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a LUNAM Université, Université Catholique de l’Ouest, LARIS EA7315, Angers, France
3 Place André Leroy F-49008 Angers, France

b SNCF, Innovation and Research Direction
40, Avenue des Terroirs de France, F-75611 Paris CEDEX 12, France

1 E-mail: olivier.guyon@sncf.fr, Phone: +33 (0)1 57 23 62 74

Abstract
In this paper, we describe a method to solve the passenger crew scheduling problem for
SNCF (the French national railway company). From rolling-stock rosters, the primary ob-
jective of the problem we address is to build shifts to maximize the number of trains that
are assigned to drivers. Other objectives are mainly concerned with limiting the number of
times where drivers have to rest away from their home, and with minimizing taxi trips. The
problem is solved with a day-by-day approach, while guaranteeing a consistent chaining on
consecutive days for shifts which include an external rest for drivers. Each day, a set of
shifts is first generated according to regulation and business rules using a depth-first search
algorithm. Then an iterative procedure based on a Lagrangian heuristic is used to solve the
resulting set packing model. This procedure relies on a three-step algorithm: a subgradi-
ent method, a constructive heuristic and a fixation technique for selecting efficient shifts.
The algorithm has been implemented in a proprietary software module: PLAISANCE. Nu-
merical experiments have been performed on several real-life instances with up to 2,300
passenger trains to schedule. The results correspond to the business requirements and prove
the effectiveness of the described method.

Keywords
Crew Scheduling, French, Railways, Set packing

Introduction

SNCF (the French national railway company) is faced regularly with building shifts for its
drivers. Scheduling problems dealing with human resources are mostly strongly combinato-
rial and require the use of optimization techniques. Through years, many models, resolution
techniques and software tools applied to varied domains have been developed to solve this
kind of problems (Ernst et al., 2004). Different criteria such as the quality of service, the
cost, or the robustness to accommodate delays have been used to determine the quality of a
planning. Among resource planning problems of railway companies, scheduling the shifts
of drivers is an important issue. Taking advantage of OR techniques, we report about a
new planning tool (PLAISANCE) for passenger train drivers at SNCF. The passenger train
driver planning problem is complex and therefore classically divided into a crew scheduling
problem and a crew rostering problem, while respecting all working constraints. In this
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paper, we restrict our attention to the crew scheduling problem which consists in finding an
optimized set of shifts.

The paper is organized as follows. Section 1 describes the driver planning problem of
the french national railway operator. Section 2 reviews the literature. Section 3 presents the
solution of this problem. Computational results are given in Section 4. Finally, Section 5
draws some conclusions and describes future extensions.

1 Problem description

The planning process at SNCF (see Figure 1) typically starts from planning train paths and
goes further on to planning rolling stock and train drivers. First, on demand estimation basis,
public services and marketing department design lines with an associated frequency. Lines
consist of a route with potentially stops between the departure and the arrival stations. Then,
train paths are defined under economic considerations. In the next phase of the planning
process, a rolling stock unit is assigned to each train. Driver scheduling comes last: legal
work are built in such a way that each train has an assigned driver. Constraints control the
construction of these shifts as well as their chaining on consecutive days.

This paper deals only with the last part of this process. The train driver scheduling
problem at SNCF is defined as follows.

Each train is characterized by a departure time, a departure station, an arrival time and
an arrival station. The rolling stock unit used to operate the train is known as well as the
traveled line. Trains are passenger trains and also empty trains that are useful to reposition
rolling stock units between locations. Each train has to be assigned to one unique driver
from its departure station to its arrival station. Multiple units trains are considered as one
single train that has to be assigned to one driver.

In some cases, drivers can take trains as passengers to move to another location so that
they can drive their next train. We refer to this kind of trip as a travel as passenger. Travels
as passenger are especially useful for bringing drivers to their depot before sign off. For
some French regions, 30% of the current shifts involve at least one travel as passenger. In
worst case, taxi trips can also be used to reach some locations, especially when train service
is infrequent or to travel between two stations not easily reachable by train. We use a list of
all possible trips that a driver is allowed to take to travel from one station to another one.
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Figure 1: The planning process at SNCF
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A shift is the daily work to be performed by a driver. It is composed of driving work
and auxiliary work (sign-in and sign-off activities, meal and compulsory breaks, travels as
passenger, taxi trips). Driving work are composed of sequence of trains. Driver home bases
are called depots. A driver roster is defined as a group of drivers with the same skills in
terms of rolling stock units and lines they can operate. These skills are referred as traction
knowledge and line knowledge. Multiple driver rosters can be associated to one depot.
Individual drivers are not explicitly considered in the planning; we focus only on driver
rosters. The capacity of each driver roster is known and has to be respected.

