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Reshaping the Physical Properties of a Quadrotor through IDA-PBC
and its Application to Aerial Physical Interaction

Burak Yüksel1, Cristian Secchi2, Heinrich H. Bülthoff1 and Antonio Franchi3,1

Abstract— In this paper we propose a controller, based on
an extension of Interconnection and Damping Assignment-
Passivity Based Control (IDA-PBC) framework, for shaping
the whole physical characteristics of a quadrotor and for
obtaining a desired interactive behavior between the robot and
the environment. In the control design, we shape the total
energy (kinetic and potential) of the undamped original system
by first excluding external effects. In this way we can assign a
new dynamics to the system. Then we apply damping injection
to the new system for achieving a desired damped behavior.
Then we show how to connect a high-level control input to
such system by taking advantage of the new desired physics.
We support the theory with extensive simulations by changing
the overall behavior of the UAV for different desired dynamics,
and show the advantage of this method for sliding on a surface
tasks, such as ceiling painting, cleaning or surface inspection.

I. INTRODUCTION
Multi-rotor UAVs used as flying robotic systems have been

very popular research tools for the last decade especially in
the sense of developing new control techniques. The usually
simple mechanics of these platforms, like the quadrotor UAV,
allow to develop advanced controllers, while dexterity of
their workspace makes them important for observation and
manipulation tasks. Most of the works have considered the
system as a flying sensor, and developed controllers for
trajectory tracking [1], [2], haptic teleoperation [3], [4], robot
vision [5], and distributed control [6], [7].

The direction of recent studies is leading the scientists to
the field of aerial manipulation, where these flying UAVs are
no longer just passive observers, but flying robots physically
interacting with their environment [8], [9]. This interaction
could be achieved by the quadrotor itself [10], [11]; or
by using some manipulation tools such as cables [12], a
manipulator arm [13], [14], [15], a rigid [16], [17], or a
flexible link [18]. Different control techniques are applied to
these different designs. The controller in [10] used Kalman
filters to estimate external forces from position and attitude
information. The controller is proposed for linearized trans-
lational dynamics in near-hovering case, which provides a
local solution in terms of physical interaction for a quadrotor.
In [11] a hybrid pose and wrench control framework is
used for stable contact of quadrotors, where the wrench
is estimated using pose measurements and control inputs
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by the help of PI(D) controllers. In order to robustly deal
with poorly structured environment, impedance control has
been exploited. In [13] a Cartesian impedance control for
regulating the stiffness and the damping of a manipulator
mounted on an UAV has been proposed. The approaches
presented in [19] and [14] exploit passivity based control
for shaping only the potential energy of a quadrotor and for
setting a desired cartesian stiffness to the controlled system.
Potential energy is only one of the factors affecting the way
a mechanical system interacts with the environment. Inertial
properties and damping also play a major role for determin-
ing the interactive behavior. Furthermore, since the direction
of the thrust of a quadrotor depends on the orientation of the
system, it is not sufficient to shape the Cartesian impedance
for achieving an effective control of interaction.

The main motivation of this paper is to control a quadrotor
for shaping its whole physical behavior by changing its
inertia, the potential field it is immersed in and its damping,
both for Cartesian and orientation components. In other
words, we would like to transform a quadrotor in another
physical system that is more suitable for a given objective. In
this way we can control the whole interactive behavior of the
quadrotor and we can increase the accuracy of the interactive
task, e.g., reducing the oscillations in the case of contact with
a quickly moving object, being more compliant when the
contact surface has a variable profile or being lighter when
approaching a fragile environment.

In order to attain this goal, we recast the problem of
interaction control for a quadrotor in the port-Hamiltonian
framework. We build a port-Hamiltonian model of a properly
precompensated dynamics of the quadrotor and we exploit
and extend the Interconnection and Damping Assignment
Passivity Based Control (IDA-PBC) framework [20], [21]
for shaping the total energy of the system. Furthermore, we
propose a damping injection and scaling technique for setting
the desired damping and for achieving the desired controlled
dynamics.

