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Objectives
Mechanical point of view

Problems with large ratio between scales

Delamination of lamified composites plates
Plasticity at the basis of turbine blades
Large transformation – hyperelastic materials – buckling

Large number of dof (> 106), need to use domain decomposition methods to
conduct parallel computations.
Local phenomena may have a global influence (stress redistribution, large
displacements).
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Objective
Parallel adaptive computational strategy

Reuse of numerical information
Definition of a reduced model which
enables to accelerate computations (PGD
[Nouy., 2010], POD-Newton [Ryckelynck,
Chinesta, Cueto, and Ammar, 2006; Kerfriden,
Gosselet, Adhikari, and Bordas, 2011], Krylov
solvers [Gosselet, Rey, and Pebrel, 2011])

Verification
Expensive step which enables to validate
numerical results and provides remeshing
maps. (Parallel error estimation in
[Parret-Fréaud, Rey, Gosselet, and Feyel, 2010])
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Objective
Parallel adaptive computational strategy

Nonlinearities
Nonlinearity: it is handled by an iterative algorithm (Newton, ANM, Uzawa...)

which leads to the resolution of a sequence of global linear systems
(and Gauss point problems).

Domain decomposition: in order to decouple computations, interface connection
conditions between subdomains are reached by the convergence of an
iterative process.

What is the best way to nest loops ? first answers: LaTIn [Ladevèze, 1985; Ladevèze and
Nouy, 2003] Schwarz [Badea, 1991] and others [Cresta, Allix, Rey, and Guinard, 2007; Pebrel,
Rey, and Gosselet, 2008].
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Last remark

There are two philosophies to use non-overlapping DD to treat
a continuous problem (with surface nonlinearities)

(A) FE discretization (be-
havior is inside elements)

(B) DD splitting: inter-
faces connect subdomains
(constraints)

(C) DD interfaces have be-
haviors and own mechanical
unknowns

(D) (independent) dis-
cretization of subdomains
and interfaces

DD enables to model interface nonlinearities. One can compare the quality of the FE
solution between A and D, and the convergence speed between B and D.

First part of the talk is related to the left column, second part to the right.

Pierre Gosselet DDM / NL



Linear problems Nonlinear DD LaTin Conclusion References

Outlook

1 Brief reminder for linear systems

2 DD for nonlinar problems

3 The LaTIn method
Brief presentation
Application to delamination

4 Conclusion

Pierre Gosselet DDM / NL



Linear problems Nonlinear DD LaTin Conclusion References

Global discrete system

Ku = f

N-subdomain partitioning
Splitting between boundary dof (b subscript) and

internal (i subscript) u(s) =
⎛
⎝

u(s)i
u(s)b

⎞
⎠

Trace operator t(s) = (0bi Ibb) : t(s)u(s) = u(s)b

Introduction of the nodal reaction λ(s)b of neighbors on
subdomain (s)
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Condensation

Elimination of internal unknowns

⎛
⎝

K(s)ii K(s)ib
K(s)bi K(s)bb

⎞
⎠
⎛
⎝

u(s)i
u(s)b

⎞
⎠
=
⎛
⎝

f(s)i
f(s)b + λ(s)b

⎞
⎠

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(s)i = K(s)ii
−1

(−K(s)ib u(s)b + f(s)i )

(K(s)bb −K(s)bi K(s)ii
−1

K(s)ib )u(s)b = f(s)b −K(s)bi K(s)ii
−1

f(s)i

Schur complement S(s) = (K(s)bb −K(s)bi K(s)ii
−1

K(s)ib )

Condensed right hand side b(s) = f(s)b −K(s)bi K(s)ii
−1

f(s)i

Condensed subdomain equilibrium

S{uyb = by + λyb
(subdomain is a black-box)
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Description of interfaces

Set of shared nodes : Γ, injection operator A(s) from Γ(s) to Γ
Action-reaction principle writes:

∑
s

A(s)λ(s)b = (⋯ A(s) ⋯)
⎛
⎜
⎝

⋮
λ
(s)
b
⋮

⎞
⎟
⎠
= Ax

λyb = 0

Connection between nodes: Γ, Operator A(s) which satisfies

Range(AxT
) = Ker(Ax)

Continuity of displacement at the interface writes

∑
s

A(s)u(s)b = Axuyb = 0
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Few properties of assembling operators

