
HAL Id: hal-01138034
https://hal.science/hal-01138034

Submitted on 3 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TTR for Natural Language Semantics 2
Robin Cooper, Jonathan Ginzburg

To cite this version:
Robin Cooper, Jonathan Ginzburg. TTR for Natural Language Semantics 2. Handbook of Contem-
porary Semantic Theory, second edition, 2015. �hal-01138034�

https://hal.science/hal-01138034
https://hal.archives-ouvertes.fr

1

TTR for Natural Language Semantics?2

Robin Cooper1 and Jonathan Ginzburg23

1 University of Gothenburg cooper@ling.gu.se4

2 Université Paris-Diderot and LabEx-EFL, Sorbonne Paris-Cité5

yonatan.ginzburg@univ-paris-diderot.fr6

? This work was supported in part by Vetenskapsr̊adet project 2009-1569, Semantic
analysis of interaction and coordination in dialogue (SAICD), by the Lab(oratory
of)Ex(cellence)-EFL (ANR/CGI), and by the Disfluency, Exclamations, and
Laughter in Dialogue (DUEL) project within the projets franco-allemand en sci-
ences humaines et sociales funded by the ANR and the DFG. We are grateful for
comments to the participants in three courses we taught in which we presented
a version of this material: Type Theory with Records for Natural Language Se-
mantics, NASSLLI, Austin, Texas, 18th – 22nd June, 2012; An introduction to
semantics using type theory with records, ESSLLI, Opole, Poland, 13th – 17th
Aug, 2012; and Semantics using type theory with records, Gothenburg, 10th –
12th June, 2013. We are grateful to Liz Coppock for comments on an earlier draft
of this chapter. Finally, we would like to thank Chris Fox for his very penetrating
and careful comments on the first submitted draft.
A draft chapter for the Wiley-Blackwell Handbook of Contemporary Semantics —
second edition, edited by Shalom Lappin and Chris Fox. This draft formatted on
3rd April 2015.

Page: 1 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

2 Robin Cooper and Jonathan Ginzburg

1 Introduction7

Given the state of the art, a simple actual conversation such as (1)2 still con-8

stitutes a significant challenge to formal grammar of just about any theoretical9

flavour.10

(1)11

John: which one do you think it is?
 Try F1 F1 again and we'll get

Sarah: Shift and F1?
Sue: It's, No.
John: No, just F1 F1
Sue: It isn't that.
John: F1
Right and that tells us
Sue: It's Shift F7

Disfluencies

Non sentential utterances

Self-answering

Partial comprehension

Multilogue

12

As we note in the diagram above, this little dialogue involves a variety13

of theoretically difficult phenomena: it involves three rather than two parti-14

cipants, is hence a multi(-party dia)logue; it features disfluencies, a variety of15

2 The conversation occurs in the block G4K of the British National Corpus (BNC).
Henceforth, the notation ‘(BNC,xyz)’ refers to the block xyz from the BNC.

Page: 2 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 3

types of non-sentential utterances, partial comprehension, and self answering.16

Making sense of all these phenomena in a systematic way is a challenge un-17

dertaken in the TTR–based dialogue framework KoS (Ginzburg, 2012). While18

we will not have the space to develop a detailed analysis of this example, by19

the end of the paper we will have sketched a toolbox on the basis of which20

disfluencies, non-sentential utterances, partial comprehension self, answering,21

and multilogue can be explicated. A key ingredient to this is a theory of the22

structure and evolution of dialogue game-boards(DGBs), the publicised com-23

ponent of the conversationalists’ information states. This, in turn, presupposes24

both means of developing semantic and grammatical ontologies to explicate25

notions such as propositions, questions, and utterances.26

There are, nonetheless, a number of well established paradigms for doing27

just that and the obvious question to ask is: why develop a distinct framework?28

We will illustrate throughout the paper intrinsic problems for frameworks29

such as possible worlds semantics and typed-feature structure (TFS)–based30

approaches:31

• Semantic ontology: Why not a possible worlds–based approach? There32

are well known problems for this strategy that revolve around its coarseness33

of grain. These are often ignored (folk assumption: ‘. . . the attitudes are34

difficult and primarily a philosophical problem . . . ’) Whether or not this is35

true we point to the problems posed by negation which cannot be brushed36

off so easily.37

• syntax-semantics interface: Why is a TFS-based approach to a syntax-38

semantics interface, as in frameworks such as Head-driven Phrase Struc-39

ture Grammar (HPSG) (Sag et al. (2003)) and in Sign-based Construction40

Grammar (Michaelis (2009)) insufficient? Here again, there are well known41

problems (lack of proper binding, functions) and these can be solved in42

standard λ-calculus based approaches. We will point to issues that are43

difficult to the latter such as clarification interaction.44

Our claim is that TTR enables a uniform theory of grammar, semantics,45

and interaction that can tackle such problems, while allowing one to main-46

tain past insights (emanating from Montague Semantics and Discourse Rep-47

resentation Theory) and also, we think, future directions (e.g. probabilistic48

semantics).49

This article is structured as follows: the basics of TTR are described in50

section 2. Subsequently, in sections 3–5 we use this to sketch fundamental51

notions of grammar, semantic ontology, and dialogical interaction. These are52

eventually illustrated in more detail in sections 6–8, which deal with meta-53

communicative interaction, negation, quantification, and, more briefly, non54

sentential utterances and disfluencies.55

Page: 3 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

4 Robin Cooper and Jonathan Ginzburg

2 A theory of types and situations56

2.1 Type theory and perception57

In classical model theoretic semantics (Montague, 1973, 1974) there is an un-58

derlying type theory which presents an ontology of basic classes of objects59

such as, in Montague’s type theory, entities, truth values, possible worlds and60

total functions between these objects. Here we will make use of a rich type61

theory inspired by the work of Martin-Löf (1984) and much subsequent work62

on this kind of type theory in computer science. For a recent example relat-63

ing to natural language see Luo (2011). Ranta (this volume) gives important64

background on Martin-Löf’s type theory.65

In a rich type theory of the kind we are considering there are not only types66

for basic ontological categories but also types corresponding to categories of67

objects such as Tree or types of situations such as Hugging of a dog by a boy. A68

fundamental notion of this kind of type theory is that of a judgement that an69

object (or situation) a is of type T , in symbols, a : T . In our view judgements70

are involved in perception. In perceiving an object we assign it a type. The71

type corresponds to what Gibson (1986) (and following him in their theory72

of situation semantics, Barwise & Perry, 1983) would call an invariance. In73

order to perceive objects as being of certain types, agents must be attuned74

to this invariance or type. We take this to mean that the type corresponds75

to a certain pattern of neural activation in the agent’s brain. Thus the types76

to which a human is attuned may be quite different from those to which an77

insect is attuned. A bee landing on a tree does not, presumably, perceive the78

tree in terms of the same type Tree that we are attuned to.79

2.2 TTR: Type theory with records80

The particular type theory we will discuss here is TTR which is particular81

variant of Type Theory with Records. The most recent published reference82

which gives details is Cooper (2012). An earlier treatment is given in Cooper83

(2005b), and Cooper (2005c) discusses its relation to various semantic theories.84

Here we will give a less detailed formal treatment of the type theory than in85

the first two of these references. We start by characterizing a system of basic86

types as a pair consisting of a non-empty set of types, Type, and a function,87

A, whose domain is Type and which assigns to each type in Type a (possibly88

empty) set which does not overlap with Type. We say that a is of type T (in89

Type), a : T , according to 〈Type, A〉 just in case a ∈ A(T). In general we90

will think of basic types as corresponding to basic ontological categories. The91

basic type we will use in this section is Ind for individuals.92

We will use complex types for types of situations, inspired by the notion of93

situation in Barwise & Perry (1983). The simplest complex type of situation94

is constructed from a predicate together with some appropriate arguments to95

the predicate. Consider, for example, the type of situation where a boy called96

Page: 4 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 5

Bill (whom we will represent by b) hugs a dog called Dinah, (represented97

by d). The type of situation in which Bill hugs Dinah will be constructed98

from the predicate ‘hug’ together with the arguments b and d. This type is99

represented in symbols as hug(b,d). Here we are treating ‘hug’ as a predicate100

which has arity 〈Ind, Ind〉, that is, it requires two individuals as arguments.101

Sometimes we may allow predicates to have more than one arity, that is they102

may allow different configurations of arguments. In this case we say that103

the predicate is polymorphic.3 Types like this which are constructed with104

predicates we will call ptypes. A system of types containing ptypes, that is,105

a system of complex types, will be an extension of a system of basic types106

〈BType, A〉, 〈Type,BType,PType, 〈A,F 〉〉 where PType is a set of ptypes107

constructed from a particular set of predicates and arities associated with108

them by combining them with all possible arguments of appropriate types109

according to the type system and F is a function whose domain is PType110

which assigns a (possibly empty) set of situations to each ptype. The set Type111

includes both BType and PType.112

This gives us a system of types which will allow us types of situations113

where particular individuals are related to each other. However, we want to114

be able to characterize more general types of situation than this, for example,115

the type of situations where some boy hugs a dog, that is, the type of any116

“boy hugs dog” situation. There are a number of ways to characterize such117

more general types in type theory. In TTR we use record types. The type of118

situation where a boy hugs a dog could be the record type in (2).119

(2)

x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)

120

This record type consists of five fields each of which consists of a label (such121

as ‘x’ or ‘cdog’) and a type (such as Ind or ‘dog(y)’). Each field is an ordered122

pair of a label and a type and a record type is a set of such fields each of123

which have a distinct label. We use labels like ‘x’ and ‘y’ for fields introducing124

individuals and labels like ‘cpred ’ for fields introducing types which are ptypes125

with the predicate pred representing constraints or conditions (hence ‘c’) on126

objects in other fields. We will often use the label ‘e’ for the type representing127

the main event, such as hugging.128

A record of this type is a set of fields (i.e. order is unimportant) with labels129

and objects such that no two fields have the same label, there is a field with130

each of the labels in the record type and the object in the field is of the type131

in the corresponding field in the record type. Note that there can be more132

fields in the record with labels not mentioned in the record type. A record of133

the type in (2), that is, a witness for this type, will be one of the form in (3).134

3 This introduces one kind of polymorphism into the system. We will also introduce
some polymorphism in the typing.

Page: 5 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

6 Robin Cooper and Jonathan Ginzburg

(3)

x = a
cboy = s1
y = b
cdog = s2
e = s3
...

135

where:136

a : Ind137

s1 : boy(a)138

b : Ind139

s2 : dog(b)140

s3 : hug(a, b)141

If the type (2) is non-empty there will be a boy and a dog such that the142

boy hugs the dog. Thus (2) could be used to represent the content of a boy143

hugs a dog. That is, we use it to play the role of a proposition in other theories.144

(Later we will introduce a more complex notion of proposition which builds145

on such types.)146

Let r be a record of the form (3). We will refer to the objects in the fields147

using the notation r.` where ` is some label in the record. Thus r.x will be a,148

r.cboy will be s1 and so on. We will allow records to be objects in fields. Thus149

we can have records within records as in (4).150

(4)

f =

 f =

[
ff = a
gg = b

]
g = c

g =

[
h =

[
g = a
h = d

]]
151

We can extend the dot notation above to refer to paths in a record, that is152

sequences of labels which will lead from the top of a record down a value153

within the record. Let r be (4). Then we can use paths to denote various154

parts of the record as in (5).155

(5)156

a. r.f =

 f =

[
ff = a
gg = b

]
g = c

157

b. r.g.h =

[
g = a
h = d

]
158

c. r.f.f.ff = a159

Technically, we have cheated a little in the presentation of record types.160

‘boy(x)’, ‘dog(y)’ and ‘hug(x,y)’ are not technically ptypes since ‘x’ and ‘y’ are161

labels, not individuals as required by the arities of these predicates. What we162

mean by this notation is the ptype we can construct by substituting whatever163

individuals occur in the ‘x’ and ‘y’ fields of the record we are checking to see164

Page: 6 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 7

whether it belongs to the type. Thus the ptypes will be different depending165

on which record you are checking. The official notation for this record type166

makes this more explicit by introducing functions from individuals to ptypes167

and pairing them with a list of path names indicating where in the record one168

should look for the arguments to the functions, as in (6).4169

(6)

x : Ind
cboy : 〈λv:Ind . boy(v), 〈x〉〉
y : Ind
cdog : 〈λv:Ind . dog(v), 〈y〉〉
e : 〈λv1:Ind λv2:Ind . hug(v1, v2),

〈x,y〉〉

170

There is good reason to use this more complex notation when we deal with171

more complex record types which have record types embedded within them.172

However, for the most part we will use the simpler notation as it is easier to173

read. Functions from objects to types, dependent types, will play an important174

role in what we have to say below.175

In record types we will frequently make use of manifest fields5 A manifest176

field
[
`=a:T

]
is a convenient notation for

[
`:Ta

]
where Ta is a singleton type177

whose only witness is a. Singleton types are introduced by the clauses in (7).178

(7)179

a. If a : T then Ta is a type.180

b. b : Ta iff b = a181

2.3 Subtyping182

The notion of subtype in TTR plays a central inferential role within the183

system. T1 is a subtype of T2 (T1 v T2) just in case for all assignments to184

basic types it is the case that if a : T1 then a : T2. For more discussion of this185

notion see Cooper (2012).186

2.4 Function types187

We introduce function types as in (8).188

(8)189

a. If T1 and T2 are types, then so are (T1 → T2) and (T1 →c T2)190

b. f : (T1 → T2) iff f is a function with domain {a | a : T1} and range191

included in {a | a : T2}192

c. f : (T1 →c T2) iff f : (T1 → T2) and there is some a : T1 such that if193

b : T2 then f(b) = a194

4 Here we use the λ-notation for functions which is discussed in Section 2.4.
5 This notion was introduced in Coquand et al. (2004).