The paper is organized as follows. Section II gives a
background on port-Hamiltonian systems and control design
using IDA-PBC. In Sec. III we rewrite the full dynamics
of a precompensated quadrotor in a port-Hamiltonian form
and in Sec. IV we introduce the controller for shaping the
physics of the quadrotor. Simulation results are given in
Sec. V, to support the proposed method, where we show
how the behavior of overall system can be changed using
the proposed strategy and how this can be exploited in an
application case where the quadcopter needs to slide a tool
over an uneven surface. Finally Sec. VI concludes the paper
with useful remarks and ideas for future work.
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II. BACKGROUND

In this section we will provide some background on
port-Hamiltonian systems and on IDA-PBC control. More
information can be found in [22], [20] and [21].

The port-Hamiltonian framework is a generalization of
standard Hamiltonian mechanics and energetic features play
a primary role in the modeling process. The most common
representation of a port-Hamiltonian system is the following: ẋ =

[
J (x)− R̄(x)

]
∂H
∂x +G(x)u

y = G(x)T ∂H∂x

(1)

where x ∈ Rn is the state and H(x) : Rn → R represents
the amount of energy stored in the system. Matrices J (x) =
−J (x)T and R̄(x) ≥ 0 represent the internal energetic
interconnections and the dissipation of the port-Hamiltonian
system, respectively. Furthermore, G(x) is the input matrix
and the input-output pair (u, y) represents a power port,
namely a pair of variables whose product gives (generalized)
power that is either stored or dissipated by the system.

Using IDA-PBC [20] and its extension proposed in [21]
it is possible to control a port-Hamiltonian system in such
a way that it behaves as a target dynamics, namely as a
new port-Hamiltonian system with a desired interconnection
matrix, damping matrix and energy function and even with
a different state variable x̄ ∈ Rn. Formally, let

x = Φ(x̄, t) (2)

be the map relating x̄ and x, where Φ and ∂Φ
∂x̄ are invertible at

any time t. Let Jd,Rd and Hd be the desired interconnection
matrix, dissipation matrix and energy function, respectively.
The port-Hamiltonian system in (1) can be transformed into
the target port-Hamiltonian dynamics described by

˙̄x =
[
Jd(x̄)− R̄d(x̄)

] ∂Hd

∂x̄
(3)

using

u = (GT (x)G(x))−1GT (x)
[
∂Φ
∂x̄ (Jd(x̄)− R̄d(x̄))∂Hd

∂x̄ −
−(J (x)− R̄(x))∂H∂x + ∂Φ

∂t

]
(4)

where (GT (x)G(x))−1GT (x) is the pseudoinverse of G(x),
if and only if the following matching equation holds:

G⊥(x)

[
∂Φ

∂x̄
(Jd(x̄)− R̄d(x̄))

∂Hd

∂x̄
+
∂Φ

∂t
−

−(J (x)− R̄(x))
∂H

∂x

]
= 0 (5)

where G⊥(x) is the full rank left annihilator of G(x) .
The main drawback of IDA-PBC is the necessity of

solving the nonlinear partial differential equations (PDE) (5).
In general it is not possible to find a closed form solution of
the matching equation and, therefore, it is not possible to find
all the possible achievable target dynamics. In practice, it is
necessary to test if the desired target dynamics is achievable
and, if not, to modify it until (5) is satisfied.
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Fig. 1. Schematic figure of a quadrotor and notation used in the paper.

III. PORT-HAMILTONIAN MODEL OF A
QUADROTOR

Consider an inertial world frame W : {Ow, ~xw, ~yw, ~zw}
and a body frame B : {Ob,~bb, ~yb, ~zb} rigidly attached to the
quadrotor and with the origin placed in the quadrotor center
of mass. Both frames follow the NED (North-East-Down)
convention. The dynamic equation of the quadrotor system
shown in Fig. 1 is given by in two parts [3]: rotational

Σ1 :

{
Jω̇ = −S(ω)Jω + τ̄ + τe
η̇ = T (η)ω

(6)

and the translational

Σ2 :
{
mẍb = −ρR(η)e3 +mge3 + fe (7)

where m > 0 is the mass of the quadrotor; e3 = (0 0 1)T ;
xb ∈ R3 is the position of Ob in W; η = [φ θ ψ]T ∈ R3 are
the roll, pitch, and yaw angles representing the orientation of
B in W; R(η) ∈ SO(3) is the associated rotational matrix;
ρ ∈ R is the thrust1 control input along −~zb; ω ∈ R3 is
the angular velocity of B w.r.t. to W expressed in B; J ∈
R3×3 is the inertia matrix w.r.t. the body frame; g is the
gravity acceleration directed along ~zw; τ̄ ∈ R3 and τe ∈
R3 represent the torque input and the external (environment)
torque, respectively, both expressed in B; fe ∈ R3 is the
external (environment) force expressed in W; T (η) ∈ R3 is
the matrix relating ω with η̇; and S(?) : R3 → so(3) is the
skew-symmetric operator.

