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The first law of thermodynamics states that the average total energy current between different
reservoirs vanishes at large times. In this note we examine this fact at the level of the full statistics
of two times measurement protocols also known as the Full Counting Statistics. Under very general
conditions, we establish a tight form of the first law asserting that the fluctuations of the total
energy current computed from the energy variation distribution are exponentially suppressed in the
large time limit. We illustrate this general result using two examples: the Anderson impurity model

and a 2D spin lattice model.

PACS numbers: 02.50.Cw, 03.65.-w, 05.30.-d

Recent technical advances in the control of nanoscale
systems have enabled the experimental study of out of
equilibrium thermodynamics in the quantum regime [I-
[0]. These new experiments allow for the assessment of
fluctuations in addition to the mean heat and particle
currents, thus leading to a renewed theoretical investiga-
tion of the related quantum thermodynamic laws.

One of the basic questions in this context concerns the
energy flow between two initially isolated large systems
A and B. The purpose of this note is to study some con-
sequences of energy conservation on the statistical prop-
erties of this flow.

By the first law, the average work performed by the in-
teraction coupling the two systems is equal to the average
heating of the combined system:

AW, = AQ, = AQ# + AQP.

In the case of a sudden switching on/off of the interaction
V', the average heating is given by

AQr=—=(V)i+ (Vo (1)

where (- ); denotes the expectation with respect to a suit-
able system state at time ¢t. Whenever V' is bounded,
gives
. AQ:
im =

t—oo t

0. 2)

The individual energy currents AQ;4 /B /t are also ex-

pected to reach steady values JA/B. They satisfy J4 =
—JEB, and are non-vanishing for systems out of equilib-
rium.

This note concerns the statistical character of the first
law related to the thermodynamics of open quantum sys-
tems at the mesoscopic scale. Our main result is a re-
finement of relation . It states that the fluctuations of
the total energy current are exponentially suppressed in
the large time limit.

The nature of work in quantum physics is more sub-
tle than in classical physics [I0]. In the 1990’s Lesovik
and Levitov introduced the concept of the Full Counting
Statistics (FCS) in the study of charge transport [I1].
The use of the FCS in the definition of work in quantum
physics appeared in the early 2000’s in the works of J.
Kurchan and H. Tasaki on the extension of the fluctua-
tion relations to quantum systems [I2] [I3]. The emerg-
ing idea is that in quantum mechanics work should not
be understood as an observable. Instead, the work per-
formed during a given time period is identified with the
energy variation AE observed in a repeated measure-
ment protocol where the system energy is measured at
the beginning and at the end of the period. The distri-
bution of the measured energy variation, P,(AFE), is the
work FCS (we comment on terminology in footnote [I4]).
This change of perspective opened a whole new area of
research [I5] [16]. In particular, it allowed for the ex-
tension of the fluctuation relations to quantum systems

The fluctuation relations are intimately related to the
second law of thermodynamics and have been extensively
studied [12] 13|, 15H20]. Regarding the first law, the well
known identity

E; (AE) = AQ:

and give
lim E, (AtE> - 3)

where E; denotes the expectation with respect to the
FCS distribution P; [I0, I§]. In this note we sharpen
by showing that, under very general conditions, the
exponential moment

]Et (eamlAE‘)



remains bounded as ¢ — oo where the constant «,, > 0
is a measure of the regularity of the interaction V (see
below).

Until recently, the first law and energy conservation in
the FCS setting have received little attention in the liter-
ature. In the case where A and B are thermal reservoirs,
the FCS of the total energy current was previously stud-
ied theoretically in [21I]. The works [22] 23] concern the
FCS of energy transfer in the thermalization process of
a finite level quantum system in contact with a thermal
bath, a problem which is radically different from the one
considered here. We also emphasize that here we are only
interested in the FCS of the total energy, and not in the
FCS of the individual energy variations AE4/5.

We start with a system described by a finite dimen-
sional Hilbert space H(F) where the superscript L refers
to the size of the system. Taking L — oo corresponds
to the thermodynamic limit. The limiting objects will be
denoted without the superscript. Let H(F) = HI(LXL)—FH](BL)
be the Hamiltonian of the joint but non-interacting sys-
tem A+ B. The evolution between the two measurements
of HL) is generated by H‘(,L) =H®) 4+ V) where V)
denotes the interaction coupling A and B. The initial
state is described by the density matrix p(X).