Page: 7 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

8 Robin Cooper and Jonathan Ginzburg

This means that f is a total function from objects of type T1 to objects of type195

T2. In (8c) f is required to be a constant function. A function is associated196

with a graph, that is, a set of ordered pairs, as in the classical set theoretical197

model of a function. As in set theory we let functions be identified by the198

graphs, that is, for functions f1, f2, if graph(f1) = graph(f2) then f1 = f2.199

We also require that for each graph whose domain (i.e. left projection) is the200

set of witnesses of a type and whose range (i.e. right projection) is included in201

the set of witnesses of another type there is a function which has this graph.202

This makes the existence of a function of type (T1 → T2) correspond to a203

universal quantification, “for everything of type T1 there is something of type204

T2”. Finally we stipulate that types (T1 → T2) and T1 are incompatible. That205

is, you cannot have something which belongs to a function type and the type206

which characterizes the domain of the function. As a consequence, functions207

cannot apply to themselves. This is one way of avoiding paradoxes which can208

arise when we allow functions to apply to themselves.209

We introduce a notation for functions which is borrowed from the λ-210

calculus as used by Montague (1973). We let functions be identified by sets211

of ordered pairs as in the classical set theoretic construction of functions. Let212

O[v] be the notation for some object of our type theory which uses the variable213

v and let T be a type. Then the function λv : T . O[v] is to be the function214

identified by {〈v,O[v]〉 | v : T}. For example, the function λv:Ind . run(v) is215

identified by the set of ordered pairs {〈v, run(v)〉 | v : Ind}.216

Note that if f is the function λv:Ind . run(v) and a:Ind then f(a) (the217

result of applying f to a) is ‘run(a)’. Our definition of function-argument218

application guarantees what is called β-equivalence in the λ-calculus. We al-219

low both function types and dependent record types and we allow dependent220

record types to be arguments to functions. We have to be careful when con-221

sidering what the result of applying a function to a dependent record type222

should be. Consider the simple example in (9).223

(9) λv0 :RecType (
[
c0:v0

]
)224

What should be the result of applying this function to the record type in (10)?225

226

(10)

[
x : Ind
c1 : 〈λv1 :Ind(dog(v1)), 〈x〉〉

]
227

Given normal assumptions about function application the result would be228

(11).229

(11)

[
c0 :

[
x : Ind
c1 : 〈λv1 :Ind (dog(v1)), 〈x〉〉

]]
(incorrect!)230

But this would be incorrect. In fact it is not a well-formed record type since231

‘x’ is not a path in it. Instead the result should be (12).232

(12)

[
c0 :

[
x : Ind
c1 : 〈λv1 :Ind (dog(v1)), 〈c0.x〉〉

]]
233

Page: 8 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 9

Here the path from the top of the record type is specified. However, in the234

abbreviatory notation we write just ‘x’ when the label is used as an argument235

and interpret this as the path from the top of the record type to the field236

labelled ‘x’ in the local record type. Thus we will write (13)237

(13)

[
x : Ind
c1 : dog(x)

]
238

(where the ‘x’ in ‘dog(x)’ signifies the path consisting of just the single label239

‘x’) and (14)240

(14)

[
c0 :

[
x : Ind
c1 : dog(x)

]]
241

(where the ‘x’ in ‘dog(x)’ signifies the path from the top of the record type242

down to ‘x’ in the local record type, that is, ‘c0.x’).6243

Note that this adjustment of paths is only required when a record type is244

being substituted into a position that lies on a path within a resulting record245

type. It will not, for example, apply in a case where a record type is to be246

substituted for an argument to a predicate such as when applying the function247

(15)248

(15) λv0 :RecType (
[
c0:appear(v0)

]
)249

to (16)250

(16)

x : Ind
c1 : 〈λv :Ind (dog(v)), 〈x〉〉
c2 : 〈λv :Ind (approach(v)), 〈x〉〉

251

where the position of v0 is in an “intensional context”, that is, as the argument252

to a predicate and there is no path to this position in the record type resulting253

from applying the function. Here the result of the application is (17)254

(17)

 c0 : appear(

x : Ind
c1 : 〈λv :Ind (dog(v)), 〈x〉〉
c2 : 〈λv :Ind (approach(v)), 〈x〉〉

)

255

with no adjustment necessary to the paths representing the dependencies.7256

(Note that ‘c0.x’ is not a path in this record type.)257

Suppose that we wish to represent a type which requires that there is some258

dog such that it appears to be approaching (that is a de re reading). In the259

abbreviatory notation we might be tempted to write (18)260

(18)

x : Ind
c1 : dog(x)
c0 : appear(

[
c2 : approach(x)

]
)

 (incorrect!)261

6 This convention of representing the path from the top of the record type to the
“local” field by the final label on the path is new since Cooper (2012).

7 This record corresponds to the interpretation of it appears that a dog is approach-
ing.

Page: 9 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

10 Robin Cooper and Jonathan Ginzburg

corresponding to (19).262

(19)

x : Ind
c1 : 〈λv:Ind (dog(v)), 〈x〉〉
c0 : appear(

[
c2 : 〈λv:Ind (approach(v)), 〈x〉〉

]
)

 (incorrect!)263

This is, however, incorrect since it refers to a path ‘x’ in the type which is the264

argument to ‘appear’ which does not exist. Instead we need to refer to the265

path ‘x’ in the record type containing the field labelled ‘c0’ as in (20).266

(20)

x : Ind
c1 : 〈λv:Ind (dog(v)), 〈x〉〉
c0 : 〈λv:Ind (appear(

[
c2 : approach(v)

]
)), 〈x〉〉

267

In the abbreviatory notation we will use ‘⇑’ to indicate that the path referred268

to is in the “next higher” record type8 as in (21).269

(21)

x : Ind
c1 : dog(x)
c0 : appear(

[
c2 : approach(⇑x)

]
)

270

2.5 Complex types correspondings to propositional connectives271

We introduce complex types corresponding to propositional connectives by272

the clauses in (22).273

(22)274

a. If T1 and T2 are types then so are (T1 ∧ T2), (T1 ∨ T2) and ¬T275

b. a : (T1 ∧ T2) iff a : T1 and a : T2276

c. a : (T1 ∨ T2) iff a : T1 or a : T2277

d. a : ¬T1 iff there is some type T2 which is incompatible with T1 such278

that a : T2279

T1 is incompatible with T2 just in case there is no assignment to basic types280

such that there is some a such that a : T1 and a : T2. That is, it is impossible281

for any object to belong to both types. This is a non-classical treatment of282

negation which we will discuss in Section 7.1.283

Occasionally we will need types which are possibly infinite joins of types284

in order to characterize certain function types. We will represent these using285

a subscripted
∨

. Thus if T1 and T2 are types, then (23) is a type.286

(23)287 ∨
XvT1

(X → T2)288

Witnessing conditions for (23) are defined by (24).289

(24) f :
∨

XvT1

(X → T2) iff f : (T → T2) for some type T such that T v T1.290

8 This notation is new since Cooper (2012).

Page: 10 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 11

As we have record types in our system we will be able to form meets, joins291

and negations of these types just like any other. When we form the meet of292

two record types, T1 ∧ T2 there is always a record type T3 which is equivalent293

to T1 ∧ T2 in the sense that no matter what we assign to our basic types294

anything which is of T1 ∧ T2 will be of type T3 and vice versa. T3 is defined295

using the merge operator ∧. . Thus, T1∧. T2 is the merge of the two types T1,T2.296

If at least one of the two types is not a record type it is identical with the297

meet T1 ∧ T2. The basic idea of merge for record types is illustrated by the298

examples in (25).299

(25)300

a.
[
f:T1

]
∧.
[
g:T2

]
=

[
f:T1
g:T2

]
301

b.
[
f:T1

]
∧.
[
f:T2

]
=
[
f:T1∧. T2

]
302

(For a full definition which makes clear what the result is of merging any303

two arbitrary types, see Cooper, 2012.) Merge corresponds to unification in304

feature based systems such as HPSG.305

In addition to merge we also introduce asymmetric merge, T1 ∧. T2. This306

is defined like ordinary merge except that in the case where one of the types307

is not a record type T1 ∧. T2 = T2. This notion (which is discussed in detail308

in Cooper, in prep) is related to that of priority unification (Shieber, 1986).309

2.6 Set and list types310

We introduce set and list types as in (26).311

(26)312

a. If T is a type then {T} and [T] are types313

b. A : {T} just in case A is a set and for any a ∈ A, a : T314

c. L : [T] just in case L is a list and any member, a, of L is such that315

a : T316

We will also introduce a type Poset(T) which can be regarded as (27)317

(27)

set : {T}

rel : {
[

left : T
right : T

]
}

cpo : po(rel,set)

318

where a : po(R,S) iff a = 〈R,S〉 and R is a partial order on S, that is, R is a319

set of pairs of members of S (coded as records with ‘left’ and ‘right’ fields as320

above) and R is reflexive or irreflexive, antisymmetric and transitive.321

If a : T , P : Poset(T) and a 6∈ P.set, then a⊕P : Poset(T) where a⊕P is322

the record r:Poset(T) such that the clauses in (28) hold.323

(28)324

a. r.set=P.set ∪ {a}325

Page: 11 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

12 Robin Cooper and Jonathan Ginzburg

b. r.rel= P .rel∪{
[

left = a
right = x

]
| x ∈ P .set}326

c. r.cpo=〈r.rel, r.set〉327

2.7 The string theory of events328

So far we have talked about situations or events in terms of ptypes or record329

types which have ptypes in some of their fields. This gives us a rather static330

view of events and does not give an analysis of the changes that take place331

as an event unfolds. A single type is rather like a snapshot of an event at one332

point in its development. In an important series of papers including Fernando333

(2004, 2006, 2008, 2009); ?), Tim Fernando has proposed that events should334

be analyzed in terms of strings of snapshots or observations. In TTR we335

adapt these ideas by introducing regular types: types of strings of objects336

corresponding to the kinds of strings you find in regular languages in formal337

language theory (Hopcroft & Ullman, 1979; Partee et al., 1990). (29) is an338

account of the two main kinds of regular types that we will use here where339

a_b represents the concatenation of two objects a and b.340

(29)341

a. if T1, T2 ∈ Type, then T1
_T2 ∈ Type342

a : T1
_T2 iff a = x_y, x : T1 and y : T2343

b. if T ∈ Type then T+ ∈ Type.344

a : T+ iff a = x_1 . . ._ xn, n > 0 and for i, 1 ≤ i ≤ n, xi : T345

T1
_T2 is the type of strings where something of type T1 is concatenated with346

something of type T2. T+ is the type of non-empty strings of objects of type347

T . Suppose for example that we want to represent the type a game of fetch as348

a game played between a human, a, and a dog, b, involving a stick, c, in which349

the human picks up the stick, attracts the attention of the dog, and throws350

the stick, whereupon the dog runs after the stick and picks it up, returning it351

to the human, after which the cycle can start from the beginning. The type352

of this event would be (30).353

(30) (pick up(a,c)_attract attention(a,b)_throw(a,c)_run after(b,c)_354

pick up(b,c)_return(b,c,a))+355

2.8 Inference from partial observation of events356

An important fact about our perception of events is that we can predict the357

type of the whole event when we have only perceived part of the event. Thus if358

we see a human and a dog playing with a stick and we see the human pick up359

the stick and attract the dog’s attention we might well predict that the type360

of the whole event is one of playing fetch. We can represent this prediction by361

a function, as in (31).362

Page: 12 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 13

(31) λr:

x : Ind
chuman : human(x)
y : Ind
cdog : dog(y)
z : Ind
cstick : stick(z)
e : pick up(x,z)_attract attention(x,y)