In order to simplify the structure of the matching condition
and, consequently, to enlarge the set of target dynamics that
can be achieved, we consider a control input τ̄ similar to [3]
but without near-hovering purposes, defined as

τ̄ = JT−1
[
(−kd +Q)η̇ + τ + (I − TJ−1)τe

]
(8)

where kd ∈ R+ and τ = [τ1 τ2 τ3]T ∈ R3 and

Q = T Ṫ−1 + TJ−1S(ω)JT−1 (9)

Therefore, the rotational dynamics in (6) can be rewritten by
applying (8) as follows

η̈ = −kdη̇ + τ + τe (10)

1In normal situations it is actually ρ > 0, see, e.g., the simulations
of Sec. V. However, if needed by the task, negative thrust can always be
achieved in the implementation, as, e.g., in [23].
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where I is the identity matrix of proper dimension. The plant
represented by (7) and (10) can be modeled as a mechanical
port-Hamiltonian system. Let M ∈ R6×6 be

M =

(
mI 0
0 I

)
(11)

where 0 is the zero matrix of proper dimension. Let q =
(xTb η

T )T = {q1, · · · , q6} ∈ R6 and p = Mq̇ ∈ R6 be the
configuration and momentum variables. Furthermore, let u =
(ρ, τT )T ∈ R4 be the input vector. The quadrotor dynamics
can be rewritten as:(
q̇
ṗ

)
=
[(

0 I
−I 0

)
−
(

0 0
0 R

)]( ∂H
∂q
∂H
∂p

)
+
(

0 0
G I

)(
u
we

)
(12)

where R = kdI models the dissipation introduced by (8)
and we = (fTe , τ

T
e )T represents the external wrench acting

on the quadrotor. The total energy function and the input
submatrix G are given by:

H(q, p) =
1

2
pTM−1p+ V (q) =

1

2
pTM−1p−mgq3 (13)

G =

(
G1 0
0 I

)
∈ R6×4 with G1 = −Re3 ∈ R3 (14)

It can be shown that the quadrotor has the property of
cyclo-passivity [24], namely it cannot create energy over
closed paths in the state space. Passivity, a stronger property,
cannot be proven because the gravitational potential energy
V (q), and, consequently, the total energy (13) is not lower
bounded.

Proposition 1: The system (12) is cyclo-passive with re-
spect to the pair ((

u
we

)
,

(
GT ∂H∂p
∂H
∂p

))
Proof: Consider the energy function defined in (13).

Using (12) we obtain:

Ḣ =
(
∂TH
∂q

∂TH
∂p

)(
q̇
ṗ

)
= −∂

TH

∂p
R∂H
∂p

+
∂TH

∂p
Gu+

∂TH

∂p
we (15)

Considerng that R ≥ 0 we obtain that

Ḣ ≤ ∂TH

∂p
Gu+

∂TH

∂p
we (16)

which proves the statement.
Remark 1: The cyclopassivity property can be interpreted

as an extension of the more standard passivity property. It
requires that the system behaves as a physical system from
an energetic point of view (i.e., that the energy introduced
into the system from the external world is either stored or
dissipated) but it does not require that the energy function
is lower bounded. Cyclopassivity, unlike passivity, prevents
from proving the stability of an equilibrium point of the
unforced system but, nevertheless, this is consistent with the
physics of the quadrotor that has no equilibrium points in
case all the inputs (both the control input and the external
wrench) are null.

UAV Dynamics

Total Energy

Dampingudi

ues

Injection

y1qu

Shaping

v1

z
we

Compensation

Fig. 2. Control Design using IDA-PBC and Damping Injection.

IV. CONTROLLER DESIGN

In this section we will exploit and extend the IDA-
PBC formulation presented in [21] in order to completely
change the physical properties of the quadrotor and the way
it reacts to external forces and torques. In other words,
rather than controlling the position or the velocity, we aim
at transforming the quadrotor into a physically different
quadrotor that reacts as a new desired physical system to
external solicitations.