Building daily shifts that bring back driver to their home depots is not always possible.
In this case, drivers rest next to the final station of their shift. The term external rest is
used to refer to this kind of situation. Drivers cannot rest away from their home twice in a
row. The next day, they have to be assigned to shifts which bring them back to their depot.
Therefore, shifts can be split into three categories:

• Round shift : a shift which starts and finishes at the same depot.

• Outward shift : a shift which starts at a depot and finishes at either a depot different
from the previous one or at a station.

• Return shift : a shift which starts either at a depot or at a station and finishes at a
depot different from the previous one.

A shift can be at the same time an outward shift and a return shift according to the driver
roster which is taken into account. Outward and return shifts involve an external rest for
drivers. We define a pairing as the combination of an outward shift A and a return shift B if
A and B are related to consecutive days, the departure depot of A is the same as the arrival
depot of B, and the arrival station of A is the same as the departure station of B. In the
remainder of the paper, a driver schedule relates to either a round shift or a pairing. Saying
that a driver schedule cover a train means that the train is part of the driving work of this
schedule. Similarly, a train is said covered if it is part of a built driver schedule.

Shifts and pairings have to respect union agreements. The total working time of a shift
is computed according to the type of work to operate. For example, the duration of a travel
as passenger is not taken fully into account in the working hours as well as for some types
of breaks. Therefore, the total working time may not be equal to the length of a shift. Some
regulatory constraints are summarized below:

• The maximum length for a shift is 11 hours or 8 hours if a work occurs during the
night period [22h,6h].

• The total working time cannot be less than 5 hours. It cannot exceed 9 hours or 8
hours if it includes more than 1h30 of work in the interval [23h,6h]

• In a shift, at most one rest break lasting more than one hour is authorized.

• A meal break is required if the total driving time exceed 8 hours. It can only be
planned between 11h30 and 13h30 or between 18h30 and 20h30. Drivers must have
meal in the stations equipped with a micro wave.

• In a pairing, the difference between the end of the outward shift and the beginning of
the return shift cannot be less than 9 hours.
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• The number of pairings assigned to a driver roster is bounded for each day.

Facing a multi-objectives optimization, a lexicographical order is used for ranking these
objectives. Given rolling-stock planning, the problem consists in building regulatory shifts
such as to maximize, as a priority, the number of trains covered by a driver schedule (a
round shift or a pairing). The secondary objectives deal with the quality of the schedules.
Having too many pairings is extremely expensive (accommodation costs, extra-work costs)
and is therefore penalized, although their number are bounded. Coupling between drivers
and rolling stock units are targeted to obtain more robust solutions. Taxi trips are also
penalized.

2 Literature review

The train driver scheduling problem is a classic problem of the railway industry. More
generally, it is known as a Crew Scheduling Problem (CSP). This type of problems consists
in building daily legal works for crews in such a way that each train, flight or bus trip
included in the model has an assigned crew. Objectives deal mainly with cost or/and crew
number minimization. The Crew Pairing Problem (CPP) may be seen as a special case of
the first problem: shifts or sequence of shifts have to bring crew back to their home depot.
Train driver scheduling at SNCF is a Crew Pairing Problem. The Crew Rostering problem
(CRP) consist in planning the weekly or/and monthly work of each individual driver. The
number of drivers required to operate on the shifts is sometimes minimized. Costly-based
objectives may be still used. Crew planning management consists in both a CSP and a CRP.
Our study focuses only on the CSP part.