363

(
[

e : play fetch(r.x,r.y)
]
)364

Notice that this function is what we have called a dependent type, that is, it365

takes an object (in this case the observed situation) and returns a type (in this366

case the type of the predicted situation). Notice that this ability to predict367

types of situations on the basis of partial observations is not particular to368

humans. The dog realizes what is going on and probably starts to run before369

the human has actually thrown the stick. However, in the Section 3 we will370

suggest that humans build on this ability in their perception and analysis of371

speech events.372

Page: 13 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

14 Robin Cooper and Jonathan Ginzburg

3 Grammar in TTR373

In Section 2 we suggested that an important capability that agents have is the374

prediction of the type of a complete event on the basis of a partial observation375

of an event. We suggested that functions from observed situations to predicted376

situation type (a kind of dependent type) can be used in modelling this, taking377

the example of the game of fetch. Very similar inferences are involved in the378

perception of linguistic events, though there are also some important differ-379

ences. In the case of the game of fetch the predicted type is a type of situation380

which you could in principle perceive completely. In the example we gave you381

are inferring the nature of the event as it will develop later in time. The case382

of linguistic perception is rather more abstract. We are inferring types which383

may hold simultaneously with what we have observed and the predicted event384

types may be of events that are not directly perceivable. Thus we are able to385

perceive events belonging to phonological or phonetic types but from these386

we infer types relating to syntactic and semantic structure whose instances387

are not directly perceivable. It is this kind of reasoning about abstract ob-388

jects which seems so important to human linguistic ability. Nevertheless the389

fundamental mechanism is the same: we are mapping from an observation to390

a type of something unobserved.391

Grammar rules involve a prediction on the basis of a string of linguistic392

events. Thus they are functions of the form (32).393

(32) λs : T_
1 . . ._ Tn(T)394

where the Ti and T are sign types, which, as we will see below, are types which395

have both a directly perceivable and a non-directly perceivable component.396

Thus grammar rules are functions from strings of linguistic events to a type of397

a single linguistic event. An example would be the observation of a string con-398

sisting of a noun-phrase event followed by a verb-phrase event and predicting399

that there is a sentence event, that is, what is normally written in linguistic400

formalisms as the phrase-structure rule S → NP VP.401

Sign types correspond to the notion of sign in HPSG (Sag et al., 2003).402

The type Sign could be thought of as (33).9403

(33)

s-event : SEvent

synsem :

 cat : Cat
constits : {Sign}
cont : Cont

404

Here we use ‘synsem’ (“syntax and semantics”) as a field corresponding to405

both syntactic and semantic information, although this, and also what follows406

below, could be adjusted to fit more closely with other versions of HPSG.407

However, for technical reasons having to do with recursion (ultimately signs408

9 For more detailed discussion of the grammar discussed here and below see Cooper
(2012).

Page: 14 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 15

may be contained within signs), we have to define Sign as a basic type which409

meets the condition (34).410

(34) r:Sign iff r:

s-event : SEvent

synsem :

 cat : Cat
constits : {Sign}
cont : Cont

411

We have introduced three new types here: SEvent, the type of speech events;412

Cat, the type of categories and Cont, the type of semantic contents. We will413

take each of these in turn and return to the ‘constits’-field (for “constituents”)414

in synsem later.415

A minimal solution for the type SEvent is (35).416

(35)

phon : Phon
s-time : TimeInt
uttat : uttered at(phon, s-time)

417

Here we have introduced the types Phon, phonology, and TimeInt, time in-418

terval, which we will further specify below. A more detailed type for SEvent419

might be (36).420

(36)

e-time : TimeInt
e-loc : Loc
sp : Ind
au : Ind
phon : Phon
e : utter(sp,phon,au,e-time,e-loc)

421

where we have in addition fields for event location, speaker and audience. This422

corresponds more closely to the kind of information we normally associate with423

speech act theory (Searle, 1969). However, this type may be too restrictive:424

more than one person may be in the audience; more than one speaker may425

collaborate on a single speech event, as is shown by work on split utterances426

(Purver et al., 2010). For present purposes it will be sufficient to use the427

simpler type (35) for speech events.428

We will take the type Phon to be the type of a non-empty string of phon-429

eme utterances, that is Phoneme+. We could use phonetic symbols to repres-430

ent types of individual phoneme utterances. For example u : h would mean431

that u is an utterance of the phoneme h (the phoneme being modelled as a432

TTR type). u : h_æy would mean that u is an utterance of the phoneme433

string which we denote in orthography by ‘hi’. It is not our intention to give434

a detailed account of phonology here and we will represent this string type435

using the orthography as hi. Note that hi is a subtype of Phon.436

We define the type TimeInt, for time interval, to be (37).437

(37)

 start : Time
end : Time
c< : start<end

438

Page: 15 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

16 Robin Cooper and Jonathan Ginzburg

where Time is a basic type whose witnesses are time points and < is a pre-439

dicate (here used in infix notation) which requires that its first argument is440

ordered before its second argument.441

The ‘constits’-field in synsem if for the set of constituents (including all442

constituents, not just daughters (immediate constituents)).443

In Section 5 we will extend the definition of Sign to include a field for a444

dialogue game board.445

Page: 16 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 17

4 A theory of abstract entities446

An ontology including abstract entities—including entities such as proposi-447

tions, questions, and outcomes is a necessary ingredient for accounts of il-448

locutionary acts such as assertion, querying, and commanding, as well as of449

attitude reports. Building on a conception articulated 30 years earlier by Aus-450

tin (1961), Barwise & Etchemendy (1987) developed a theory of propositions451

in which a proposition is a structured object prop(s, σ), individuated in terms452

of a situation s and a situation type σ. Given the ‘:’ relation between situations453

and their types there is a a straightforward notion of truth and falsity:454

(38)455

a. prop(s, σ) is true iff s : σ (s is of type σ).456

b. prop(s, σ) is false iff s 6: σ (s is not of type σ).457

A detailed such ontology extending the original situation semantics ontology458

was developed in Ginzburg & Sag (2000). This approach has subsequently459

been developed in TTR in works such as Ginzburg (2011, 2012). We start by460

discussing how to add propositions into TTR.461

For many purposes the type theory already developed has entities that462

could be identified with Austinian propositions, an identification frequently463

assumed in past work in type theory via the slogan propositions as types.464

Cooper (2005b) develops the former in which a proposition p is taken to465

be a record type. A witness for this type is a situation. On this strategy, a466

witness is not directly included in the semantic representation. Indeed, re-467

cord types are competitive in such a role: they are sufficiently fine-grained468

to distinguish identity statements that involve distinct constituents. (39a)469

would correspond to the record type in (39c), whereas (39b) to the record470

type in (39d)). Moreover, in this set up substitutivity of co-referentials (39e)471

and cross-linguistic equivalents ((39e), the Hebrew equivalent of (39a)) can be472

enforced:473

(39)474

a. Enescu is identical with himself.475

b. Poulenc is identical with himself.476

c.
[
c : Identical(enesco, enesco)

]
477

d.
[
c : Identical(poulenc, poulenc)

]
478

e. He is identical with himself.479

f. Enesku zehe leacmo.480

A situational witness for the record type could also be deduced to explicate481

cases of event anaphora, as in (40); indeed, a similar strategy is invoked when482

in an analysis of nominal anaphora in Ginzburg (2012):483

(40)484

a. A: Jo and Mo got married yesterday. It was a wonderful occasion.485

Page: 17 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

18 Robin Cooper and Jonathan Ginzburg

b. A: Jo’s arriving next week. B: No, that’s happening in about a month.486

Nonetheless, here we develop an explicitly Austinian approach, where the487

situational witness is directly included in the semantic representation. The ori-488

ginal Austinian conception was that s is a situation deictically indicated by a489

speaker making an assertion10—teasing out the semantic difference between490

implicit and explicit witnesses is a difficult semantic task. The Austinian ap-491

proach is important for negation (see section 7.1). Explicitly Austinian pro-492

positions can also play a role in characterizing the communicative process: in493

section 6 we will show that locutionary propositions individuated in terms of494

an utterance event u0 as well as to its grammatical type Tu0 allows one to495

simultaneously define update and clarification potential for utterances. In this496

case, there are potentially many instances of distinct locutionary propositions,497

which need to be differentiated on the basis of the utterance token—minimally498

any two utterances classified as being of the same type by the grammar.499

Assuming we adopt an explicitly Austinian approach, then on the current500

account the type of propositions is the record type (41a). The correspondence501

with the situation semantics conception is quite direct. We can define truth502

conditions as in (41b).503

(41)504

a. Prop =def

[
sit : Rec
sit-type : RecType†

]
505

b. A proposition p =

[
sit = s0
sit-type = ST0

]
is true iff s0 : ST0506

Here the type RecType† is a basic type which denotes the type of records types507

closed under meet, join and negation. That is, we require:508

(1) if T :RecType, then T :RecType†509

(2) if T1, T2:RecType†, then T1 ∧ T2, T1 ∨ T2, ¬T1:RecType†510

(3) Nothing is of type RecType† except as required above.511

If p:Prop and p.sit-type is T1∧T2 (T1∨T2, ¬T) we say that p is the conjunc-512

tion (disjunction) of

[
sit = p.sit
sit-type = T1

]
and

[
sit = p.sit
sit-type = T2

]
(the negation513

of

[
sit = p.sit
sit-type = T

]
). This means that Austinian propositions are not closed514

under conjunction and disjunction. You can only form the conjunction and515

disjunction of Austinian propositions which have the same situation. If p1 and516

p2 are Austinian propositions such that p1.sit = p2.sit, we say that p1 entails517

p2 just in case p1.sit-type v p2.sit-type.518

A subtype of Prop that will be important below is the type of locutionary519

propositions LocProp. Locutionary propositions are Austinian propositions520

about utterances. LocProp is defined as follows:521

10 One could also construe s as evidence (a body of knowledge, a database) which
provides support (or otherwise) for the type σ.

Page: 18 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 19

LocProp=def

[
sit : Sign
sit-type : RecType†

]
522

4.1 Questions523

Given the existence of Austinian-like propositions and a theory of λ-abstraction524

given to us by existence of functional types, it is relatively straightforward to525

develop a theory of questions as propositional abstracts in TTR. Extensive526

motivation for the view of questions as propositional abstracts is provided in527

Ginzburg (1995); Ginzburg & Sag (2000)—TTR contributes to this by provid-528

ing an improved notion of simultaneous, restricted abstraction, as we will see529

shortly.530

A (basic, non-compound) question will be a function from records into531

propositions. As such, questions are automatically part of the type theoretic532

ontology. Let us start by considering some very simple examples of interrog-533

atives and their TTR representations. (42) exemplifies the denotations (con-534

tents) we can assign to a unary and a binary wh-interrogative. We use rds here535

to represent the record that models the described situation in the context. The536

meaning of the interrogative would be a function defined on contexts which537

provide the described situation and which return as contents the functions538

given in (42). The unary question ranges over instantiations by persons of the539

proposition “x runs in situation rds”. The binary question ranges over pairs540

of persons x and things y that instantiate the proposition “x touches y in541

situation rds”:542

(42)543

a. who ran 7→544

λr:

[
x:Ind
rest:person(x)

]
(

[
sit = rds
sit-type =

[
c:run(r.x)

]])545

b. who touched what 7→546

λr:

x:Ind
rest1:person(x)
y:Ind
rest2:thing(y)

(

[
sit = rds
sit-type =

[
c:touch(r.x,r.y)

]])547

What of polar questions? Ginzburg & Sag (2000) proposed that these are548

0-ary abstracts, though the technical apparatus involved in explicating this549

notion in their framework based on non-well-founded set theory was quite550

complex. TTR, however, offers a simple way to explicate 0-ary abstraction.551

If we think of a unary abstract as involving a domain type with one field for552

an individual and a binary abstract as one whose domain type contains two553

such fields etc, then by analogy the domain type of a 0-ary type would simply554

be the empty record type [] (that is, the type Rec of records).11 This makes555

a 0-ary abstract a constant function from the universe of all records . (43)556

exemplifies this:557

11 This is the type all records satisfy, since it places no contraints on them.

Page: 19 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

20 Robin Cooper and Jonathan Ginzburg

(43)558

Did Bo run 7→559

λr:Rec(

[
sit = rds
sit-type =

[
c : run(bo)