More formally, we aim at controlling (12) in such a way
that it behaves as a new mechanical system described by:(
q̇
˙̄p

)
=

[(
0 I
−I 0

)
−
(

0 0
0 Rd

)](∂Hd

∂q
∂Hd

∂p̄

)
+

(
0
I

)
w̃e (17)

where the new state p̄ = Mdq̇ is the new momentum,
associated with the new inertia matrix Md that is chosen
to be constant and with the following structure:

Md =

(
mdI 0

0 N

)
(18)

where md ∈ R+ and N ∈ R3×3 is a symmetric positive
definite matrix representing the desired mass and the desired
rotational inertia respectively. The desired energy function is

Hd =
1

2
p̄TM−1

d p̄+ Vd(q). (19)

The choice of Md has been made in order to mimic the
structure of (11) such that the controlled system will have an
inertia that is consistent with the mechanics of the quadrotor.
Furthermore, (18) has the advantage of decoupling rotational
and Cartesian kinetic energy simplifying the design of the
IDA-PBC control law. The desired potential function Vd can
be any function such that the matching equation of the IDA-
PBC is satisfied.Rd is the desired dissipation matrix that will
also be constrained by the underactuation of the quadrotor.
Finally, w̃e is the partially compensated external wrench and
it will be defined more clearly later in this section.

The control law, whose block diagram is depicted in Fig. 2,
will be designed in two steps. In the first step (developed in
Sec. IV-A) the non conservative wrenches will be disregarded
and the internal energetic structure of the quadrotor will be
shaped. In the second step (detailed in Sec. IV-B) dissipation
and external wrench will be considered and the control
input will be adjusted in such a way to achieve the target
dynamics (17).
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A. Total Energy Shaping
For the reasons reported in [25], when the plant contains

some inherent dissipation as (12), it is convenient to firstly
shape the energy disregarding the inherent dissipation and
then to tune the dissipation by damping injection.

Thus, in order to shape the energy of the plant, we con-
sider the following undamped plant, where also the external
wrench is disregarded(

q̇
ṗ

)
=

(
0 I
−I 0

)(∂H
∂q
∂H
∂p

)
+

(
0
G

)
ues (20)

and we design the input ues in order to obtain an undamped
controlled system with the desired energy function Hd and
with the desired momentum p̄.(

q̇
˙̄p

)
=

(
0 I
−I 0

)(∂Hd

∂q
∂Hd

∂p̄

)
(21)

Since p̄ = Mdq̇ = MdM
−1Mq̇ = MdM

−1p, we have
that the relation between the state of (20) and the state of
the target dynamics (21) is given by:

x =

(
q
p

)
=

(
I 0
0 MM−1

d

)(
q
p̄

)
= F

(
q
p̄

)
= Φ(x̄), (22)

and, consequently,

∂Φ

∂x̄
= F,

∂Φ

∂t
= 0 (23)

Substituting (20), (21), and (23) in (5) we obtain the
following matching equations:

∂Hd

∂p̄ − ∂H
∂p = 0

G⊥
{
∂H
∂q −MM−1

d
∂Hd

∂q

}
= 0.

(24)

It easy to check that the first equation is always satisfied.
Furthermore, since both M and Md are constant, using (13)
and (19) the second condition can be rewritten as:

G⊥
{
∂V

∂q
−MM−1

d

∂Vd
∂q

}
= 0 (25)

Thus, it is possible to choose md and N in (18) arbitrarily
while the desired potential energy for the controlled system
must satisfy (25).

A possible choice for the full rank left annihilator G⊥ is

G⊥ =

(
0 −1 G1(2)

G1(3) 0 0 0

−1 0 G1(1)
G1(3) 0 0 0

)
(26)

where G1(i) indicates the i-th component of the vector G1.
Using (26) with (25) yields:

∂Vd

∂q2
− G1(2)

G1(3)

(
∂V
∂q3
− m

md

∂Vd

∂q3

)
= 0

∂Vd

∂q1
− G1(1)

G1(3)

(
∂V
∂q3
− m

md

∂Vd

∂q3

)
= 0

(27)

Admissible potentials are all and only the solutions of the
PDEs (27). A possible simple solution is:

Vd(q) = −mdgq3 + V̄d(q4, q5, q6) (28)

This potential energy function is consistent with the de-
sired mass md since it scales the gravity force accordingly
and it allows to arbitrarily shape the potential energy of the
rotational part.