CSP has been widely studied. The Bus Driver Scheduling Problem has been the first one
on which researches have focused since the 1960s. The assignment of crew to planes is also
quite similar to the one of railways. However, Crew Scheduling Problems in the railway sec-
tor cannot generally use the techniques developed for these transportation systems or cannot
be adapted to other means of transport: network and the union agreements constraints are
often too specific. CSP in the railway industry are known to be complex and NP-hard. In
spite of this complexity and the size of the problems occurring in the railroad world, solu-
tion strategies have been widely proposed for improving the related solution quality.Finding
optimal solutions is not prioritized, resolution times being often prohibitively high.

Generate-And-Select approach is a classical method used to solve crew scheduling prob-
lems. A part or all of the regulatory shifts are first generated. Additional rules may be
incorporated to reduce the pool of generated shifts. A set covering model is next solved:
shifts are selected to meet the problem requirements. Various techniques for solving SCP
were proposed in the literature (Caprara et al., 2000). It may be impossible to generate
thoroughly the entire pool of shifts for real-life instances. Column generation is then used
to solve the problem by generating shifts on the fly. Successive iterations between gener-
ation and selection stages allow to limit the combinatorial explosion. The shift generation
stage associated with the pricing problem matches with a shortest path problem with re-
source constraints, which can be solved using a pseudo-polynomial labeling algorithm. The
following researches are mainly based on this technique.

The Dutch company NS Reizigers addresses Crew Scheduling in railways since 1990s.
A software called CREW has been used initially. Planning generation was based on a search
tree using A*-algorithm. An optimization software called TURNI has been developed in the
early 2000s. The problem is modeled as a set covering problem (Kroon and Fischetti, 2000).
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TURNI system is based on a technique introduced by Caprara et al. (1999b). It combines
column generation, Lagrangian relaxation and heuristics. A strong-coupling is desired be-
tween drivers and train trips, so unnecessary train changes are penalized or bounded. A sys-
tem called LUCIA software is currently used by NS Reizigers. Based on the same principles
than TURNI, pricing sub-problems and parts of the master problem may take advantage of
parallelization (Abbink et al., 2011). Instances with up to 15000 trips can be solved.

Caprara et al. (1999a) study the problem for Ferrovie dello Stato Italiene SpA, the pub-
lic italian rail system company. A CPP is described and modeled as a SCP. The resolution
technique is based on a previous work (Caprara et al., 1999b). A depth-first search builds
all regulatory shifts. Heuristic choices are introduced to speed up the process. The algo-
rithm iterates between three steps. A subgradient step is first executed to find near optimal
Lagrangian multipliers. Then, an heuristic produces feasible solutions. Pairings are scored
according to their cost and the Lagrangian multipliers associated with the trains operated in
the pairing. A list algorithm based on these scores produces solutions. Finally, some effi-
cient shifts with high probability to be part of the optimal solutions are fixed as elements of
the solution. A new iteration begins afterwards on the resulting problem. Instances with up
to 5000 trips are reported to be solved in a reasonable amount of time. Caprara et al. (2001)
improve the pairing generator and develop a method to optimize jointly CSP and CRP in a
single stage.

Japanese company Carmen, a subsidiary firm of Boeing, has designed a complete system
for airline CRP. This system has been tested for some railway applications, in particular the
German state railways Deutsche Bahn (Kohl and Karisch, 2004; Bengtsson et al., 2007). It
exploits a rule modeling language. The SCP is solved with a Dantzig-Wolfe decomposition.
Pairings are generated dynamically when solving the pricing sub-problem. However, this
sub-problem may be time-consuming. An improved k-shortest path algorithm is therefore
used along with a resource merging technique. Lower and upper bounds are respectively
computed using a subgradient method and a dual-ascent heuristic coupled with a connection
fixing strategy.

A crew scheduling system called TrainTRACS has been developed by the University of
Leeds and has been proven to be efficient for the UK rail industry (Kwan et al., 2001). It
consists in a Generate-And-Select approach. A large set of shifts are first generated. The set
covering model is then solved with column generation associated with a branch-and-bound.
Kwan and Kwan (2007) present an hybrid technique to explore efficiently the search space
when finding integer solutions.

Yaghini et al. (2013) propose a matheuristic technique to solve the SCP. It consists of
a LP-based neighborhood structure embedded in a tabu search. This method is applied to
face the train driver scheduling problem of the Iranian railways. The shift generation is first
performed with a breadth-first search strategy. In one hour, instance with approximately
3.000 trips are solved very efficiently.