Two-subdomain case:
Ax

λyb = λ(1)b + λ(2)b

Axuyb = u(1)b − u(2)b

Orthogonality:
AxAxT

= 0
Any boundary vector is the combination of a continuous vector and a balanced
vector:

∀xyb , ∃!(y, z) ∈ RΓ ×RΓ/ xyb = AxT
y +AxT

z

indeed

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z = (AxAxT
)
−1

Axxyb

y = (AxAxT
)
+

Axxyb
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Few words on pseudo-inverses

System Mx = b has a solution if b ∈ Range(M) ⇔ b ⊥ Ker(MT )
A pseudo-inverse of M satisfies

MM+b = b, ∀b ∈ Range(M)

Pseudo-inverse can be made unique when associated to optimization, for example
Moore-Penrose pseudo-inverse M† is the only to satisfy:

x = M†b⇔ { x = argminy∈V ∥y∥
V = argminz∈Rn ∥Mz − b∥

M† gives the minimal norm vector which minimizes the residual norm.
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Back to DD formulation

Condensed DD problem

Find (uyb ,λ
y
b ) /

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S{uyb = by + λyb
Ax

λyb = 0
Axuyb = 0

Primal formulation

uyb = AxT
ub

(AxS{AxT
)ub = Axby

Dual formulation

λyb = AxT
λb

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(AxS{+AxT
)λb = −AxS{+by +AxR{b α

y

R{
T

b (AxT
λb + by) = 0

R(s)b is basis of the kernel of S(s)
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Primal solver

One seeks iteratively ub defined on Γ. At iteration k, we have

S{AxT
ubk − by = λybk

Ax (S{AxT
ubk − by) = rpk = Ax

λybk

Iterative solver residual is the lack of balance of interface tractions

Neumann-Neumann preconditioner

(AxS{AxT
)
−1

≃ AxT +
S{+Ax+

Coarse problem
It ensures that all Neumann problems are well posed.

R{
T

b Ax+
rpk = R{

T

b Ax+
Ax

λybk
= 0

It adds a global component to the preconditioner, it enables to satisfy Saint-Venant’s
principle and makes the method scalable.
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Dual solver
Same philosophy:

balanced reaction defined on Γ is iteratively sought
the unknown satisfies the constraint of equilibrium of subdomains (coarse
problem)
residual is the displacement gap between subdomains

Dirichlet Preconditioner

(AxS{+AxT
)
−1

≃ AxT +
S{Ax+
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Assembling operator pseudo-inverses / scaled assembling
[Klawonn and Widlund, 2001]

Primal

AxAx+
= I

Ax+
= X{AxT

(AxX{AxT
)
−1

Dual

AxAx+ = I

Ax+ = Y{AxT
(AxY{AxT

)
+

Conjugation

if Y{ = X{−1

AxT
Ax+T

+Ax+
Ax = I{

Usually

X{ is diagonal : X{ = I{ or X{ = diag(K{) or better (material stiffness).
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2 DD for nonlinar problems

3 The LaTIn method
Brief presentation
Application to delamination

4 Conclusion
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Discrete nonlinear problem

Global problem
Small perturbation assumption, for one time increment the problem writes:

fint(u) + fext = 0

history (internal variables) is not shown but can be taken into account

Classical resolution
Use of a Newton solver

∂fint

∂u
(uk)δu = − (fint(uk) + fext)

uk+1 = uk + δu

Each iteration is a global linear to solve (with DD). Resolution can be strongly slowed
down if an ugly local phenomenon occurs (buckling, damage) [Cresta et al., 2007].
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Discrete nonlinear problem

Global problem
Small perturbation assumption, for one time increment the problem writes:

fint(u) + fext = 0

history (internal variables) is not shown but can be taken into account

Substructured version

Find (uy,λyb ) such that

fyint(uy) + fyext + t{T
λyb = 0

Ax
λyb = 0

Axuyb = 0

where the dependency is only local f(s)int (u(s))
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Primal condensation

Find ub ∈ RΓ such that
⎧⎪⎪⎨⎪⎪⎩

fyint(uy) + fyext + t{T
λyb = 0

t{uy = AxT
ub

Ax
λyb = 0

If the local Dirichlet system possesses a unique solution, we can define Operator S(s)nl

λ
(s)
b = S(s)nl (A(s)