Remark 2: The non constant terms of (26), and conse-
quently (27) have a singularity corresponding to the config-
urations where the pitch or the roll are at π

2 + kπ, where
k ∈ Z. In order for the controller to work properly, the
quadrotor should be kept away from these configurations.

Remark 3: The limits in the choice of the potential are due
to the underactuation of the quadrotor. Since the attitude is
fully actuated, it is possible to arbitrarily choose a potential
on the orientation while the underactuation in the Cartesian
coordinates limits the choice of a translational potential.

Thus, once an admissible potential has been chosen, using
(4), the control input shaping the dynamics of (20) in (21)
is given by:

ues = (GTG)−1GT
(
∂H

∂q
−MM−1

d

∂Hd

∂q

)
(29)

B. Dissipation and External Wrench Shaping
We will now consider the full model of the plant and we

will design the input u = ues + v for shaping the damping
and the external wrenches.

Considering (22) it is possible to rewrite (12) as:(
q̇
˙̄p

)
= F−1

(
0 I
−I 0

)( ∂H
∂q
∂H
∂p

)
+ F−1

(
0
G

)
ues−

− F−1
(

0 0
0 R

)( ∂H
∂q
∂H
∂p

)
+ F−1

(
0
G

)
v + F−1

(
0
I

)
we (30)

Considering the results of Sec. IV-A and recalling that
∂H

∂p
=
∂Hd

∂p̄

we can rewrite (30) as:(
q̇
˙̄p

)
=
(

0 I
−I 0

)( ∂Hd
∂q

∂Hd
∂p̄

)
−
(

0 0
0 MdM

−1R

)( ∂H
∂q

∂Hd
∂p̄

)
+

+
(

0
MdM

−1G

)
v +

(
0

MdM
−1

)
we (31)

Decompose the input as v = udi + v1 and set

udi = −Kvy1 (32)

where
y1 = GTM−TMT

d

∂Hd

∂p̄

is the natural velocity-like output of (31) and

Kv =

(
kT 0
0 KR

)
∈ R4×4

with kT ∈ R+ and R3×3 3 KR > 0. The input udi can be
used for tuning the desired damping. Thus, it is possible to
rewrite (31) as:(

q̇
˙̄p

)
=

[(
0 I
−I 0

)
−
(

0 0
0 Rd

)](∂Hd

∂q
∂Hd

∂p̄

)
+

+

(
0

MdM
−1G

)
v1 +

(
0

MdM
−1

)
we (33)
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where

Rd = MdM
−1R+MdM

−1GKvG
TM−TMT

d . (34)

Because of scaling due to the change of the momen-
tum, (33) is not a standard damping injection and it is neces-
sary to verify that Rd is always positive definite. In general
the product of two positive definite matrices is not always
positive definite. Nevertheless, by simple computations it can
be shown that

Rd =

((
md

m

)2
kTG

T
1 G1 0

0 kdN +NKRN

)
(35)

The first matrix on the diagonal is trivially positive definite.
The second matrix on the diagonal is positive definite be-
cause it is the sum of two positive definite matrices. In fact,
kd ∈ R+ and therefore kdN > 0. Furthermore, since N
and KR are positive definite, NKRN is positive definite.2

The structure of the desired dissipation matrix in (35) is
influenced both by the underactuation of the quadrotor and
by the change of momentum. Because of the underactuation,
the damping in the Cartesian space is influenced only by the
parameter kT and, therefore, it is not possible to set arbitrary
damping factors along the three Cartesian directions. On the
other hand, it is possible to achieve any desired damping
for the rotational dynamics by properly tuning the matrix
KR. The damping force is an external force and, because of
the change of momentum in the target dynamics, the desired
inertia affects the achievable damping. Nevertheless, setting

kT =
(
m
md

)2

k̄T

KR = N−1(K̄R − kdN)N−1

(36)

it is possible to achieve any desired damping k̄T > 0 along
the actuated Cartesian direction and any rotational damping
matrix K̄R > 0.

The change of momentum for the desired target dynamics
introduces a scaling also on the way the external wrench we
influences the evolution of the system. Ideally, the external
force should influence the evolution of the controlled system
in the same way it does in (12). If the external wrench can
be measured, then it is possible to exploit the control input
for eliminating the scaling.