Ernst et al. (2001) define a specific model to manage crew scheduling for Australian
railways. All feasible shifts are first generated and the integer model is directly solved
taking advantage of the sparseness of the network.

Metaheuristics have also been used. Cavique et al. (1999) design a tabu search for
Lisbon Underground using a subgraph ejection chain method. Li (2005) presents a genetic
algorithm associated with a fuzzy evaluation which depends on some shifts features.
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Most planning systems are based on a set covering model. However, schedules produced
with such a model may contain overlapping shifts: some trains trips are covered by more
than one selected shift. Travels as passenger are then used to get out of these situations. The
conflicted train trip is maintained in only one shift and considered as a travel as passenger
for the other shifts. However, shifts must be still valid with these transformations. This
works only if removing the overcovered train trips from all of the shifts except one leads to
still valid shifts. This is not verified for the french national railway company and that’s why
we do not consider overlapping train trips as passenger travel. Additionally, the problem
may be restricted if traction and route knowledge are defined. Indeed, in this situation, a
driver cannot be passenger of a train he cannot be assigned as a driver. All studies dealing
with a set covering modelization are therefore not relevant for us. As a result, we propose a
particular set packing model for the problem described in section 1.

Freight train drivers scheduling have already been studied at SNCF (Djellab and Bion-
nier, 2011). The CARACO prototype is based on a column generation technique. Crew
Rostering problem is then solved with a method combining a constructive heuristic with
a local search. This work does not apply very well for the passengers transport. First of
all, travels as passenger are not explicitly considered in the model; only estimated travel
times are used to facilitate some connections in the network. Moreover, when a shift cannot
be fitted with other shifts to form a pairing, an artificial shift is created. To prevent these
drawbacks, we address simultaneously the shift and pairing generation phases.

3 PLAISANCE driver scheduling system

In this section, we present the PLAISANCE driver scheduling tool developed for solving
the problem described in section 1.

The time horizon is one week. Because of the size of the problem (see Table 1) and
to prevent lack of memory with our approach, we first decompose the weekly problem into
daily sub-problems. Figure 2 describes such a decomposition. The day associated with each
sub-problem is represented by a red line. It means that the sub-problem focuses only on the
trains circulating during this day in the objective function. Pairing used for a sub-problem
can only involve trains circulating on the days associated with the black arrow. The process
starts by optimizing sub-problem P1. Then we freeze the selected shifts (round shifts or
shifts associated with pairings), and we optimize the problem P2 in which all the trains of
day 2, that are not retained on the solution of P1, are included as well as those of day 3. We
repeat the same scheme until all days have been optimized. Of course, splitting the problem
in several daily sub-problems leads to suboptimal solutions.

In order to take drivers days-off, vacations, and training courses into account, an upper
bound is settled for each driver roster to limit the number of shifts that can be daily assigned
to it. This upper bound is a linear function of the capacity of the roster, and helps to fix the
number of pairings allowed for each driver roster. This technique is currently used by SNCF
experts and feasible solutions have always been guaranteed. This upper bound is very useful
for our process.

In the following sections, a two-step approach is proposed to solve each daily sub-
problem described above. Let j be the day associated with the sub-problem to be solved
(represented by a red line in Figure 2). First, a pool of regulatory driver schedules (round
shifts and pairings) is generated. Then a set packing problem is solved to select these
schedules according to the primary objective which is to maximize the number of trains
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Figure 2: The separation in periods of the planning process

that are assigned to drivers. Secondary objectives are taken into account at the end of the
second stage.

3.1 Generation stage : a depth first search customized with some heuristics

The generation stage is divided in two parts. At first, all regulatory shifts are generated
using a depth first search. The generation is conceptually based on the time-indexed graph
depicted in Figure 3. In this graph, vertices are associated with stations time-indexed on
the periods related to the time horizon, while arcs correspond to driving or auxiliary works
performed by drivers, and temporally consistent. These arcs are partitioned in three types :
waiting, train and connection, relating respectively to waiting or rest periods at stations, to
driving work or travels as passenger, and to the minimum time required between two trips.
Secondly, legal pairings are built with outward and return shifts that can be paired. A pool
of valid driver schedules is the result of this stage.