T
ub ; f(s)ext )

which is a nonlinear version of the Schur complement; it computes the reaction
associated to an imposed displacement. It can be computed in the linear case:

S(s)l (u(s)b ; f(s)ext ) = S(s)t u(s) − b(s)

The primal nonlinear condensed system writes

Find ub ∈ RΓ such that AxSynl (AxT
ub ; fyext) = 0
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Dual condensation

Find λb ∈ R
Γ such that fyint(uy) + fyext + t{T AxT

λb = 0
Axt{uy = 0

For local Neumann problem to be well-posed, we need to ensure that

R{T (fyext + t{T AxT
λb) = 0

Then we can define Operator D(s)nl

u(s)b = D(s)nl (A(s)
T
λb ; f(s)ext ) +R(s)b α(s)

which is a nonlinear version of dual Schur complement, it computes the displacement
associated to given reaction (up to a rigid body motion). It can be computed in the
linear case:

D(s)l (λ(s)b ; f(s)ext ) = S(s)t
+
(λ(s)b + b(s))

The dual nonlinear condensed system writes

Find λb ∈ R
Γ,αy such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ax (Dy
nl (AxT

λb ; fyext) + t{R{αy) = 0
R{T (fyext + t{T AxT

λb) = 0
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Mixed condensation

We can introduce a new interface field µyb = λyb +Q{
b uyb which leads to use Robin

boundary conditions on the interface. Interface impedance (virtual stiffness, SPD
matrix) Qb is a parameter.

Find µyb ∈ Ryb so that fyint(uy) − t{
T

Q{
b uyb + t{

T
µyb + fyext = 0

AxT
(AxQ{

b AxT
)
−1

Ax
µyb − uyb = 0

We introduce a mixed nonlinear Schur complement

u(s)b = M(s)nl (µ(s)b ; f(s)ext ,Q
(s)
b )

Find µyb ∈ Ryb such that

AxT
(AxQ{

b AxT
)
−1

Ax
µyb −My

nl (µ
y
b ; fyext ,Q

{
b ) = 0
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Mixed condensation
Alternative mixed condensation

Another formulation is possible, since:

∀xyb ∈ Ryb ,∃!(y, z) ∈ RΓ ×RΓ/xyb = Q{
b AxT

z +AxT y

indeed
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z = (AxQ{
b AxT

)
−1

Axxyb
y = (AxQ{

b
−1AxT )

+
AxQ{

b
−1xyb

so that we can rewrite µyb in terms of balanced force λb and continuous displacement
fields ub :

µyb = AxT
λb +Q{

b AxT
ub
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Resolution of condensed nonlinear system
Primal case

Find ub ∈ RΓ such that AxSynl (AxT
ub ; fyext) = 0

Newton’s solver

⎛
⎝

Ax (
∂Snl
∂ub

)
ub k

AxT ⎞
⎠
δub = −AxSynl (AxT

ubk ; fyext)

ubk+1 = ubk + δub

Right hand side: the computation of the residual is the parallel computation of
Dirichlet problems and computation of the interface reaction lack of balance.
Left hand side: tangent operator is a primal DD operator, it can be computed by
the condensation of subdomains’ tangent stiffness.
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First outcome

Algorithm
Evaluation of NL residual = independent subdomains computations (with various
BC’s)
Tangent system = DD-like system (assembling of local condensed operators
obtained from tangent stiffness)

Part of the treatment of the nonlinearity is then brought back to the level of the
subdomains.

About BC’s
For linear problems, all formulations are equivalent (tangent systems can be
changed from one formulation to another).
For nonlinear problems, BC’s have a strong influence (especially if instabilities are
possible), they are not equivalent, performance can be much varying.
For mixed systems, impedance Qb must be fitted [Gendre, Allix, and Gosselet, 2011].
For dual formulation, specific (classical) treatment of floating subdomains is
necessary.

Parameters
Many thresholds have to be set-up: global and local Newton, Krylov solver.
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First results (primal)

Influence of initialization

Initialization has almost no influence.
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Influence of the precision of local resolutions

Good local precision diminishes the number of global iterations.
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Influence of the precision of local resolutions

Good local precision diminishes the number of global iterations.