In order to obtain the ideal behavior, we can see from (33)
that the input v1 should be chosen in such a way that:

MdM
−1Gv1 +MdM

−1we = we. (37)

Hovewer, because of the underactuation of the quadrotor, it
is possible to have only a partial compensation that can be
achieved setting

v1 = G+(MM−1
d (I −MdM

−1)we) + z (38)

where G+ is the pseudoinverse of G and the term z is an
extra control input. Replacing (38) in (37) and setting z = 0

2∀z 6= 0 we have Nz = z′ 6= 0 and zT (NKRN)z = zTNTKRNz =
z′TKRz

′ > 0.

we obtain that:

MdM
−1GG+(MM−1

d (I −MdM
−1)we)+

+MdM
−1we = w̃e (39)

where w̃e is the best compensation that can be achieved.
Remark 4: By simple computations, it can be seen

from (38) that the scaling on the external torques can be
perfectly compensated and the approximation remains only
on the compensation of the translational part.

Finally, putting together (29), (32) and (38), we obtain that
the control input u is given by (see also Fig. 2):

u = ues + udi + v1 =

= (GTG)−1GT
(
∂H

∂q
−MM−1

d

∂Hd

∂q

)
−

−KvG
TM−TMT

d

∂Hd

∂p̄
+

+G+(MM−1
d (I −MdM

−1)we) + z. (40)

which leads to the closed-loop system(
q̇
˙̄p

)
=
[(

0 I
−I 0

)
−
(

0 0
0 Rd

)]( ∂Hd
∂q

∂Hd
∂p̄

)
+
(

0
I

)
w̃e+

+

(
0

MdM
−1G

)
z (41)

If we set z = 0; the desired dynamics in (17) as a new
quadrotor with a new inertia, damping and potential structure
is achieved. The external input z can be used for controlling
such a physically modified quadrotor. In other words, the
controller in (40) can be used as an inner control loop for
changing the physical characteristics of the quadrotor and the
input z can be exploited for building outer loops controlling
this new system, taking advantage of its new desired physics.

Proposition 2: The controlled system (41) is cyclo-
passive with respect to the input-output pair:((

z
w̃e

)
,
(
GTM−TMT

d
∂Hd

∂p̄

))
Proof: The proof is analogous to that of Prop. 1.

Remark 5: Even if the the compensation of the external
wrench is only partial, the target dynamics that is achieved
is still well behaved from a physical point of view and no
regenerative effects are present. Furthermore if Vd can be
chosen to be lower bounded in (e.g., in a desired range of
operation), then the achievable target dynamics is passive.

V. SIMULATIONS AND RESULTS
In this section we present some simulation results to

support the theory of proposed control method in this paper.
The parameters for the original system dynamics are chosen
as follows; m = 1 kg, g = 9.81 m/s2. The dissipation on
rotational dynamics, as presented in (10), is set to kd = 1
based on our experiences [3], [4], [6]. We have assumed the
aerodynamic drag as kdrag = 0.5 in every direction. For
more detail, one can check [26]. We first would like to in-
vestigate the behavior of different desired masses in free fall
case, where there are no external forces or high-level control
inputs, i.e., we = z = 0. The desired system parameters are
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Fig. 3. Free fall for different desired dynamics. The figure on left is
the position of the quadrotor along ~zw (height) and the one on the right
is the thrust applied by the controller. The small windows show the first
0.08 seconds for both position and thrust, respectively.

chosen as follows: k̄T = 50, K̄R = diag(k̄Ri
) for k̄Ri

= 5
and V̄d = −mdge3 + 1

2η
TKpη where KP = diag(kpi) with

kpi = 2. Fig.3 shows the position q3 on the left, and the
thrust applied by the controller on the right. The direction of
gravity is shown in the plot. It is seen that under the desired
viscosity, which is tuned by kT , the bigger mass falls faster
than the smaller mass. The controller adjusts itself in a way
that the quadrotor system behaves as a desired mass.