Reducing the pool of generated schedules
A statistical study has been performed to identify some additional operational rules allowing
to limit the number of shifts and pairings generated in the first stage. For example, the
number of travels as passenger and taxi trips authorized in a shift are bounded. An outward

Station 1

Station 3

Train arc

Connection arc

Waiting arc

Time-indexed

Time

Station 2
station vertex

Figure 3: Activities network for shifts generation
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shift (resp. a return shift) cannot finish too early (resp. too late). In a pairing, the difference
between an outward shift and the beginning of a return shift cannot exceed X hours. Most
of the generated shifts include an external rest. Because pairings generation is subject to a
combinatorial explosion, having too much shifts including an external rest is undesirable.
Additionally, a filter is implemented to limit the number of pairings. A pairing is generated
only if it covers a train which is included in less than θ already generated schedules. The
parameter θ has been fixed experimentally. Furthermore, taxi trips inventoried in a pre-
specified list are not allowed.

Building additional schedules
Sometimes, some trains remain uncovered by the current pool of schedules (round shifts
and pairings) or are to insufficiently covered according to the parameter θ (they are part of
less than θ driver schedules). In this case, some heuristics are applied to generate additional
relevant schedules. Operational rules are first removed. If some trains still remain uncov-
ered, drivers are allowed to take all trains that are part of the problem as passenger and not
only those in the pre-specified list. Finally, taxi trips are included in the generation.

3.2 Selection stage : an iterative Lagrangian relaxation heuristic

The selection stage of our approach can be formulate as an integer linear programming
problem. Let V be the set of trains involved in the problem to solve (trains operating on
the days associated with the black arrow in Figure 2) and R the set of driver rosters. The
capacity of each driver roster r ∈ R is ηr and the maximum number of pairings allowed is
η̄r . Denote E the set of all driver schedules (round shifts and pairings) generated at the first
stage. Let Ve be the pool of all trains covered by a driver schedule e ∈ E and pe be equal
to 1 if schedule e is a pairing. We introduce similarly Ev the set of all schedules covering
train v ∈ V , and Er as the set of all schedules associated with the driver roster r ∈ R. By
construction, E satisfies that for each r1, r2 ∈ R, Er1 ∩ Er2 = ∅. Furthermore, the binary
decision variables xe indicate whether a driver schedule is selected or not. ce is the number
of trains operating during day j covered by schedule e ∈ E. Our problem is modelled as a
set packing with some additional constraints :

[TPP ] max
∑
e∈E

cexe (1)∑
e∈Ev

xe ≤ 1 ,∀v ∈ V (2)

∑
e∈Er

xe ≤ ηr ,∀r ∈ R (3)

∑
e∈Er

pexe ≤ η̄r ,∀r ∈ R (4)

xe ∈ {0, 1} ,∀e ∈ E (5)

The objective function (1) represents the number of trains operating during day j cov-
ered by the selected driver schedules. Set packing constraints (2) prevent trains to be part of
more than one selected schedule. Constraints (3) and (4) limit respectively the number of
schedules and the number of pairings that can be assigned to each driver roster. [TPP ] is
solved using an iterative technique adapted from the heuristic method presented by Caprara
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et al. (1999b) and based on Lagrangian relaxation. The main part of the algorithm, that we
will note ILH, is summarized in procedure 3-PHASE. Notice that we use globally the same
notations as in the original article.

Procedure 3-PHASE
Let Ω be the problem to solve
Let x∗ be the best solution found by the algorithm
Denote ε the desired precision
UB ← +∞, LB ← −∞
repeat

Apply subgradient phase to Ω
Update UB if a better upper bound is found
Compute near-optimal Lagrangian multiplier vector u∗

Apply heuristic phase to Ω
From u∗, build feasible solutions using procedure greedy(E,u∗)
Update x∗ and LB if a better solution is found
Apply fixing phase to Ω
Fix xe variables to 1 for some relevant schedules
Ω← the resulting sub-problem.

until Ω = ∅ or UB − LB ≤ ε;