Au delà d’un seuil la précision du solveur de Krylov ne joue plus
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Scalability

CPU time speedup
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Results (dual)
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Influence of initialization

Influence on global residual Influence on the local residual of first
subdomain

Beyond a threshold, the precision of initialization has no more influence.
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On the risk of instabilities
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Results (mixed)
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Conclusion on DD for NL problems

The solution to a nonlinear problem can be split into the solution of parallel
nonlinear systems per subdomains and tangent interface systems.
The interest is that less tangent systems have to be solved (less exchanges).
The use of different formulations (primal/dual/mixed) leads to different
performance.

Proof of convergence seems easy for material with positive hardening.
For other cases, the shape of the subdomain has an influence on the stability.
Extra difficulty for the handling of floating subdomains in large transformations.
Currently working on the setting up of the respective precisions of solvers.

Other problem: definition of load balancing (maybe using adaptation).
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The LaTIn method
The Large Time Increment method

A method [Ladevèze, 1985] designed since the beginning for nonlinear problems
small transformations, elastoviscoplastic behavior (hardening X, thermodynamic
force Y), under normal form (ε̇p ,σ, Ẋ,Y):

Linear equations
SA ∫Ω σ ∶ ε(u∗) = ∫Ω fu∗ + ∫∂f Ω Fd u∗, ∀u∗ CA0
KA u = ud on ∂uΩ, ε(u) = εe + εp

State σ = K ∶ εe et Y = A ∶ X
Initial conditions
Point-wise equations (in space and time)

(ε̇p , Ẋ) ∈ B (σ, Y)

Use of a standard FE method on u.
The whole time-space solution is iteratively sought.
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Two-step iterative algorithm
“Local” step

Independent per Gauss point and time step
Parameter: search direction K+ (influence of neighborhood on the point)
Nonlinearity handled by a Newton

Linear step
Linear structure-large system at each time step.
Parameter: search direction K− (approximate linear behavior)

Intelligent handling of time by PGD [Ladevèze,
Nouy, Passieux,...]
Convergence proved if B max. monotone,
K+ = K− SPD, convergence observed in many
cases
Cheap iterations (global matrix is constant)
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Domain decomposition

Interface unknown
Traction on the boundary of substructures FE
Interface displacement WE

Interface equation
Traction balance FE + FE ′ = 0 (linear equation)
Behavior FE = bEE ′ (WE −WE ′ , XEE ′)

For standard behaviors (perfect, contact, friction), LaTIn hypothesis are satisfied
(ε̇p ,σ

E
, ẊE ,YE , ẆE ,FE).

Interface fields WE et FE are discretized.
WE = trace(uE ) linear
FE = σ

E
.nE linear

Rq: Discretizing FE is complex, we are currently
investigating a strategy inspired form [Bernardi, Rebollo,
and Vera, 2008].
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Local step
Behavior within substructures (parameter K+

E )
Behavior and balance of interfaces (communications between neighboring
interfaces) extra parameter k+E

(FE − F̂E ) + k+E (WE − ŴE ) = 0

Nonlinearity handled by Newton solver

Linear step
Equilibrium of substructures (fake behavior K−

E )
Trace relation with interfaces
Closing...
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Monoscale closing of linear step
Extra parameter = interface search direction k−E (approximate behavior of the rest of
the structure)

(FE − F̂E ) − k−E (WE − ŴE ) = 0
≃ Robin condition on the interface
No exchange between subdomains

Multiscale closing of linear step

Macro spaces for displacement WM and tractions FM

Verification of macro-balance ∫ΓEE ′
(FE + FE ′) .W

M∗ = 0

If it exist macro behavior FM
E = bM

E (WM
E −WM

E ′)

macro search direction k−E
M is verified at best (if no macro behavior exists)

micro search direction k−E
m

Small-size exchanges between subdomains, scalability
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Usual macro spaces

The macro spaces are constituted by the affine part of interface fields. This (large)
space includes subdomains’ rigid body motions and then enables to satisfy Saint
Venant principle. [Ladevèze and Dureisseix, 2000].