We also would like to show how we change the rotational
dynamics of the system by shaping the desired potential
energy. The rotational dynamics of the quadrotor system
is fully actuated, hence we have full control on rotational
properties. For this, we investigate the impulse response
of the rotational dynamics, where the system is hovering.
For hovering, we used the high-level control input z =
[mdg 0 0 0]T to balance the gravity effect for the desired
system. The impulse 1 Nm around ~bb is applied for 1 s. As
seen in Fig.4, the system with smaller inertia behaves more
compliant to the external torques. The change in orientation φ
reveals that the second order system response, where smaller
inertia has bigger magnitude and it requires higher torques
to stabilize the system. When we assign a bigger inertia,
the system behavior becomes stiffer and rejects the external
torques. System reacts instantly and stabilizes itself with
less change in orientation. The small inertia comes in handy
when for example in safe human-robot-interaction. The big
inertia on the other hand might be useful for tasks where
the quadrotor needs to reject disturbances quickly, such as
maintaining stable contact with a flat surface.

Reshaping the physics, especially rotational dynamics of
an underactuated quadrotor system might provide huge ad-
vantage for physical interaction of such systems. In order
to show this fact, we would like to simulate a sliding on
a surface task, where a tool in shape of a rigid stick is
connected to the center of gravity (COG) of the quadrotor
system, and its tip (tooltip) is in contact with a flat surface.
An illustration is shown in Fig.5. This can be interpreted as
ceiling painting, cleaning, surface inspection, e.t.c.

In this paper we investigate two cases; first the tooltip is
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Fig. 5. The tip of a rigid link driven by a quadrotor is in contact with a
surface and sliding along one direction. The red point represents the tooltip
penetrating the surface (such as ceiling), which is the proxy and presented
with green point.

sliding on a flat surface, and second it is sliding on a rough
surface, where there are dents and bulges. The surface is
placed above (considering +~zw shows the below) the COG
of the quadrotor. We choose to slide along the positive ~xw
(See Fig.5). For this, quadrotor needs to be tilted with a
certain tilting angle, in this case with θ∗ < 0. A desired
attitude can be achieved by shaping the desired potential in
a way that it goes to minimum in a desired configuration.
Consider the desired rotational potential as

V̄d(qe) =
1

2
qTe Kpqe (42)

where

qe = η − η∗ =

φ− φ∗θ − θ∗
ψ − ψ∗

 (43)

The desired attitude η∗ is the equilibrium in orientation
where the rotational potential goes to minimum. Once the
desired attitude is achieved, we need to apply a constant
thrust to the system, to maintain the contact with the surface
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based controller in sense of stability.

and to win against the friction forces, so the tooltip can
slide along the +~xw axis. The external forces acting on the
tooltip can be considered as: the (contact) reaction force
from surface along the +~zw direction, and friction force
against the direction of the sliding motion on the surface.
For modeling the reaction of the surface, we used proxy
model conceptually introduced in [27], only along the +~zw
direction. In our case, the position of the tooltip is the real
position, and the height of the contact surface represents the
proxy (See Fig.5). The reaction force from the surface is
calculated as

f tez = kwall(pz − tz) (44)

where kwall is spring gain depending on the characteristics of
the surface, pz is the proxy (or surface) position, and tz is the
tooltip position along the ~zw axis. For the surface friction,
we used a simple viscous friction model [28] such as

f tex = −µq̇1 (45)

where µ is the coefficient of friction, depending on the tooltip
and surface characteristics, and q̇1 is the velocity of the
tooltip (and quadrotor) along +xw. In our simulation, we
consider a hybrid contact model, where if tooltip penetrates
to the surface, then both reaction and friction forces are
acting, otherwise there are no external forces, i.e.,{

f te = 0 ∈ R3, if tz > pz
f te = [f tex 0 f tez ]T , if tz ≤ pz

To calculate the external wrench acting on the COG of the
quadrotor, we use the following transformation

we =

(
I 0

S(d)RT RT

)
wte (46)

where d is the distance between COG of the quadrotor and
the tooltip, wte = [f te

