planned duration interval) on a domain with multiple robots.
We show that, independently of the number of search
nodes generated while producing the initial plan, the FAPE
planning component is able to find a trivial repair in a matter
of milliseconds in the vast majority of cases. Table 1 reports
on the number of plan space search nodes explored while
repairing a plan compared to the ones explored while gener-
ating the initial plan. This result is particularly important as
it shows that repairing the plan instead of replanning often
saves significant computational effort, which is even more
crucial in embedded planning, where the responsiveness of
the planner often directly projects into the system perfor-
mance. Furthermore, repairing the plan allows entities that
are not affected by the failure (such as other robots) to keep
acting while the plan is being repaired.

3http://wiki.ros.org/pr2 navigation
http://wiki.ros.org/pr2 tabletop manipulation apps

Number of instances
nrepair ≤ 15 102 (82.2%)

15 < nrepair < nplanning 7 (5.7%)
nrepair ≥ nplanning 6 (4.8%)

repair failed 9 (7.3%)

Figure 1. Number of search nodes generated while repairing the plan
(nrepair) with respect to the number of nodes generated while producing
the initial plan (nplanning). Over the experiment, nplanning has an
average value of 319.

VIII. FUTURE WORK

To the best of our knowledge, FAPE is the first system
including a planner supporting most ANML features – com-
bination of HTN planning and explicit time representation;
and plan-space planning. It integrates acting together with
planning and both decisional functionalities rely on the same
internal representation. Each functionality is critical with
regard to the efficiency of the whole system and as such
it deserves our attention in future development. The planner
shall benefit significantly from a stronger heuristic as well as
the addition of specific and domain dependent planners (e.g.
motion or manipulation planners). Meanwhile the Acting
system will provide other acting frameworks than the PRS
refinement procedures used for now (e.g. MDP policies [29],
DBN [30], etc). We also plan to implement and compare
new models of interleaving planning and acting, where we
would concentrate on the decision making between alterna-
tive action refinement, repairing and replanning — how to
recognize and predict when one is preferred to the other.
Similarly, we plan to investigate the inclusion of delayed
methods decomposition. The planner, instead of expanding
all tasks down to the action leaves may delay and delegate
some designated decomposition to the acting component.

While we currently support multi-agent planning (there
can be any number of robots in the system that perform
their actions in parallel), we are particularly interested in
extending the system towards multi-agent planning where
actions of some of the entities are not controllable, which
shall allow us to reason and plan human-robot interactions.

IX. CONCLUSION

We have introduced FAPE, a new framework that inte-
grates Planning and Acting to be embedded in autonomous
real-time system such as robots. Using ANML as an input
planning langage, we have the expressivity to plan for
complex temporal plans with requirements on concurrent
actions in dynamic and changing environments. We also
allow the user to improve and fine-tune the efficiency of
the system by introducing task decompositions which can
efficiently prune the search in plan space. We have experi-
mented both Planning and Acting in simulation with large
problems and on a PR2 robot which performs service robot
type of activities. The development of FAPE continues as a

multi-institutional effort to provide a planning/acting system,
which we would like to see positioned as a system capturing
the state-of-the-art of planning, integrating domain specific
planners while maintaining the expressiveness of ANML and
ease of integration with different type of acting components.

ACKNOWLEDGMENT

This work has been conducted within the EU SAPHARI
project (http://www.saphari.eu/) funded by the E.C. Division
FP7-IST under Contract ICT-287513.

REFERENCES

[1] M. Fox and D. Long, “PDDL 2.1 : An Extension to PDDL for
Expressing Temporal Planning Domains,” Technical Report,
University of Durham, UK, 2002.

[2] D. E. Smith, J. Frank, and W. Cushing, “The ANML
Language,” The ICAPS-08 Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 2008.

[3] F. Ingrand and M. Ghallab, “Robotics and Artificial
Intelligence: a Perspective on Deliberation Functions,” AI
Communications, vol. 27, pp. 63–80, Nov. 2013.

[4] A. J. Coles, A. Coles, M. Fox, and D. Long, “COLIN:
Planning with Continuous Linear Numeric Change,” J. Artif.
Intell. Res. (JAIR), vol. 44, pp. 1–96, 2012.

[5] M. Ghallab and H. Laruelle, “Representation and Control in
IxTeT, a Temporal Planner,” in International Conference on
AI Planning Systems, 1994, pp. 61–67.

[6] A. K. Jónsson, P. H. Morris, N. Muscettola, K. Rajan,
and B. Smith, “Planning in Interplanetary Space: Theory
and Practice,” in International Conference on AI Planning
Systems, 2000.