Subgradient phase: getting upper bounds
The first phase of the algorithm is based on a Lagrangian relaxation of our model (1)-(5).
Constraints (2) are dualized. For every vector u ∈ R|V |+ of Lagrangian multipliers associated
with the constraints (2), the Lagrangian sub-problem noted [LPu] reads :

L(u) = max
∑
e∈E

ce(u)xe +
∑
v∈V

uv (6)∑
e∈Er

xe ≤ ηr ,∀r ∈ R (7)

∑
e∈Er

pexe ≤ η̄r ,∀r ∈ R (8)

xe ∈ {0, 1} ,∀e ∈ E (9)

where ce(u) = ce −
∑

v∈Ve
uv denotes the Lagrangian cost of driver schedule e ∈ E.

Clearly, [LPu] can be split into |R| independent sub-problems denoted [LPu]r. We paral-
lelize therefore the resolution of the Lagrangian problem in our experiments. [LPu]r is a
particular 0-1 knapsack problem with two constraints. Indeed, constraint (7) limits only the
number of schedules that can be part of the solution and constraint (8) bounds the number
of pairings allowed. Finding an optimal solution to [LPu]r is therefore quite easy. Let E+

r

be the set of all schedules with a strictly positive Lagrangian cost. We set xe = 1 for the
driver schedules in E+

r with the highest values ce(u) as long as the constraints (7) and (8)
are satisfied. For all other driver schedules e ∈ Er, we fixed xe = 0.

This phase gives a valid upper bound for the problem. It produces also a near-optimal
vector of Lagrangian multipliers whose information is useful to discriminate relevant driver
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schedules. We solve the Lagrangian relaxation of our model by a standard subgradient
method. We introduce the subgradient vector s(u) = 1−

∑
v∈V xe(u) where xe(u) denote

the optimal solution of [LPu]. The subgradient method produces a sequence u0, u1, .. of
vectors of Lagrangian multipliers computed by the following formula :

uk+1
v = max

{
ukv − λk

L(uk)− LB
‖s(uk)‖2

s(uk), 0

}
(10)

where λ ∈]0; 1[ is a given parameter and LB is a lower bound of the optimal value of
[TPP ]. At the first iteration, LB is computed with a basic listing algorithm. LB is then
equal to the best solution founded so far.

Notice that if the generation stage produces too much schedules, schedules with the low-
est Lagrangian costs ce(u) at the end of the subgradient algorithm are removed. However,
it does not happen in our experiments.

Heuristic phase : building feasible solutions
From the near-optimal vector u∗ of Lagrangian multipliers found in previous phase, a pool
of vectors U is generated applying subgradient method with a specific Lagrangian multi-
pliers update. Afterwards, for every vector u ∈ U , a score SCORE(e, u) associated with
each driver schedule e ∈ E is computed.

SCORE(e, u) =


ce(u)

|Ve|
si ce(u) > 0

ce(u) · |Ve| si ce(u) < 0

For each vector u ∈ U , an heuristic solution of [TPP ] is computed using procedure
greedy(E,u).

Procedure greedy(E,u)
Let E∗ := E be the set of all generated driver schedules
S ← ∅ (S is the set of the selected driver schedules)
Compute SCORE(e, u) ,∀e ∈ E∗
repeat

Let e∗ ∈ E∗ be the schedule with maximum score
S ← S ∪ {e∗}
foreach v ∈ Ve∗ do

E∗ ← E∗ \ E∗v
r∗ ← driver roster associated with e∗

Check constraint (3)
if ηr∗ schedules have been selected in S then

E∗ ← E∗ \ E∗r∗
else

Check constraint (4)
if η̄r∗ pairings have been selected in S then

Delete all the pairings of driver roster r∗ in E∗

until E∗ = ∅;
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Fixing phase : reducing problem size
Let u∗ be the distribution of Lagrangian multipliers leading to the best solution at previous
phase. We define Q as the set of driver schedules e ∈ E such as ce(u∗) > 0.01. We fixed
all schedules e ∈ Q if |Ev ∩ Q| = 1 for at least one train in v ∈ Ve. The first driver
schedule selected by procedure greedy(E,u∗) is also fixed. In the next iteration of the 3-
PHASE algorithm, only the resulting problem is considered. The capacities ηr and η̄r of
each driver roster r ∈ R are iteratively updated all along the process.