T
τ te
T

]T is the external wrench acting on

the tooltip. In our case, τ te = 0. For the wall characteristics,
we assigned kwall = 2000, and µ = 0.1. To win the friction
force and start sliding, it is necessary that the angle between
normal of the surface and the applied force must satisfy

|θ∗| > tan−1(µ) (47)

hence, we choose θ∗ = −0.15 rad ' −8.6 deg. A constant
thrust of 2mgN is applied using z to maintain the contact
and to slide along +xw. The distance between tooltip and
COG of the quadrotor is chosen as d = [0.2 0 − 0.2]T ,
in units of meters, for the reason explained in [16]. For
desired rotational potential, we set kpi = 5.5. The desired
damping along the thrust direction is set to k̄T = 10 and
for the rotational dynamics it is k̄Ri = 50. The proxy
position is set to pz = −0.2 m. Fig.6 shows the results
for different desired mass and inertia values. By judging the
change of tz , and orientation θ, bigger inertia quickly adapts
to the disturbances, while smaller inertia is oscillating, which
causes disconnection with the contact surface (blue plot). It is
noticed that a smaller mass (red plot) establishes the contact
with the surface faster than the bigger mass. This shows
how the quadrotor can benefit from the proposed controller,
where we shape and dissipate both kinetic and potential
energies. Changing the desired mass creates a difference in
orientation at steady state, since the total force (with surface
reaction) along ~zw creates bigger torque for bigger mass,
which is directly related to the length of the tool. This is
an important motivation of choosing a reasonable d value,
which is a possible topic of study for future works. Note
that the maximum penetration of the red plot to the surface
is calculated as 4 mm, and the final penetration is 0.3 mm.

As explained before, the external forces are modeled dis-
continuously. It is seen in the blue plot of Fig. 6, the tooltip
loses the contact with the surface, yet the controller stabilizes
the system anyway. In fact, an advantage of passivity based
controllers is that they stabilize (hybrid) systems, where
discontinuities may exist.

In the second case, the quadrotor slides on a rough surface,
where there are dents and bulges. For this, we simply change
the position of the proxy, pz , and let the quadrotor slide
on this new surface. Different from the previous simulation,
we set kpi = 10 and k̄T = 15. The results are shown in
Fig. 7. The position of proxy is presented as black dashed
plot, where it is first shifted 3 cm outwards, i.e., representing
a bulge, and later 3 cm inwards, i.e., representing a dent.
Notice that the direction of the gravity is also given on
the figure. As it is expected from the outcome of previous
simulations, system with smaller inertia has more compliant
reaction to the surface changes. Again, the discontinuity of
the external forces does not cause instabilities, thanks to the
passivity based controller. One has to notice that by tuning
the parameters such as KP , k̄R and k̄T , and setting desired
mass and inertia values, it is always possible to change the
physical behavior of the system depending on the desired
objective.

We encourage the interested reader to watch the video
attached to this paper where we visually present the simula-
tions described in this section.

Preprint version, final version at http://ieeexplore.ieee.org/ 7 2014 IEEE ICRA



0 10 20 30 40 50 60 70
0

50

100

150

200

250
q
1
[m

]
Position

0 10 20 30 40 50 60 70
0

1

2

3

4

q̇
1
[m

/
s
]

Velocity

0 10 20 30 40 50 60 70
−0.25

−0.2

−0.15

−0.1

−0.05

0

t
z
[m

]

Position

0 10 20 30 40 50 60 70
−16

−14

−12

−10

−8

θ
[d
e
g
]

Orientation

0 10 20 30 40 50 60 70
5

10

15

20

25

30

ρ
[N

]

Thrust

0 10 20 30 40 50 60 70
−5

0

5

10

15

τ
1
[N

m
]

Torque

0 10 20 30 40 50 60 70
−0.4

−0.3

−0.2

−0.1

0

Time [s]

f
t e
x
[N

]

Friction Force

0 10 20 30 40 50 60 70
0

20

40

60

80

f
t e
z
[N

]

Time [s]

Contact Force

 

 
m

d
=1.0 , n=2.00

m
d
=1.0 , n=6.00

m
d
=1.0 , n=10.00

Dent
Bulge

g

Fig. 7. Stable contact and sliding along a rough surface, where there are
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VI. CONCLUSIONS
In this work we have illustrated how IDA-PBC and energy

based control techniques can be exploited for controlling
the interactive behavior of an underactuated quadrotor. We
showed how to change the physics of such a system by
shaping its total energy, by setting a desired damping and by
scaling external wrenches for achieving a desired dynamics.
Simulations have shown the effectiveness of the controller
considering two sliding tasks, that can be interpreted as
a ceiling painting, cleaning or surface inspection by a
quadrotor. Future work aims at experimental validation of
the controller developed in this work. Furthermore, we want
to extend the strategy outlined in the paper to the case where
one or more manipulators are mounted on a flying base.
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