[7] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and
A. Govindjee, “Iterative Repair Planning for Spacecraft Op-
erations in the ASPEN System,” in International Symposium
on Artificial Intelligence, Robotics and Automation for Space,
1999.

[8] J. Frank and A. K. Jónsson, “Constraint-Based Attribute and
Interval Planning,” Constraints, vol. 8, no. 4, 2003.

[9] N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt,
“IDEA: Planning at the Core of Autonomous Reactive
Agents,” in Proceedings of the AIPS Workshop on On-line
Planning and Scheduling, 2002.

[10] K. Rajan, F. Py, C. McGann, J. P. Ryan, T. O’Reilly,
T. Maughan, and B. Roman, “Onboard Adaptive Control of
AUVs using Automated Planning and Execution,” in Inter-
national Symposium on Unmanned Untethered Submersible
Technology (UUST), Durham, NH, August 2009.

[11] S. Fratini, A. Cesta, R. De Benedictis, A. Orlandini, and
R. Rasconi, “APSI-based deliberation in Goal Oriented Au-
tonomous Controllers,” in 11th Symposium on Advanced
Space Technologies in Robotics and Automation (ASTRA),
2011.

[12] D. E. Wilkins, Practical Planning, ser. Extending the Classi-
cal AI Planning Paradigm. Morgan Kaufman, 1988.

[13] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock,
D. Wu, and F. Yaman, “SHOP2: An HTN Planning System,”
J. Artif. Intell. Res. (JAIR), vol. 20, pp. 379–404, 2003.

[14] L. Castillo, J. Fdez-Olivares, O. Garcı́a-Pérez, and F. Palao,
“Efficiently handling temporal knowledge in an HTN plan-
ner,” Sixteenth international conference on automated plan-
ning and scheduling, ICAPS, 2006.

[15] R. J. Firby, “An investigation into reactive planning in
complex domains,” in Proceedings of the sixth National
conference on Artificial intelligence. Seattle, WA, 1987, pp.
202–206.

[16] F. Ingrand, R. Chatilla, R. Alami, and F. Robert, “PRS: a
high level supervision and control language for autonomous
mobile robots,” in IEEE International Conference on
Robotics and Automation, 1996, pp. 43–49.

[17] D. E. Wilkins and K. L. Myers, “A common knowledge
representation for plan generation and reactive execution,”
Journal of Logic and Computation, vol. 5, no. 6, pp.
731–761, 1995.

[18] R. Simmons, “Concurrent planning and execution for
autonomous robots,” Control Systems, IEEE, vol. 12, no. 1,
pp. 46–50, 1992.

[19] M. Beetz and D. McDermott, “Improving Robot Plans
During Their Execution,” in International Conference on AI
Planning Systems, 1994.

[20] S. Lemai-Chenevier and F. Ingrand, “Interleaving Temporal
Planning and Execution in Robotics Domains,” in Proceed-
ings of the National Conference on Artificial Intelligence,
2004.

[21] M. Di Rocco, F. Pecora, and A. Saffiotti, “When robots
are late: Configuration planning for multiple robots with
dynamic goals,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2013). IEEE,
2013, pp. 9515–5922.

[22] C. Bäckström and B. Nebel, “Complexity Results for SAS+
Planning,” Computational Intelligence, vol. 11, pp. 625–656,
1995.

[23] M. Helmert, “Concise finite-domain representations for
PDDL planning tasks,” Artificial Intelligence, vol. 173, no.
5-6, pp. 503–535, 2009.

[24] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning:
Theory and Practice. Morgann Kaufmann, Oct. 2004.

[25] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint
networks,” Artificial Intelligence, vol. 49, no. 1-3, pp. 61–95,
1991.

[26] A. Cesta and A. Oddi, “Gaining efficiency and flexibility in
the simple temporal problem,” Temporal Representation and
Reasoning, International Syposium on, vol. 0, p. 45, 1996.

[27] M. Nilsson, J. Kvarnström, and P. Doherty, “Incremental
dynamic controllability revisited,” in ICAPS, D. Borrajo,
S. Kambhampati, A. Oddi, and S. Fratini, Eds. AAAI, 2013.

[28] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and
F. Ingrand, “GenoM3: Building middleware-independent
robotic components,” in IEEE International Conference on
Robotics and Automation, 2010, pp. 4627–4632.

[29] B. Morisset and M. Ghallab, “Learning how to combine
sensory-motor functions into a robust behavior,” Artificial
Intelligence, vol. 172, no. 4-5, pp. 392–412, 2008.

[30] G. Infantes, M. Ghallab, and F. Ingrand, “Learning the
behavior model of a robot,” Autonomous Robots Journal, pp.
1–21, Oct. 2010.