]])560

The fact that questions individually are part of the type theoretic world561

is not the end of the story. For various linguistic tasks (e.g. specifying the se-562

lectional requirements of verbs like ‘ask’, ‘wonder’, and ‘investigate’), and563

for various dialogical tasks (e.g. the formulation of various conversational564

rules) one needs to appeal to a type Question (see the chapter on questions,565

Wísniewski (this volume).). This means that we need to have a characteriza-566

tion of this type within TTR. One such characterization is given in Ginzburg567

(2012); a more recent and, arguably, more constructive proposal can be found568

in Ginzburg et al. (2014a). Here we offer a somewhat simpler characteriz-569

ation.The domain of a question (polar or wh) is always characterized by a570

subtype of RecType. Thus we define the type Question by (44).571

(44) Question =def

∨
XvRecType

(X → Prop)572

The type of polar questions, PolQuestion, is given in (45).573

(45) PolQuestion =def (Rec→cProp)574

That is, polar questions are constant functions from situations (records) to575

propositions as discussed in Ginzburg (2012).576

Answerhood is one of the essential testing grounds for a theory of ques-577

tions. Abstracts can be used to underspecify answerhood. This is important578

given that NL requires a variety of answerhood notions, not merely exhaust-579

ive answerhood or notions straightforwardly definable from it. Moreover, as580

with questions, answerhood needs to be explicable within type theory. This581

is because answerhood figures as a constituent relation of the lexical entries582

of resolutive verbs12 and in rules regulating felicitous responses in dialogue583

management (see section 5.). For current purposes this means that we need584

to be able to define notions of answerhood as types.585

There are a number of notions of answerhood that are of importance to586

dialogue. One relates to coherence: any speaker of a given language can re-587

cognize, independently of domain knowledge and of the goals underlying an588

interaction, that certain propositions are about or directly concern a given589

question. We will call this Aboutness. The simplest notion of answerhood we590

can define on the basis of an abstract is one we will call, following Ginzburg591

& Sag (2000), simple answerhood. In order to this we will use the following592

notion:593

A proposition p is an instantiation of a question q just in case there594

is some r in the domain of q such that q(r) = p595

12 For more detailed discussion see Ginzburg & Sag (2000, Chapter 3, section 3.2;
Chapter 8, section 8.3.).

Page: 20 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 21

(46) α is a simple answer to q iff α is an instantiation of q or the negation596

of an instantiation of q.597

Given these definitions it is straightforward to show:598

(47)599

a. If q is an n-ary question of type (T → Prop) and α is a simple answer600

to q then there is some r : T such that α is q(r) or ¬q(r).601

b. In particular, if q is the polar question λr:[](p) and α is a simple602

answer to q then α is either p or ¬p.603

Simple answerhood covers a fair amount of ground. But it clearly un-604

derdetermines aboutness. On the polar front, it leaves out the whole gamut605

of answers to polar questions that are weaker than p or ¬p such as condi-606

tional answers ‘If r, then p’ (e.g. 48a) or weakly modalized answers ‘prob-607

ably/possibly/maybe/possibly not p’ (e.g. (48b)). As far as wh-questions go,608

it leaves out quantificational answers (48c–g), as well as disjunctive answers.609

These missing class of propositions, are pervasive in actual linguistic use:610

(48)611

a. Christopher: Can I have some ice-cream then?612

Dorothy: you can do if there is any. (BNC, KBW)613

b. Anon: Are you voting for Tory?614

Denise: I might. (BNC, KBU, slightly modified)615

c. Dorothy: What did grandma have to catch?616

Christopher: A bus. (BNC, KBW, slightly modified)617

d. Rhiannon: How much tape have you used up?618

Chris: About half of one side. (BNC, KBM)619

e. Dorothy: What do you want on this?620

Andrew: I would like some yogurt please. (BNC, KBW, slightly mod-621

ified)622

f. Elinor: Where are you going to hide it?623

Tim: Somewhere you can’t have it.(BNC, KBW)624

g. Christopher: Where is the box?625

Dorothy: Near the window. (BNC, KBW)626

One straightforward way to enrich simple answerhood is to consider the627

relation that emerges by closing simple answerhood under disjunction. Gin-628

zburg (1995); Ginzburg & Sag (2000) show that aboutness as defined in (49)629

seems to encompass the various classes of propositions exemplified in (48).630

(49) p is About q iff p entails a disjunction of simple answers to q.631

Answerhood in the ‘aboutness’ sense is clearly distinct from a highly re-632

stricted notion of answerhood, that of being a proposition that resolves or633

constitutes exhaustive information about a question. This latter sense of an-634

swerhood, which is restricted to true propositions, has been explored in great635

Page: 21 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

22 Robin Cooper and Jonathan Ginzburg

detail in the formal semantics literature, since it is a key ingredient in ex-636

plicating the behaviour of interrogatives embedded by resolutive predicates637

such as ‘know’, ‘tell’ and ‘discover’. We will not discuss this here but refer the638

reader to Ginzburg (2012).639

Many queries are responded to with a query. A large proportion of these640

are clarification requests, to be discussed in section 6. But in addition to these,641

there are query responses whose content directly addresses the question posed,642

as exemplified in (50):643

(50)644

a. A: Who murdered Smith? B: Who was in town?645

b. A: Who is going to win the race? B: Who is going to participate?646

c. Carol: Right, what do you want for your dinner?647

Chris: What do you (pause) suggest? (BNC, KBJ)648

d. Chris: Where’s mummy?649

Emma: Mm?650

Chris: Mummy?651

Emma: What do you want her for? (BNC, KBJ)652

There has been much work on relations among questions within the frame-653

work of Inferential Erotetic Logic (IEL) (see e.g. Wísniewski (2001, 2003) and654

Wísniewski (this volume)), yielding notions of q(uestion)–implication. From655

this a natural hypothesis can be made about such query responses, as in656

(51a). A related proposal, first articulated by Carlson (1983), is that they are657

constrained by the semantic relations of dependence, or its converse influence.658

(51) a. q2 can be used to respond to q1 if q2 influences q1.659

b. q2 influences q1 iff any proposition p such that p Resolves q2, also sat-660

isfies p entails r such that r is About q1.661

Its intuitive rationale is this: discussion of q2 will necessarily bring about662

the provision of information about q1. The actual characterization of query re-663

sponses is complex, both empirically and theoretically. For a detailed account664

using TTR see Lupkowski & Ginzburg (2014).665

Page: 22 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 23

5 Interaction on dialogue gameboards666

On the approach developed in KoS the analysis of dialogue is formulated at a667

level of information states, one per conversational participant. Each informa-668

tion state consists of two ‘parts’, a private part and the dialogue gameboard669

that represents information that arises from publicized interactions. For re-670

cent psycholinguistic evidence supporting this partition see Brown-Schmidt671

et al. (2008).672

Information states are records of the type given in (52a). For now we673

focus on the dialogue gameboard, various aspects of which are exploited in674

the toolbox used to account for the phenomena exemplified in our initial ex-675

ample from the BNC. The type of dialogue gameboards is given in (52b). The676

spkr,addr fields allow one to track turn ownership. Facts represents conversa-677

tionally shared assumptions. Moves and Pending represent, respectively, lists678

of moves that have been grounded or are as yet ungrounded. QUD tracks the679

questions currently under discussion.680

(52)681

a. TotalInformationState (TIS) =def

[
dialoguegameboard : DGBType
private : Private

]
682

b. DGBType =def683

spkr : Ind
addr : Ind
utt-time : TimeInt
c-utt : addressing(spkr,addr,utt-time)
Facts : {Prop}
Pending : [LocProp]
Moves : [LocProp]
QUD : poset(Question)

684

Our job as dialogue analysts is to construct a theory that will explain685

how conversational interactions lead to observed conversational states of type686

DGBType. Let us consider how an initial conversational state looks, that is687

the state as the first utterance of the dialogue is made. Initially no moves have688

been made and no issues introduced, so a dialogue gameboard will be of the689

type in (53):690

(53)

spkr : Ind
addr : Ind
utt-time : TimeInt
c-utt : addressing(spkr,addr,utt-time)
Facts={} : {Prop}
Pending=[] : [LocProp]
Moves=[] : [LocProp]
QUD={} : poset(Question)

691

Page: 23 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

24 Robin Cooper and Jonathan Ginzburg

This allows us to construct a type corresponding to a lexical entry for a692

greeting word such as ‘hi’, as in (54). Here we assume that the definition of693

the type Sign in Section 3 has been modified to include a field for a dialogue694

game board:695

Sign =def

s-event : SEvent

synsem :

[
cat : Cat
cont : cont

]
dgb : DGBType

696

This represents an extension of the Saussurean notion of sign where we not697

only take account of the signifier (‘s-event’) and the signified (‘synsem’) but698

also the context in which the signification takes place (here represented by699

‘dgb’).700

(54) Sign∧.701

s-event:

[
phon:hi
s-time:TimeInt

]

synsem:

cat=interj:Cat

cont=

sit =rds

sit-type=

[
e:greet(⇑dgb.spkr,
⇑dgb.addr,⇑dgb.utt-time)

]:Prop

dgb:

spkr:Ind
addr:Ind
utt-time=s-event.s-time:TimeInt
moves=[]:[Prop]
qud={}:poset(Question)

702

Here, as before in our discussion of questions, rds is the described situation as703

determined by the context. The use of ‘⇑’ in the ‘sit-type’-field is a convenient704

informal notation for paths occurring in a record type embedded within a705

larger record type but not lying on a path in that record type. It indicates706

that the path is to be found in the next higher record type. It clears up an707

ambiguity that arises because we are using the notation that does not make708

explicit the dependent types that are being used as discussed on p. 6.709

How do we specify the effect of a conversational move? The basic units710

of change are mappings between dialogue gameboards that specify how one711

gameboard configuration can be modified into another on the basis of dialogue712

moves. We call a mapping between DGB types a conversational rule. The types713

specifying its domain and its range we dub, respectively, the pre(conditions)714

and the effects, both of which are supertypes of the type DGBType. A con-715

versational rule that enables us to explain the effect a greeting, the initial716

conversational move, has on the DGB is given in (55). It is a record type717

which contains two fields. The ‘pre(condition)’-field is for a dialogue game-718

board of a certain type and the ‘effects’-field provides a type for the updated719

gameboard. The precondition in this example requires that both Moves and720

Page: 24 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 25

QUD are empty; the sole effect is to push the proposition associated with hi721

onto the list in the ‘moves’-field.722

(55)723

pre:DGBType∧.

spkr : Ind
addr : Ind
utt-time : TimeInt
moves=[] : [Prop]
qud={} : poset(Question)

effects=

moves=[

sit =rds

sit-type=

[
e:greet(pre.spkr,
pre.addr,pre.utt-time)

]
|pre.moves]:[Prop]

:RecType

724

The form for update rules proposed here is thus725

(56)

[
pre : T1
effects=T2 : RecType

]
726

An agent who believes that they have a current state s of type T1, that is,727

whose hypothesis about the current state is that it belongs to type T such728

that T v T1, can use s to anchor T2 to obtain T2[s] and then use asymmetric729

merge to obtain a type for the new state: T ∧. T2[s].730

The rule (57) says that given a question q and ASK(A,B,q) being the731

LatestMove, one can update QUD with q as QUD–maximal.732

(57) Ask QUD–incrementation733

734

ques:Question
moves-tail:[Prop]

pre:DGBType∧.

spkr:Ind
addr:Ind

moves=[

 sit = rds

sit-type =

[
e:ask(pre.spkr,
pre.addr,ques)

]
|moves-tail] : [Prop]

qud:poset(Question)

effects=

[
q=ques⊕pre.qud : poset(Question)

]
:RecType

735

Next we introduce the rule QSPEC. QSPEC can be thought of as a ‘rel-736

evance maxim’: it characterizes the contextual background of reactive queries737

and assertions. (58) says that if q is QUD–maximal, then subsequent to this738

the next move is constrained to be q–specific (Ginzburg, 2012), that is, either739

about q (a partial answer) or a question on which q depends. Moreover, this740

move can be held by either of the speech event participants. The constraint741

in (58) involves merging a constraint concerning the information about QUD742

and Moves with a constraint entitled TurnUnderSpec, which merely specifies743

Page: 25 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

26 Robin Cooper and Jonathan Ginzburg

that the speaker and addressee of the effects are distinct and drawn from the744

set consisting of the initial speaker and addressee:745

(58) a. QSPEC746

pre :

[
qud. =

〈
q, Q

〉
: poset(Question)

]
effects : TurnUnderspec ∧.
r : Prop ∨ Question

R: IllocRel

LatestMove = R(spkr,addr,r) : IllocProp

c1 : About(r,q) ∨ Depend(q,r)