Optimizing the algorithm
As suggested in Caprara et al. (1999b), we use some tricks to optimize the algorithm. The 3-
PHASE procedure is applied only on a subset Ê of the entire set E to speed up the process.
Ê is computed according to the Lagrangian costs and the cover of each train. We update Ê
during specific subgradient iterations. Moreover, at the end of the procedure, some ”good”
driver schedules (the first ones selected by the greedy heuristic) are fixed in a similar way
than in the fixing phase. The 3-PHASE procedure is performed once again to the resulting
sub-problem until the difference between the best upper bound and the best solution is less
than the precision value ε.

Dealing with the secondary objectives
While the ILH method processes, we store a pool of solutions leading to the same value of
the primary objective function (1). The number of trains covered in each of these solutions
is therefore equal. At the end of the selection stage, the solutions included in the pool are
ranked according to the secondary objectives (given in order of priority) : minimizing the
number of external rests, taxi trips and the number of different rolling stock units operated.
The best solution according to these objectives is retrieved.

4 Computational results

In this section, we present results based on the experiments that we carried out. All numer-
ical experiments have been performed on a PC, equipped with an Intel Core i7-2670QM
processor, running Windows 7 Professional and working with 4 Go of memory. The itera-
tive algorithm have been implemented in Java 1.7. The performance of the proposed method
was evaluated on two instances (cf. Table 1).

Table 1: Instances
Instance Trains Depots Driving rosters
REG1 1,872 5 7
REG2 2,299 7 12

Results of the generation stage are summarized in Table 2. This stage requires respec-
tively 568 and 3812 CPU seconds forREG1 andREG2. Approximately, 94% of the driver
schedules are pairings, which is not surprising since pairing generation is extremely combi-
natorial. If they were not filtered during the generation process, we would have generated
near 60% more pairings, which proves the relevance of this filter. It is quite complex to set
up a technique allowing to reduce this number while working as expected for all instances.
Building additional shifts adds respectively 15% and 3% more schedules to the pool used in
the selection stage. This building block may be, however, time-consuming, representing on
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Table 2: Global results of the generation stages

Instances Round shifts Pairings
Max/day Avg/day Week Max/day Avg/day Week

REG1 69,710 39,120 273,838 1,274,526 684,738 4,793,163
REG2 141,500 92,344 646,410 2,610,505 1,823,700 12,765,905

average a quarter of the overall running time of the generation stage, reaching up to almost
half of this time for some cases. Results prove to be worse if we skip this step.

To assess the quality of the ILH method described in section 3 for the selection stage,
we solve directly the MIP model [TPP ] with CPLEX MIP Solver 12.6. We set the same
time limit for both methods in order to do an effective comparison. For the solver, the model
is always initialized with the driver schedules built during the generation stage and it takes
into account the decisions of the previous days made by the ILH technique. We aim also to
compute the gap to the optimal solution. LetOptj be the optimal solution found by CPLEX
MIP solver (with no time limit) for the selection stage of day j. Optj is not necessarily
the optimal solution of the problem associated with day j for two main reasons. First, not
all valid driver schedules are generated. Secondly, the problem being split up into several
sub-problems, decisions made for day j impact on the solutions found for the following
days when pairings are involved.

Tables 3 and 4 show respectively the results of the selection stage forREG1 andREG2

according to the primary objective. Because of the day-by-day approach, resolutions times
decrease when it comes to the end of the week. On average, the ILH method is respectively
almost three and two times faster than CPLEX MIP Solver running to compute the optimal
solution. For 4 out of 7 days, this technique proves to be as good as or better than the
mathematical programming solver when it is set up with the same time limit.