Figure: Base macro usuelle WM

Usually traction and displacement macro basis are chosen identical.
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Summary on LaTIn

Both computation and modeling method (interfaces can bear mechanical
behaviors)
Nonlinearity is treated at the smallest possible scale.
Sort of modified Newton (constant matrix) with additional local search direction.
Strongly parallel method (computations independent per Gauss point or per
substructures) but convergence may be slow.
In some cases relaxation is required to prove convergence.
Many ways to improve the method:

search direction
macro-displacement space WM

macro-traction space FM

difficulties linked to the discretization of interface tractions
usual macro space is very large
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Pierre Kerfriden’s PhD thesis
Meso-modeling of composites
Implementation of a cohesive
interface [Allix and Ladevèze,
1992]
Adapted substructuring
Incremental version

Many substructures
Expensive macro problem
Slow convergence when delamination
progresses
Problems associated to critical points
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First difficulties

Search directions
Setting up of an adaptive strategy for search directions according to interface
status (perfect, damaged, ruined, contact).
When possible (perfect and non-damaged interfaces) verification of the macro
behavior.
frequent update of macro-operators

Resolution of the macro problem
the macro problem is discrete, linear and sparse, it corresponds to a mechanical
problem with homogenized substructures. We solve it using a BDD approach.
subdomains are gathered into super-subdomains.
iterative solution at super-interfaces.
introduction of a third scale (BDD coarse problem)
multiple right-hand-side technique for the successive resolutions
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holed plate [0/90]s

3.4 106 micro dof
12 103 macro dof
12 super-substructures

Low precision required
Large grain parallelism
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Pertinence of the macrospace

Problems
Classical macro basis does not capture long range effects associated to stress
concentrations near the delamination front.

Ð→ loss of scalability
No enrichment of the basis (like [Guidault, Allix, Champaney, and Cornuault,
2008]) seems satisfying.
Even if an optimal basis was found, it would no more be valid as soon as the
front has progressed.

Interface phenomena are too violent to be correctly evaluated at a short distance.
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Sub-iteration box
Solution to a nonlinear problem around the delamination front (using LaTIn).
Robin conditions to connect to the rest of the structure.
The singularity is filtered so that the classical macro-basis on the boundary of the
box is sufficient.
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Restoring scalability

The number of iterations
becomes independent of the
delamination state.
CPU time is significantly
decreased.
The size of the box is a
parameter, the optimal size (in
order to minimize iterations)
depends on the shape of the front
(not of the structure).
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Beyond instabilities

Snapbacks and snapthroughs
Arclength algorithm
Control of loading by maximal
increase of damage
Auto-adaptation of time step
according to the strength of the
nonlinearity to follow the path
associated to a fine solution.
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12.106 dof 11.103 substructures, 300.103 macro dof,
30 super-substructures, 150 super-macro dof
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Conclusions on the LaTIn method

Due to the slenderness of plates, using DD interfaces as the support of
delamination leads to non-natural substructuring and large macro problems.
The gathering of substructures enables an efficient solving to the macro problem,
with convenient level of parallelism.
The point-wise treatment of nonlinearity leads to difficulties because the scale of
the nonlinearity is not the scale of its effects.
For delamination a more suited scale is the one of the "subiterations" box which
enables to filter long-range effects.
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Conclusion

Scale of treatment of nonlinearities
Either starting from the LaTIn method where we do upscaling or from
Newton-Schur where we do downscaling, it is possible to treat nonlinearities at
the scale of substructures.
This local treatment is very interesting to diminish the number of exchanges, to
increase the loading increments, to filter too violent singularities.
Theoretical results are missing if we do not have monotone behaviors (positive
hardening), and problematic cases can be imagined (dependence on the shape of
the subdomains, branching to bad solutions). Large transformations also set
well-posedness issues (wrt rigid body motions).
To minimize the risks and improve performance, we must provide good
representation of the rest of the structure to subdomains, which is done by using
Robin bc’s (with well chosen impedance) and macro (coarse) problems.
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Discretization of interface forces

Instead of discretizing traction F on interface Γ, we use Riesz theorem in H1/2

∃T ∈ H1/2(Γ), ∫
Γ

FW∗ = ⟨T,W∗⟩

⟨T,W∗⟩ = ∫
Γ

TW∗ +∬
Γ×Γ

(T(x) −T(y)) (W∗(x) −W∗(y))
∣x − y ∣d

dxdy

T can be discretized like W.

This strategy leads to complex computations with dense interface matrices
We currently work on simpler quadrature for the integration.
This strategy leads to convergence rate independent of the discretization of the
interface (parameter h).

Pierre Gosselet DDM / NL


	Brief reminder for linear systems
	DD for nonlinar problems
	The LaTIn method
	Brief presentation
	Application to delamination

	Conclusion
	References