747

b. TurnUnderspec =

PrevAud =
{

pre.spkr,pre.addr
}

:
{

Ind
}

spkr : Ind

c1 : member(spkr, PrevAud)

addr : Ind

c2: member(addr, PrevAud)

∧ addr 6= spkr

748

QSPEC involves factoring out turn taking from the assumption that A749

asking q involves B answering it. In other words, the fact that A has asked750

q leaves underspecified who is to address q (first or at all). This is justified751

by self-answering data such as the initial example we considered in the intro-752

duction (1), as well as (59a,b), where the querier can or indeed needs to keep753

the turn, as well as multi-party cases such as (59c) where the turn is multiply754

distributed:755

(59)756

a. Vicki: When is, when is Easter? March, April? (BNC, KC2)757

b. Brian: you could encourage, what’s his name? Neil. (BNC, KSR)758

c. A: Who should we invite? B: Perhaps Noam. C: Martinu. D: Bedrich.759

Explicating the possibility of self-answering is one of the requirements for760

dealing with our initial example (1).761

Page: 26 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 27

6 Unifying metacommunicative and illocutionary762

interaction763

Establishing that the most recent move has been understood to the satisfac-764

tion of the conversationalists, has come to be known as grounding, following765

extensive empirical work by Herb Clark and his collaborators (Clark & Schae-766

fer (1989); Clark & Wilkes-Gibbs (1986); Clark (1996)). One concrete task for767

a theory of dialogue is to account for the potential for and meaning of acknow-768

ledgement phrases, as in (60), either once the the utterance is completed, as769

in (60a), or concurrently with the utterance as in (60b):770

(60)771

a. Tommy: So Dalmally I should safely say was my first schooling. Even772

though I was about eight and a half. Anon 1: Mm. Now your father773

was the the stocker at Tormore is that right ? (British National Corpus774

(BNC, K7D)775

b. A: Move the train . . .776

B: Aha777

A:. . . from Avon . . .778

B: Right779

A:. . . to Danville. (Adapted from the Trains corpus, Allen et al. (1995))780

An additional task is to characterize the range of (potential) presupposi-781

tions emerging in the aftermath of an utterance, whose subject matter con-782

cerns both content and form. This is exemplified in the constructed examples783

in (61):784

(61)785

a. A: Did Mark send you a love letter?786

b. B: No, though it’s interesting that you refer to Mark/my787

brother/our friend788

c. B: No, though it’s interesting that you mention sending789

d. B: No, though it’s interesting that you ask a question containing790

seven words.791

e. B: No, though it’s interesting that the final two words you just792

uttered start with ‘l’793

Developing a semantic theory that can fully accommodate the challenges of794

grounding is far from straightforward. A more radical challenge, nonetheless, is795

to explicate what goes on when an addressee cannot ground her interlocutor’s796

utterance. We suggest that this is more radical because it ultimately leads to797

seemingly radical conclusions of an intrinsic semantic indeterminacy: in such798

a situation the public context is no longer identical for the interlocutors—799

the original speaker can carry on, blissfully unaware that a problem exists,800

utilizing a ‘grounded context’, whereas if the original addressee takes over801

the context is shifted to one which underwrites a clarification request. This802

Page: 27 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

28 Robin Cooper and Jonathan Ginzburg

potential context–splitting is illustrated in (62), originally discussed in (Gin-803

zburg (1997)). The data in (62) illustrates that the contextual possibilities for804

resolving the fragment ‘Bo?’ are distinct for the original speaker A and the805

original addressee B. Whereas there is one common possibility, the short an-806

swer reading, only B has the two clarification request readings, whereas only807

A has a self-correction reading, albeit one that probably requires an further808

elaboration:809

(62)810

a. A: Who does Bo admire? B: Bo?811

Reading 1 (short answer): Does Bo admire Bo?812

Reading 2 (clausal confirmation): Are you asking who BO (of all813

people) admires?;814

Reading 2 (intended content): Who do you mean ‘Bo’?)815

b. A: Who does Bo admire? Bo?816

Reading 1 (short answer): Does Bo admire Bo?817

Reading 2 (self correction): Did I say ‘Bo’?818

Clarification requests can take many forms, as illustrated in (63):819

(63)820

a. A: Did Bo leave?821

b. Wot: B: Eh? / What? / Pardon?822

c. Explicit (exp) : B: What did you say? / Did you say ‘Bo’ /What823

do you mean ‘leave’?824

d. Literal reprise (lit): B: Did BO leave? / Did Bo LEAVE?825

e. Wh-substituted Reprise (sub): B: Did WHO leave? / Did Bo826

WHAT?827

f. Reprise sluice (slu): B: Who? / What? / Where?828

g. Reprise Fragments (RF): B: Bo? / Leave?829

h. Gap: B: Did Bo . . . ?830

i. Filler (fil): A: Did Bo . . . B: Win? (Table I from Purver (2006))831

Now, as (64a) indicates, a priori ANY sub-utterance is clarifiable, includ-832

ing function words like ‘the’, as in (64c). While the potential for repetition-833

oriented clarification interaction clearly applies to all utterances and their834

parts, it is an open question whether this is true for semantically/pragmatically835

oriented CRification. For empirical studies on this see Healey et al. (2003);836

Purver et al. (2003, 2006).837

(64)838

a. Who rearranged the plug behind the table?839

b. Who? / rearranged?/ the plug? / behind? / the table?840

c. A: Is that the shark? B: The? B: Well OK, a. (based on an example841

in the film Jaws.)842

Page: 28 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 29

Integrating metacommunicative interaction into the DGB involves two ad-843

ditions to the picture we have had so far, one minor and one major. The minor844

addition, drawing on an early insight of Conversation Analysis (see the notion845

of side sequence, Schegloff (2007)), is that repair can involve ‘putting aside’846

an utterance for a while, a while during which the utterance is repaired. The847

‘pending’-field in the dialogue gameboard is used for this. Note that this field848

contains a list of locutionary propositions. Most work on (dialogue) context to849

date involves reasoning and representation solely on a semantic/logical level.850

But if we wish to explicate metacommunicative interaction, then we cannot851

limit ourselves in this way.852

If p:LocProp, the relationship between p.sit and p.sit-type can be utilized853

in providing an analysis of grounding/CRification conditions:854

(65)855

a. Grounding: p is true: the utterance type fully classifies the utterance856

token.857

b. CRification: p is false, either because p.sit-type is weak (e.g. incom-858

plete word recognition) or because u is incompletely specified (e.g.859

incomplete contextual resolution—problems with reference resolution860

or sense disambiguation).861

In principle one could have a theory of CRification based on generating all862

available CRs an utterance could give rise to. But in practice, as the data in863

(64) showed us, there are simply too many to be associated in a ‘precompiled’864

form with a given utterance type.865

Instead, repetition and meaning–oriented CRs can be specified by means866

of a uniform class of conversational rules, dubbed Clarification Context Update867

Rules (CCURs) in Ginzburg (2012). Each CCUR specifies an accommodated868

MaxQUD built up from a sub-utterance u1 of the target utterance, the max-869

imal element of Pending (MaxPending). Common to all CCURs is a license870

to follow up MaxPending with an utterance which is co-propositional with871

MaxQUD. (66) is a simplified formulation of one CCUR, Parameter identific-872

ation, which allows B to raise the issue about A’s sub-utterance u: what did873

A mean by u?:874

Page: 29 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

30 Robin Cooper and Jonathan Ginzburg

(66) Parameter identification:875

max pending : LocProp

rst pending : [LocProp]

u : Sign

cu : member(u,max pending.sit.synsem.constits)

latest move : LocProp

rst moves : [LocProp]

pre : DGBType∧.
[

spkr
]
Ind

pending : [max pending|rst pending] : [LocProp]

moves : [latest move|rst moves] : [LocProp]

qud : [Question]

effects :
[

qud=[q |pre.qud] : [Question]
]

876

where q is λr:
[
cont:Cont

]
(
[

e : mean(⇑pre.spkr,⇑pre.u,r.cont)
]
)877

Parameter Identification (66) underpins CRs such as (67b–67c) as follow-878

ups to (67a). We can also deal with corrections, as in (67d), since they address879

the issue of what A meant by u.880

(67) a. A: Is Bo here?881

b. B: Who do you mean ‘Bo’?882

c. B: Bo? (= Who is ‘Bo’?)883

d. B: You mean Jo.884

We have now explicated the basis for partial comprehension in dialogue,885

relating to the requirements from the initial example (1).886

Page: 30 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 31

7 Traditional semantic concerns in a dialogue887

perspective888

In this section we will discuss two traditional concerns in semantics, negation889

and quantification, and show that we get a rather different view of them when890

we consider dialogue phenomena relating to them.891

7.1 Negation892

The classical view of negation is that it is a truth functional connective that893

maps true to false and false to true. In intuitionistic approaches as standardly894

used in type theory, negative propositions, ¬p, are regarded as the type of895

refutations of p. This leads intuitionistic logic to abandon the principle of896

bivalence, that propositions are either true or false. On the intuitionistic view897

it is possible that a proposition p neither has a proof nor a refutation. Thus898

such a proposition is neither true nor false.899

In this section, which contains revised material from Cooper & Ginzburg900

(2011a,b), we will suggest an alternative view: that negation is used to pick901

out a negative situation type. It is crucial for this proposal to work that we902

are able to distinguish between positive and negative types in a way that is903

not possible on the standard approaches to “truth-value flipping” negation.904

Consider the uses of no in the (made-up) dialogue in (68) and the glosses905

given after them in square brackets.906

(68)907

Child approaches socket with nail908

Parent: No. [“Don’t put the nail in the socket.”]
Do(#n’t) you want to be electrocuted?

Child: No. [“I don’t want to be electrocuted.”]
Parent: No. [“You don’t want to be electrocuted.”]

909

The first use of no does not relate back to any previous linguistic utterance but910

rather to an event which is in progress. The parent has observed the first part911

of the event and predicted a likely conclusion (as in the example of the game912

of fetch discussed in Section 2). The parent wishes to prevent the completion913

of the event, that is, make sure that the predicted complete event type is not914

realized. We claim that the central part of the meaning of negation has to915

do with the non-realization of some positive situation type (represented by916

a negative situation type), rather than a switching of truth values as on the917

classical logical view of negation. We see this again in the second use of no in918

response to the parent’s query whether the type child-wants-to-be-electrocuted919

is realized. The child’s negative response asserts that the type is not realized.920

The third utterance of no agrees with the previous assertion, namely this921

asserts agreement that the type is (or should be) empty. A naive application922

of the classical view of negation as a flipping of truth values might say that no923

always changes the truth-value of the previous assertion. This would make the924

Page: 31 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

32 Robin Cooper and Jonathan Ginzburg

wrong prediction here, making the parent disagree with the child. Our view925

that negation has to do with a negative situation type means that it will be926

used to disagree with a positive assertion and agree with a negative assertion,927

which seems to be how negation works in most, if not all, natural languages.928

Another important fact about this dialogue is the choice of the parent’s929

question. The positive question is appropriate whereas the negative question930

would be very strange, suggesting that the child should want to be electro-931

cuted. The classical view of negation as truth value flip has led to a view that932

positive and negative questions are equivalent (Hamblin, 1973; Groenendijk933

& Stokhof, 1997). This derives from a view of the contents of questions as934

the sets of propositions corresponding to their answers. While positive and935

negative questions do seem to have the same possible answers it appears that936

the content of the question should involve something more than the set of937

answers. The distinction between positive and negative questions was noted938

for embedded questions by Hoepelmann (1983) who noted the examples in939

(69).940

(69)941

a. The child wonders whether 2 is even.942

943

b. The child wonders whether 2 isn’t even. (There is evidence that 2 is944

even)945

Hoepelmann’s observation is that the same kind of inference as we noticed946

with the negative version of the parent’s question about electrocution. That947

is, there is a suggestion that there is reason to believe the positive, that the948

type is realized. This kind of inference is not limited to negative questions but949

seems to be associated with negation in general. Fillmore (1985) notes the950

examples in (70).951

(70)952

a. Her father doesn’t have any teeth953

b. #Her husband doesn’t have any walnut shells954

c. Your drawing of the teacher has no nose/#noses955

d. The statue’s left foot has no #toe/toes956

The examples marked with # sound strange because they are contrary to957

our expectations. We in general expect that people have teeth but not walnut958

shells, a nose but not several noses and several toes but not just a single toe.959

Fillmore discusses this in terms of frames. We would discuss this in terms960

of resources we have available. We can, however, create the expectations by961

raising issues for discussion within the dialogue thus creating the necessary962

resources locally as in (71).963

(71) A: My husband keeps walnut shells in the bedroom.
B: Millie’s lucky in that respect. Her husband doesn’t have any walnut

shells.