Table 5 summarizes the previous results of the selection stage for the whole week. A
negative gap indicates that the ILH technique find better results than the other technique.
First of all, we are not able to cover all the trains for the two instances. 76,7% and 81% of
the trains are respectively covered in the final solution for REG1 and REG2. The qual-
ity of the results and especially the percentage of uncovered trains are caused by mainly
two factors. First, shifts cannot easily be fitted together without overlapping with the pre-
specified lists of travels as passenger and taxi trips allowed. Especially, too few taxi trips are
specified but we aim at minimizing these costly trips. Secondly, in the selection stage for
each daily sub-problem, driver schedules are successively fixed during the iterative process
of the ILH method. This fixing phase performs well for the set covering model but might
lead sometimes to a significant decrease of the solution quality for our model. Moreover,
solving the weekly problem with a day-by-day approach impacts strongly on the number of
uncovered trains. Indeed, when solving the problem at day j, selecting a pairing made up
of an outward shift on day j and a return shift the next day affects the decisions that can be
made at day j + 1. This can only lead to more uncovered trains. To illustrate this point,
we identify that respectively 30% and 53% of these uncovered trains do not share in any
driver schedule after the generation stages (one for each sub-problem) for the two instances
studied in this paper. However, the average percentage gap for each day between the best
computed solutions and the optimal solution is respectively 2,9% and 4,4%. These results
are very encouraging especially when compared with those found by CPLEX with the same
resolution time limit. Notice that all these values must be taken with precaution because of
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the day-by-day approach.

Table 3: Results of the selection stages for REG1 according to the primary objective

Day j Number of trains ILH CPLEX Solver Optj

C.T.1 Time2 C.T.1 Time2 C.T.1 Time2

1 319 247 228 0 228 258∗ 1,915
2 316 238 225 198 225 246∗ 785
3 319 239 209 185 209 244∗ 752
4 318 235 193 0 193 242∗ 557
5 325 236 107 238 107 247∗ 192
6 154 134 104 136∗ 3 136∗ 3
7 121 106 26 107∗ 1 107∗ 1
Week 1,872 1,435 1,092 864 1,092 1,480 4,205

1 C.T. : number of trains covered / 2 : time in CPU seconds / ∗ optimal solution

Table 4: Results of the selection stages for REG2 according to the primary objective

Day j Number of trains ILH CPLEX Solver Optj

C.T.1 Time2 C.T.1 Time2 C.T.1 Time2

1 182 163 701 125 701 173∗ 1,015
2 383 307 793 322 793 328∗ 2,777
3 380 299 639 270 639 315∗ 719
4 385 315 763 254 763 327∗ 995
5 379 308 639 317 639 321∗ 815
6 388 324 445 331 445 341∗ 812
7 192 146∗ 47 146∗ 1 146∗ 1
Week 2,299 1,862 4,027 1765 3,981 1,951 7,134

1 C.T. : number of trains covered / 2 : time in CPU seconds / ∗ optimal solution

Table 5: Global results of the selection stages according to the primary objective

Instances ILH
C.T. E.T.1 Gap2 CPLEX Gap2 to optimal

REG1 76,7% 6,8% -41% 2,9%
REG2 81% 10% -5,2% 4,4%

1 E.T. : number of trains non covered after the generation stage / 2 average gap for each day

At the end of the ILH method, the secondary objectives are taken into account to retrieve
the best solution. Results concerning this stage are described in Table 6. Since the pool
of solutions is not very large, there is not a lot of diversity between the solutions but they
correspond to the business requirements. Lastly, operational rules defined in section 3 prove
to be relevant; respectively 85% and 86% of the selected driver schedules for REG1 and
REG2 respect these rules.
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Table 6: Global results according to the secondary objectives

Instances Average number of
solutions in the pool

Solution attributes
External rest Taxi Rolling stock units

REG1 57 30,7% 14,3% 2,2
REG2 31 37,1% 8,7% 2

5 Conclusion

In this paper, we present a new driver scheduling tool based on a day-by-day approach. Each
resulting sub-problem is solved with a two-step technique. The first stage of this technique
builds efficiently valid shifts and pairings. Filters and operational rules are defined to limit
the driver schedule pool size. In the second stage, a particular set packing problem is solved
by an iterative Lagrangian heuristic in a reasonable amount of time. A comparison made
with the direct use of a mathematical programming solver proves the effectiveness of the
described method. However, the method can be still improved to have less uncovered trains.
Indeed, the current splitting process affects the quality of the solutions. More expertise
is also required to fix relevant travels as passenger and taxi trips in order to find useful
connections. Futures works include additional experiments on real-life instances. We intend
also to test a global or a less split approach to find better results.
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