964

Page: 32 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 33

This discussion points to a need to distinguish between positive and neg-965

ative propositions based on positive and negative situation types. We have966

given the two reasons in (72) for this:967

(72)968

a. The content of no is different depending on whether it is used in a969

response to a negative or positive proposition970

b. The raising of a contrary expectation occurs only with negative asser-971

tions or questions972

A third reason which has been discussed in the literature (recently by Farkas973

& Roelofsen ms) is that some languages have different words for yes depending974

on positive and negative propositions. This is illustrated in (73).975

(73)976

a. A: Marie est une bonne étudiante
Marie is a good student

B: Oui / #Si.
Yes / Yes (she is)

977

b. A: Marie n’est pas une bonne étudiante
Marie isn’t a good student

B: #Oui / Si.
Yes / Yes (she is)

978

In French the word oui is used to agree with a positive proposition and the979

word si is used to disagree with a negative proposition. Similar words exists980

in other languages such as German (ja/doch) and Swedish (ja/jo).981

How do we know that the distinction between positive and negative pro-982

positions is a semantic distinction rather than a syntactic distinction de-983

pending on how the propositions are introduced? There are lots of ways of984

making a negative sentence, by using various negative words such as not,985

no, none, nothing. In French you have there are discontinuous constructions986

ne. . . pas/point/rien corresponding to “not/not at all/nothing”. However, in987

these constructions the ne can be omitted. Thus both of the following are pos-988

sible: je n’en sais rien/ j’en sais rien (“I know nothing about it”). In Swedish989

there are two words for not which are stylistic variants: inte, ej The gener-990

alization that allows us to recognize all these morphemes or constructions as991

“negations” is the semantic property they share: namely that they introduce992

negative propositions.993

On the traditional truth-value flipping view of negation it is hard to make994

this semantic distinction. For example, in a possible worlds semantics a pro-995

position is regarded as a set of possible worlds – the set of worlds in which996

the proposition is true. On this view the negation of a proposition is the com-997

plement of that set of worlds belonging to the proposition. There is no way of998

distinguishing between “positive” and “negative” sets of possible worlds. How-999

ever, on a type theoretic approach the distinction can be made in a straight-1000

forward manner.1001

Page: 33 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

34 Robin Cooper and Jonathan Ginzburg

The account of negation we give here is slightly different to that given in1002

Cooper & Ginzburg (2011a,b) and as a consequence the definitions are slightly1003

more elegant and intuitive. We introduce negative types by the clause (74).1004

(74) If T is a type then ¬T is a type1005

Because types are intensional we can say that ¬T is distinct not only from1006

T but also from any other type, without worrying that there might be an1007

equivalent type that has the same witnesses. Thus simply by introducing a1008

negative operation on types (represented by ¬) we distinguish negative types1009

from positive ones. We can also introduce types of negative types. For example,1010

we can introduce a type RecType¬ such that T :RecType¬ iff T = ¬T ′ and1011

T ′:RecType. We can then define a type RecType¬† whose witnesses are the1012

closure of the set of negated record types under negation (in a similar manner1013

to our definition of RecordType† on p. 18).1014

We can characterize witnesses for negative types by: a : ¬T iff there is1015

some T ′ such that a : T ′ and T ′ precludes T . We say that T ′ precludes T iff1016

either (75a) or (75b) holds.1017

(75)1018

a. T = ¬T ′1019

b. or, T, T ′ are non-negative and there is no a such that a : T and a : T ′1020

for any models assigning witnesses to basic types and ptypes1021

It follows from these two definitions that (1) a : ¬¬T iff a : T and that (2)1022

a : T ∨ ¬T is not necessary (a may not be of type T and there may not be1023

any type which precludes T either). Thus this negation is a hybrid of classical1024

and intuitionistic negation in that (1) normally holds for classical negation1025

but not intuitionistic whereas (2), that is failure of the law of the excluded1026

middle, normally holds for intuitionistic negation but not classical negation.1027

Nothing in these definitions accounts for the fact that a : ¬T seems to1028

require an expectation that a : T . One way to do this is to refine the clause1029

that defines witnesses for negative types:a : ¬T iff there is some T ′ such that1030

a : T ′ and T ′ precludes T and there is some expectation that a : T . There is1031

some question in our minds of whether this addition should be included here1032

or in some theory of when agents are likely to make judgements. What does1033

it mean for there to “be some expectation”? We would like to relate this to1034

the kind of functions we used to predict completions of events and which we1035

also used for grammar rules, that is to dependent types. Breitholtz (2010);1036

Breitholtz & Cooper (2011) use dependent types to implement Aristotelian1037

enthymemes that is defeasible inference patterns. Such enthymemes could be1038

either general or local context-specific resources that we have available to1039

create expectations.1040

Finally, let us see how the techniques we have developed here could be1041

combined with Austinian propositions.1042

The type of negative Austinian propositions can be defined as (76).1043

Page: 34 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 35

(76)

[
sit : Rec
sit-type : RecType¬†

]
1044

The type of positive Austinian propositions can be defined as (77).1045

(77)

[
sit : Rec
sit-type : RecType

]
1046

Thus we have a clear way of distinguishing negative and positive propositions.1047

7.2 Generalized quantifiers1048

Purver & Ginzburg (2004); Ginzburg & Purver (2012); Ginzburg (2012) in-1049

troduce the Reprise Content Hypothesis (RCH) given in (78).1050

(78)1051

a. RCH (weak) A fragment reprise question queries a part of the stand-1052

ard semantic content of the fragment being reprised.1053

b. RCH (strong) A fragment reprise question queries exactly the stand-1054

ard semantic content of the fragment being reprised.1055

They use this to motivate a particular view of the semantics of quantified1056

noun-phrases which is based on witness sets rather than families of sets as1057

in the classical treatment. Cooper (2010, 2013) argues for combining a more1058

classical treatment with their approach. We summarize the argument here.1059

In terms of TTR, a type corresponding to a “quantified proposition” can1060

be regarded as (79).1061

(79)

 restr : Ppty
scope : Ppty
cq : q(restr,scope)

1062

The third field represents a quantificational ptype of the form q(restriction,scope)1063

an example of which would be (80).1064

(80) every(λr:
[
x:Ind

]
(
[
c:dog(r.x)

]
), λr:

[
x:Ind

]
(
[
c:run(r.x)

]
))1065

That is, ‘every’ is a predicate which holds between two properties, the property1066

of being a dog and the property of running. As an example, suppose we want1067

to represent the record type which is the content of an utterance of A thief1068

broke in here last night. For convenience we represent the property of being1069

a thief as thief and the property corresponding to broke in here last night as1070

bihln. Then the content of the sentence can be (81).1071

(81)

 restr=‘thief ’ : Ppty
scope=‘bihln’ : Ppty
c∃ : ∃(restr,scope)

1072

We can relate this proposal back to classical generalized quantifier theory, as1073

represented in Barwise & Cooper (1981). Let the extension of a type T , [̌ T],1074

be the set {a | a : T}, the set of witnesses for the type. Let the P-extension1075

of a property P , [↓P], be the set in (82).1076

Page: 35 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

36 Robin Cooper and Jonathan Ginzburg

(82) {a | ∃r[r :
[
x:Ind

]
∧ r.x = a ∧ [̌ P (r)] 6= ∅]}1077

That is, the set of objects that have the property. We say that there is a con-1078

straint on models such that the type q(P1, P2) is non-empty iff the relation q∗1079

holds between [↓P1] and [↓P2], where q∗ is the relation between sets corres-1080

ponding to the quantifier in classical generalized quantifier theory. Examples1081

are given in (83).1082

(83)1083

a. some(P1,P2) is non-empty (that is, “true”) just in case [↓P1]∩[↓P2] 6= ∅1084

b. every(P1,P2) is non-empty just in case [↓P1] ⊆ [↓P2].1085

c. many(P1,P2) is non-empty just in case | [↓P1] ∩ [↓P2] | > n, where n1086

counts as many.1087

The alternative analysis of generalized quantifiers that Purver & Ginzburg1088

(2004); Ginzburg & Purver (2012); Ginzburg (2012) propose is based on the1089

notion of witness set from Barwise & Cooper (1981). Here we will relate this1090

notion to the notion of a witness for a type, that is something which is of1091

that type. We have not yet said exactly what it is that is of a quantifier1092

ptype q(P1, P2). One solution to this is to say that it is a witness set for the1093

quantifier, that is (84).131094

(84) a : q(P1, P2) iff q∗ holds between [↓P1] and [↓P2] and a = [↓P1]∩[↓P2]1095

This definition relies on the fact that all natural language quantifier rela-1096

tions are conservative (Peters & Westerst̊ahl, 2006), a notion which we can1097

define as in (85).1098

(85) a quantifier q is conservative means q∗ holds between [↓P1] and [↓P2]1099

just in case q∗ holds between [↓ P1] and [↓ P1] ∩ [↓ P2] (every person1100

runs iff every person is a person who runs)1101

Armed with this we can define the type of (potential) witness sets for a quan-1102

tifier relation q and a property P , q†(P), that is, witness sets in the sense of1103

Barwise and Cooper as in (86).1104

(86) a : q†(P) iff a ⊆ [↓ P] and there is some set X such that q∗ holds1105

between [↓P] and X1106

Using these tools we present a modified version of Ginzburg and Purver’s1107

proposed analysis of most students left in (87), where the ‘q-params’-field1108

specifies quantifier parameters and the ‘cont’-field specifies the content of the1109

utterance.1110

(87)

[
q-params :

[
w:most†(student)

]
cont :

[
cq=q-params.w:most(student,left)

]]1111

13 This appears to go against the intuition that we have introduced before that
ptypes are types of situations. Ultimately we might wish to say that a witness
for a quantifier type is a situation containing such a witness set, but we will not
pursue this here.

Page: 36 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 37

In Cooper (2010) we presented the two analyses as in competition with1112

each other, but we now think that there is advantage to be gained by put-1113

ting the two together. Our way of combining the two analyses predicts two1114

readings for the noun-phrase most students, a referential reading which makes1115

the witness set be a q-parameter in Purver and Ginzburg’s analysis and a1116

non-referential reading in which the witness set is incorporated in the content1117

of the NP. These are given in (88).1118

(88)1119

a. referential1120

q-params:

[
restri=student:Ppty
wi :most†(q-params.restri)

]
cont=
λP :Ppty

(

scope=P :Ppty
cmost=⇑q-params.wi:most(⇑q-params.restri,

scope)

):Quant

1121

b. non-referential1122

q-params:Rec
cont=
λP :Ppty

(

restri=student:Ppty
wi:most†(restri)
scope=P :Ppty
cmost=wi:most(restri,scope)

):Quant

1123

Given these types, what can a clarification address? Our claim is that the1124

clarification must address something for which there is a path in the record1125

type. In addition there appears to be a syntactic constraint that clarifications1126

tend to be a “major constituent”, that is a noun-phrase or a sentence, rather1127

than a determiner or a noun. In a referential reading there are three paths1128

available: ‘q-params.restri’, ‘q-params.wi’ and ‘cont’. The first of these, the1129

restriction, is dispreferred for syntactic reasons since it is normally expressed1130

by a noun. This leaves the witness and the whole NP content as possible1131

clarifications. However, from the data it appears that the whole content can1132

be expressed focussing either on the restriction or the quantifier relation. For1133

non-referential readings only the whole content path is available.1134

In (89) we give one example of each kind of clarification from the data1135

that Purver and Ginzburg adduce.1136

(89)1137

a. Witness clarification1138

Page: 37 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

38 Robin Cooper and Jonathan Ginzburg

Unknown: And er they X-rayed me, and took a urine sample, took a
blood sample. Er, the doctor

Unknown: Chorlton?
Unknown: Chorlton, mhm, he examined me, erm, he, he said now

they were on about a slide 〈unclear〉 on my heart. Mhm,
he couldn’t find it.

1139

BNC file KPY, sentences 1005–10081140

b. Content clarification with restriction focus1141

Terry: Richard hit the ball on the car.
Nick: What car?
Terry: The car that was going past.

1142

BNC file KR2, sentences 862–8641143

c. Content clarification with quantifier relation focus1144

Anon 2: Was it nice there?
Anon 1: Oh yes, lovely.
Anon 2: Mm.
Anon 1: It had twenty rooms in it.
Anon 2: Twenty rooms?
Anon 1: Yes.
Anon 2: How many people worked there?

1145

BNC file K6U, sentences 1493–14991146

Our conclusion is that a combination of the classical approach to gener-1147

alized quantifiers combined with a modification of the approach suggested by1148

Purver and Ginzburg, adding a field for the witness, provides correct predic-1149

tions about clarifications. This means that the strong version of the reprise1150

clarification hypothesis is consistent with our analysis, allbeit now with a more1151

complex interpretation of the clarification request than Purver and Ginzburg1152

proposed. The interpretation proposed here involves a combination of the1153

classical approach to generalized quantifiers and the witness approach sug-1154

gested by Purver and Ginzburg. The clarification itself, however, can address1155

different parts of the content of the clarification request.1156

Page: 38 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 39

8 Grammar in dialogue1157

8.1 Non Sentential Utterances1158

The basic strategy adopted in KoS to analyze non sentential utterances1159

(NSUs) is to specify construction types where the combinatorial operations1160

integrate the (surface) denotata of the fragments with elements of the DGB.1161

We have provided one example of this earlier in our lexical entry for ‘hi’, (54).1162

Another simple example is given in (90), a lexical entry for the word ‘yes’.1163

(90) Sign∧.

s-event :

[
phon : yes

]
qmax : PolQuestion

synsem :

[
cat=adv ic : Cat
cont=qmax (rds) : Prop

]
1164

Here qmax is a maximal element of dgb.qud which is of the type PolQues-1165

tion, exemplified in (43). Since qmax is of the type PolQuestion, it is a constant1166

function whose domain is the class of all records and its range is a proposition1167

p. Hence the content of this function applied to any record is p. Thus, ‘yes’1168

gets as its content the proposition p, intuitively affirming the issue ‘whether1169

p’ currently under discussion. See Fernández (2006); Ginzburg (2012) for a1170

detailed account of this and a wide range of other more complex NSU types.1171

8.2 Disfluencies1172

Disfluencies are ubiquitous and observable in all but the briefest conversational1173

interaction. Disfluencies have been studied by researchers in Conversational1174

Analysis (e.g., Schegloff et al. (1977)), in great detail by psycholinguists (e.g.,1175

Levelt (1983); Brennan & Schober (2001); Clark & Tree (2002)), and by com-1176

putational linguists working on speech applications (e.g., Shriberg (1994)). To1177

date, they have mostly been excluded from semantic analysis, primarily be-1178

cause they have been assumed to constitute low level ‘noise’, without semantic1179

import. In fact, disfluencies participate in semantic and pragmatic processes1180

such as anaphora, conversational implicature, and discourse particles, as il-1181

lustrated in (91).1182

(91)1183

a. Peter was + { well } he was] fired. (Example from Heeman & Allen1184

(1999))1185

b. A: Because I, [[[any, + anyone,] + any friend,] + anyone] I give1186

my number to is welcome to call me (Example from the Switchboard1187

corpus, Godfrey et al. (1992)) (implicature: ‘It’s not just her friends1188

that are welcome to call her when A gives them her number’)1189

c. From yellow down to brown–NO–that’s red. (Example from Levelt1190

(1983))1191

Page: 39 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

40 Robin Cooper and Jonathan Ginzburg

In all three cases, the semantic process is dependent on the reparandum1192

(the phrase to be repaired) as the antecedent.1193

Hesitations, another manifestation of disfluency, provide a particularly nat-1194

ural example of self-addressed queries, queries where the intended responder1195

is the original querier:1196

(92)1197

a. Carol: Well it’s (pause) it’s (pause) er (pause) what’s his name? Bern-1198

ard Matthews’ turkey roast. (BNC, KBJ)1199

b. Steve: They’re pretty . . . um, how can I describe the Finns? They’re1200

quite an unusual crowd actually.1201

Since they can occur at just about any location in a given utterance and1202

their effect is local, disfluencies provide strong motivation for an incremental1203

semantics, that is, a semantics calculated on a word-by-word, left to right1204

fashion (see e.g. Steedman (1999); Kempson et al. (2000), and et al (this1205

volume)). Moreover, they require the content construction process to be non-1206

monotonic, since initial decisions can be overriden as a result of self-repair.1207

(Ginzburg et al. (2014b)) sketch how, given an incremental dialogue se-1208

mantics, accommodating disfluencies is a straightforward extension of the ac-1209

count discussed in section 6 for clarification interaction: the monitoring and1210

update/clarification cycle is modified to happen at the end of each word ut-1211

terance event, and in case of the need for repair, a repair question gets accom-1212

modated into QUD. Self–corrections are handled by a slight generalisation of1213

the rule (66), which just as with the rule QSPEC, underspecifies turn owner-1214

ship. Hesitations are handled by a CCUR that triggers the accommodation of1215

a question about the identity of the next utterance. Overt examples for such1216

accommodation is exemplified in (92).1217

Page: 40 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 41

9 Conclusions and future directions1218

In this paper we have presented a theory which encompasses both the analysis1219

of dialogue structure and the traditional concerns of formal semantics. Our1220

main claim is that the two should not be separated. We have used a rich type1221

theory (TTR – type theory with records) in order to achieve this. The main1222

advantages of TTR is that it presents a theory of types which are structured1223

in a similar way to feature structures as employed in feature-based approaches1224

to grammar while at the same time being a type theory including a theory1225

of functions corresponding to the λ-calculus which can be used for a highly1226

intensional theory of semantic interpretation. This type theory can be used to1227

formulate both compositional semantics and the theory of dialogue structure1228

embodied by KoS (Ginzburg, 2012). Among other things we have shown how1229

these tools can be used to create a theory of events (both non-linguistic and1230

linguistic) and thereby create a theory of grammar grounded in the percep-1231

tion of speech events. We have shown how these tools enable us to give an1232

account of the kind of abstract entities needed for semantic analysis, such as1233

propositions and questions. We have also shown how the same tools can be1234

used to given an account of dialogue gameboards and dialogic interaction.1235

We have exemplified that with respect to variety of phenomena one needs1236

to tackle in order to provide even a rudimentary analysis of an extract from1237

an actual British National Corpus, example (1), which we presented at the be-1238

ginning of the paper. While we cannot claim to have handled all the details of1239

this example we have nevertheless presented a theory which begins to provide1240

some of the pieces of the puzzle. In particular: non sentential utterances are1241

analyzed using a dialogue game-board driven context exemplified in sections1242

5 and 8.1. Disfluencies are handled using conversation rules of a similar form1243

to Clarification Requests and, more generally, to general conversational rules.1244

The possibility of answering one’s own question is a consequence of factoring1245

turn taking away from illocutionary specification, as in the conversational rule1246

QSPEC. Misunderstanding is accommodated by (i) associating different dia-1247

logue gameboards with the conversational participants, and (ii) characterizing1248

the grounding and clarification conditions of utterances using locutionary pro-1249

positions (propositions constructed from utterance types/tokens). Multilogue1250

involves scaling up of two-person conversational rules to include communal1251

grounding and acceptance, and multi-agent turn taking. (See Ginzburg &1252

Fernández (2005); Ginzburg (2012))1253

Beyond the treatment of real conversational interaction, we have looked1254

at a couple of traditional concerns of formal semantics from a dialogical per-1255

spective: negation and generalized quantification.1256

Some other areas which are currently being examined using these tools,1257

but which we have not discussed in this article are: quotation (Ginzburg &1258

Cooper, 2014)—where we argue for the use of utterance types and locutionary1259

propositions as denotations for quotative constructions; the semantics for spa-1260

tial descriptions and its relationship to robot perception and learning (Dobnik1261

Page: 41 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

42 Robin Cooper and Jonathan Ginzburg

et al., 2011, 2012; Dobnik & Cooper, 2013); grounding semantics in terms of1262

classifiers used for perception (Larsson, 2013); probabilistic semantics (Cooper1263

et al., 2014); and language acquisition (Larsson & Cooper, 2009; Ginzburg &1264

Moradlou, 2013).1265

Page: 42 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 43

References1266

et al, Ruth Kempson (this volume), Ellipsis.1267

Allen, James F., Lenhart K. Schubert, George Ferguson, Peter Heeman, Chung Hee1268

Hwang, Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Bradford W. Miller,1269

Massimo Poesio, & David R. Traum (1995), The trains project: A case study in1270

building a conversational planning agent, Journal of Experimental and Theoret-1271

ical AI 7:7–48.1272

Artstein, Ron, Mark Core, David DeVault, Kallirroi Georgila, Elsi Kaiser, & Amanda1273

Stent (eds.) (2011), SemDial 2011 (Los Angelogue): Proceedings of the 15th1274

Workshop on the Semantics and Pragmatics of Dialogue.1275

Austin, John L. (1961), Truth, in James Urmson & Geoffrey J. Warnock (eds.),1276

Philosophical Papers, Oxford University Press, paper originally published in1277

1950.1278

Barwise, Jon & Robin Cooper (1981), Generalized quantifiers and natural language,1279

Linguistics and Philosophy 4(2):159–219.1280

Barwise, Jon & John Etchemendy (1987), The Liar, Oxford University Press, New1281

York.1282

Barwise, Jon & John Perry (1983), Situations and Attitudes, Bradford Books, MIT1283

Press, Cambridge, Mass.1284

Breitholtz, Ellen (2010), Clarification requests as enthymeme elicitors, in Aspects of1285

Semantics and Pragmatics of Dialogue. SemDial 2010, 14th Workshop on the1286

Semantics and Pragmatics of Dialogue ,.1287

Breitholtz, Ellen & Robin Cooper (2011), Enthymemes as rhetorical resources, in1288

Artstein et al. (2011).1289

Brennan, Susan E. & Michael F. Schober (2001), How listeners compensate for1290

disfluencies in spontaneous speech, Journal of Memory and Language 44:274–1291

296.1292

Brown-Schmidt, S., C. Gunlogson, & M.K. Tanenhaus (2008), Addressees distin-1293

guish shared from private information when interpreting questions during inter-1294

active conversation, Cognition 107(3):1122–1134.1295

Carlson, Lauri (1983), Dialogue Games, Synthese Language Library, D. Reidel,1296

Dordrecht.1297

Clark, Herb & Jean Fox Tree (2002), Using uh and um in spontaneous speech,1298

Cognition 84:73–111.1299

Clark, Herbert (1996), Using Language, Cambridge University Press, Cambridge.1300

Clark, Herbert H & Deanna Wilkes-Gibbs (1986), Referring as a collaborative pro-1301

cess, Cognition 22(1):1–39.1302

Clark, H.H. & E.F. Schaefer (1989), Contributing to discourse, Cognitive science1303

13(2):259–294.1304

Cooper, Robin (2005a), Austinian truth, attitudes and type theory, Research on1305

Language and Computation 3:333–362.1306

Cooper, Robin (2005b), Austinian truth, attitudes and type theory, Research on1307

Language and Computation 3(4):333–362.1308

Cooper, Robin (2005c), Records and record types in semantic theory, Journal of1309

Logic and Computation 15(2):99–112.1310

Cooper, Robin (2010), Generalized quantifiers and clarification content, in1311

 Lupkowski & Purver (2010).1312

Page: 43 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

44 Robin Cooper and Jonathan Ginzburg

Cooper, Robin (2012), Type theory and semantics in flux, in Ruth Kempson, Nich-1313

olas Asher, & Tim Fernando (eds.), Handbook of the Philosophy of Science,1314

Elsevier BV, volume 14: Philosophy of Linguistics, (271–323), general editors:1315

Dov M. Gabbay, Paul Thagard and John Woods.1316

Cooper, Robin (2013), Clarification and Generalized Quantifiers, Dialogue and Dis-1317

course 4(1):1–25.1318

Cooper, Robin (in prep), Type theory and language: from perception to linguistic1319

communication, draft of book chapters available from https://sites.google.1320

com/site/typetheorywithrecords/drafts.1321

Cooper, Robin, Simon Dobnik, Shalom Lappin, & Staffan Larsson (2014), A prob-1322

abilistic rich type theory for semantic interpretation, in Proceedings of the first1323

EACL workshop on Natural Language Semantics and Type Theory, Gothenburg,1324

(72–79).1325

Cooper, Robin & Jonathan Ginzburg (2011a), Negation in dialogue, in Artstein1326

et al. (2011).1327

Cooper, Robin & Jonathan Ginzburg (2011b), Negative inquisitiveness and1328

alternatives-based negation, in Proceedings of the Amsterdam Colloquium, 2011.1329

Coquand, Thierry, Randy Pollack, & Makoto Takeyama (2004), A logical framework1330

with dependently typed records, Fundamenta Informaticae XX:1–22.1331

Dobnik, Simon & Robin Cooper (2013), Spatial descriptions in type theory with re-1332

cords, in Proceedings of IWCS 2013 Workshop on Computational Models of Spa-1333

tial Language Interpretation and Generation (CoSLI-3), Association for Com-1334

putational Linguistics, Potsdam, Germany, (1–6).1335

Dobnik, Simon, Robin Cooper, & Staffan Larsson (2012), Modelling language, ac-1336

tion and perception in type theory with records, in Denys Duchier & Yannick1337

Parmentier (eds.), Proceedings of the 7th International Workshop on Constraint1338

Solving and Language Processing (CSLP’12), Laboratory for Fundamental Com-1339

puter Science (LIFO), University of Orléans,, Orléans, France, (51–62).1340

Dobnik, Simon, Staffan Larsson, & Robin Cooper (2011), Toward perceptually1341

grounded formal semantics, in Workshop on Integrating Language and Vision1342

on 16 December 2011 at NIPS 2011 (Neural Information Processing Systems).1343

Farkas, Donka & Floris Roelofsen (ms), Polarity particles in an inquisitive discourse1344

model, Manuscript, University of California at Santa Cruz and ILLC, University1345

of Amsterdam.1346

Fernández, Raquel (2006), Non-Sentential Utterances in Dialogue: Classification,1347

Resolution and Use, Ph.D. thesis, King’s College, London.1348

Fernando, Tim (2004), A finite-state approach to events in natural language se-1349

mantics, Journal of Logic and Computation 14(1):79–92.1350

Fernando, Tim (2006), Situations as strings, Electronic Notes in Theoretical Com-1351

puter Science 165:23–36.1352

Fernando, Tim (2008), Finite-state descriptions for temporal semantics, in Harry1353

Bunt & Reinhart Muskens (eds.), Computing Meaning, Volume 3, Springer,1354

volume 83 of Studies in Linguistics and Philosophy, (347–368).1355

Fernando, Tim (2009), Situations in LTL as strings, Information and Computation1356

207(10):980–999, ISSN 0890-5401, doi:DOI:10.1016/j.ic.2008.11.003.1357

Fillmore, Charles J. (1985), Frames and the semantics of understanding, Quaderni1358

di Semantica 6(2):222–254.1359

Gibson, James J. (1986), The Ecological Approach to Visual Perception, Lawrence1360

Erlbaum Associates.1361

Page: 44 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

https://sites.google.com/site/typetheorywithrecords/drafts
https://sites.google.com/site/typetheorywithrecords/drafts
https://sites.google.com/site/typetheorywithrecords/drafts

TTR for Natural Language Semantics 45

Ginzburg, Jonathan (1995), Resolving questions, I, Linguistics and Philosophy1362

18:459–527.1363

Ginzburg, Jonathan (1997), On some semantic consequences of turn taking, in1364

P. Dekker, M. Stokhof, & Y. Venema (eds.), Proceedings of the 11th Amster-1365

dam Colloquium on Formal Semantics and Logic, ILLC, Amsterdam, (145–150).1366

Ginzburg, Jonathan (2011), Situation semantics and the ontology of natural lan-1367

guage, in Klaus von Heusinger, Claudia Maierborn, & Paul Portner (eds.), The1368

Handbook of Semantics, Walter de Gruyter.1369

Ginzburg, Jonathan (2012), The Interactive Stance: Meaning for Conversation, Ox-1370

ford University Press, Oxford.1371

Ginzburg, Jonathan & Robin Cooper (2014), Quotation via dialogical interaction,1372

Journal of Logic, Language, and Information 23(3) 287–311.1373

Ginzburg, Jonathan, Robin Cooper, & Tim Fernando (2014a), Propositions, ques-1374

tions, and adjectives: a rich type theoretic approach, in Proceedings of the first1375

EACL workshop on Natural Language Semantics and Type Theory, Gothenburg.1376

Ginzburg, Jonathan & Raquel Fernández (2005), Scaling up to multilogue: some1377

benchmarks and principles, in Proceedings of the 43rd Meeting of the Association1378

for Computational Linguistics, Michigan, (231–238).1379

Ginzburg, Jonathan, Raquel Fernández, & David Schlangen (2014b), Disfluencies as1380

intra-utterance dialogue moves, Semantics and Pragmatics 7(9) 1–64.1381

Ginzburg, Jonathan & Sara Moradlou (2013), The earliest utterances in dialogue:1382

towards a formal theory of parent/child talk in interaction, in Raquel Fernández1383

& Amy Isard (eds.), Proceedings of SemDial 2013 (DialDam), University of Am-1384

sterdam.1385

Ginzburg, Jonathan & Matt Purver (2012), Quantfication, the reprise content hypo-1386

thesis, and type theory, in Staffan Larsson & Lars Borin (eds.), From Quantfic-1387

ation to Conversation: Festschrift for Robin Cooper on the occasion of his 65th1388

birthday, College Publications, volume 19 of Tributes.1389

Ginzburg, Jonathan & Ivan A. Sag (2000), Interrogative Investigations: the form,1390

meaning and use of English Interrogatives, number 123 in CSLI Lecture Notes,1391

CSLI Publications, Stanford: California.1392

Godfrey, John J., E. C. Holliman, & J. McDaniel (1992), Switchboard: Telephone1393

speech corpus for research and devlopment, in Proceedings of the IEEE Con-1394

ference on Acoustics, Speech, and Signal Processing, San Francisco, USA, (517–1395

520).1396

Groenendijk, Jeroen & Martin Stokhof (1997), Questions, in Johan van Benthem1397

& Alice ter Meulen (eds.), Handbook of Logic and Linguistics, North Holland,1398

Amsterdam.1399

Hamblin, C. L. (1973), Questions in Montague English, in Barbara Partee (ed.),1400

Montague Grammar, Academic Press, New York.1401

Healey, P.G.T., M. Purver, J. King, J. Ginzburg, & G. Mills (2003), Experimenting1402

with clarification in dialogue, in R. Alterman & D. Kirsh (eds.), Proceedings1403

of the 25th Annual Conference of the Cognitive Science Society, Mahwah, N.J.:1404

LEA, (539–544.).1405

Heeman, Peter A. & James F. Allen (1999), Speech repairs, intonational phrases1406

and discourse markers: Modeling speakers’ utterances in spoken dialogue, Com-1407

putational Linguistics 25(4):527–571.1408

Hoepelmann, Jacob (1983), On questions, in Ferenc Kiefer (ed.), Questions and1409

Answers, Reidel.1410

Page: 45 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

46 Robin Cooper and Jonathan Ginzburg

Hopcroft, John E. & Jeffrey D. Ullman (1979), Introduction to Automata Theory,1411

Languages and Computation, Addison-Wesley Publishing, Reading Massachu-1412

setts.1413

Kempson, Ruth, Wilfried Meyer-Viol, & Dov Gabbay (2000), Dynamic Syntax: The1414

Flow of Language Understanding, Blackwell, Oxford.1415

Larsson, Staffan (2013), Formal semantics for perceptual classification, Journal of1416

Logic and Computation doi:10.1093/logcom/ext059.1417

Larsson, Staffan & Robin Cooper (2009), Towards a formal view of corrective feed-1418

back, in Proceedings of the EACL 2009 Workshop on Cognitive Aspects of Com-1419

putational Language Acquisition, Athens.1420

Levelt, Willem J. (1983), Monitoring and self-repair in speech, Cognition 14(4):41–1421

104.1422

Luo, Zhaohui (2011), Contextual Analysis of Word Meanings in Type-Theoretical1423

Semantics, in Sylvain Pogodalla & Jean-Philippe Prost (eds.), Logical Aspects of1424

Computational Linguistics: 6th International Conference, LACL 2011, Springer,1425

number 6736 in Lecture Notes in Artificial Intelligence, (159–174).1426

 Lupkowski, Pawe l & Jonathan Ginzburg (2014), Question answers, Computational1427

Linguistics (Under Review) .1428

 Lupkowski, Pawe l & Matthew Purver (eds.) (2010), Aspects of Semantics and Prag-1429

matics of Dialogue. SemDial 2010, 14th Workshop on the Semantics and Prag-1430

matics of Dialogue, Polish Society for Cognitive Science, Poznań.1431

Martin-Löf, Per (1984), Intuitionistic Type Theory, Bibliopolis, Naples.1432

Michaelis, Laura A. (2009), Sign-based construction grammar, in The Oxford Hand-1433

book of Linguistic Analysis, Oxford University Press.1434

Montague, Richard (1973), The Proper Treatment of Quantification in Ordinary1435

English, in Jaakko Hintikka, Julius Moravcsik, & Patrick Suppes (eds.), Ap-1436

proaches to Natural Language: Proceedings of the 1970 Stanford Workshop on1437

Grammar and Semantics, D. Reidel Publishing Company, Dordrecht, (247–270).1438

Montague, Richard (1974), Formal Philosophy: Selected Papers of Richard1439

Montague, Yale University Press, New Haven, ed. and with an introduction by1440

Richmond H. Thomason.1441

Partee, B.H., A.G.B. ter Meulen, & R.E. Wall (1990), Mathematical Methods in1442

Linguistics, Springer.1443

Peters, Stanley & Dag Westerst̊ahl (2006), Quantifiers in Language and Logics,1444

Oxford University Press.1445

Purver, M. (2006), Clarie: Handling clarification requests in a dialogue system, Re-1446

search on Language & Computation 4(2):259–288.1447

Purver, Matt & Jonathan Ginzburg (2004), Clarifying noun phrase semantics,1448

Journal of Semantics 21(3):283–339.1449

Purver, Matthew, Jonathan Ginzburg, & Patrick Healey (2006), Lexical categories1450

and clarificational potential, revised version under review.1451

Purver, Matthew, Eleni Gregoromichelaki, Wilfried Meyer-Viol, & Ronnie Cann1452

(2010), Splitting the I s and Crossing the Yous: Context, Speech Acts and Gram-1453

mar, in Lupkowski & Purver (2010), (43–50).1454

Purver, Matthew, Patrick G. T. Healey, James King, Jonathan Ginzburg, & Greg J.1455

Mills (2003), Answering clarification questions, in Proceedings of the 4th SIGdial1456

Workshop on Discourse and Dialogue, ACL, Sapporo.1457

Ranta, Aarne (this volume), Intuitionistic type theory and dependent types.1458

Page: 46 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

TTR for Natural Language Semantics 47

Sag, Ivan A., Thomas Wasow, & Emily M. Bender (2003), Syntactic Theory: A1459

Formal Introduction, CSLI Publications, Stanford, 2nd edition.1460

Schegloff, Emanuel (2007), Sequence Organization in Interaction, Cambridge Uni-1461

versity Press, Cambridge.1462

Schegloff, Emanuel, Gail Jefferson, & Harvey Sacks (1977), The preference for self-1463

correction in the organization of repair in conversation, Language 53:361–382.1464

Searle, John R. (1969), Speech Acts: an Essay in the Philosophy of Language, Cam-1465

bridge University Press.1466

Shieber, Stuart (1986), An Introduction to Unification-Based Approaches to Gram-1467

mar, CSLI Publications, Stanford.1468

Shriberg, Elizabeth E. (1994), Preliminaries to a theory of speech disfluencies, Ph.D.1469

thesis, University of California at Berkeley, Berkeley, USA.1470

Steedman, Mark (1999), The Syntactic Process, Linguistic Inquiry Monographs, MIT1471

Press, Cambridge.1472

Wísniewski, Andrzej (2001), Questions and inferences, Logique et Analyse 173:5–43.1473

Wísniewski, Andrzej (2003), Erotetic search scenarios, Synthese 134:389–427.1474

Wísniewski, Andrzej (this volume), The semantics of questions.1475

Page: 47 job: rc-jg-ttrsem-final macro: handbook.cls date/time: 3-Apr-2015/11:40

	 TTR for Natural Language Semantics
	Robin Cooper and Jonathan Ginzburg
	1 Introduction
	2 A theory of types and situations
	2.1 Type theory and perception
	2.2 TTR: Type theory with records
	2.3 Subtyping
	2.4 Function types
	2.5 Complex types correspondings to propositional connectives
	2.6 Set and list types
	2.7 The string theory of events
	2.8 Inference from partial observation of events

	3 Grammar in TTR
	4 A theory of abstract entities
	4.1 Questions

	5 Interaction on dialogue gameboards
	6 Unifying metacommunicative and illocutionary interaction
	7 Traditional semantic concerns in a dialogue perspective
	7.1 Negation
	7.2 Generalized quantifiers

	8 Grammar in dialogue
	8.1 Non Sentential Utterances
	8.2 Disfluencies

	9 Conclusions and future directions
	References