Let PS(L) denote the projection on the eigenspace asso-
ciated to the eigenvalue e in the spectrum sp(H(%)). The
measurement of H) at initial time ¢ = 0 gives e with
probability tr(Pe(L)p(L)). After the measurement the sys-
tem is in the projected state

P ) B [ (PR (0.

The second measurement of HX) at a later time t gives
¢’ with probability

tr (Pé,[/)efitH‘(/L)P@(L)p(L)Pe(L)eitH‘(/U) Jtr(PE) o)),

It follows that the probability of observing the energy
variation AE in this measurement protocol is

P{Y(AE) =
e/ —e=AF

The moment generating function of the Full Counting
Statistics PEL) is

9 (a) = / " OE AP (AR)
R

L) g L @D
—tr (eam ) omitH) (—aH( >ﬁ(L)ethV )

where

S0 = P 1) piL),

>

e€sp(H(D)

We assume that for a purely imaginary, the limit

: (L)
i xi

(@) = xi(a) (4)

tr (pe(lL)efitH‘(/L)P()(L)p(L)Pe(L)eitHf,L)) _

exists and is a continuous function of .. This assumption
is harmless and easy to verify in most concrete models of
physical interest. By Levy’s continuity theorem [24], (4))

implies that the thermodynamic limit limy, ., IF’iL) =P
exists. The probability distribution P; is the FCS of the
thermodynamic system.

Let

R (a) =2la] max [ty Eem 3
—1<s<1

and

R(a) = stjip R (a).

Note that R(«a) takes values in [0, co] and is an even func-
tion. Moreover, R(a) > R(a') if @ > o/ > 0. Our regu-
larity condition is that there exists a,,, > 0 such that

R(ay,) < . (5)
We emphasize that is the only regularity assumption
we require and that no further hypothesis on the dynam-
ical behaviour of the system is needed. We also make no
assumptions on the initial state of the system.
Our main result is the following strengthening of :
Theorem For all ¢t > 0,

Et (eamlAE|> S 2eR(avn). (6)
An immediate consequence of this result and Cheby-
shev’s inequality [24] is that for any € > 0,

]P)t <AtE| > 6) < 2efteozm+R(am).
Note that if R(a) < oo for all «, then

P, <|AtE > 6) < 9eR(C/9—Ct

for any C' > 0.

The estimates and can be interpreted in terms
of the large deviation theory [25] (see [26]). For example,
implies that the large deviation rate function of the
random variable |AF|/t satisfies I(s) = oo for s # 0,
and that the large deviations are completely suppressed
in the large time limit.

The main novelty of our proof is the derivation of a
time independent bound for XEL) inspired by the bounds
proposed in [2I]. The derivation is based on two well-
known inequalities. The first is

(7)

(®)

tr(XY) < || X|tr(Y)

which holds for any two non-negative matrices X, Y. The
second states that for any two self-adjoint matrices T', S,

9)

||eT+Se_TH < eMaX0<s<1 HeSTSe75T||.



To prove this inequality, let T'(s) = e’(T+5)e=sT  Then
one has

dsT(s) =T(s)e*TSe*T, T(0) =L
Using
185D ()| < [T (s)ll[le*™ Se™*T|
and Gronwall’s inequality we obtain @ The bound @
is similar but unrelated to the bound (3.10) of [27].
The proof of @ proceeds as follows. For « real we set
X — o $H qaH P —gHY
and

Y P G HP 5 O S0 g0 gD e
(note that 5 and H*) commute). Observe that
L
1" (a) = tr(XY)

and that X,Y are non-negative matrices. We then use
the first inequality to derive the estimate

X (@) < X ()
where
X = [l 35V 8 H Y2
and
tr(Y) = tr (e%H‘(/L)e*%H(L)ﬁ(L)e*%H(L)e%H‘(/Lv .
The cyclicity of the trace gives

o (L) _a
tr(Y) = tr (e_fH(L)eO‘HV e_fH(L)f)(L)) )

Applying the first inequality once again and using that
tr(p")) = 1, we derive

tr(Y) < fled M5,

XI(fL) (a> S ||e—%H€/L)e%H(L) ||2||e%H‘(/L)e—%H(L) ||2

Using the second inequality with

we obtain
XEL)(Q) < eR(L)(a)_

The regularity assumption , the existence of the limit
for purely imaginary «’s, and Vitali’s convergence

theorem (see Appendix B in [I8]) give that for all com-
plex a with real part Re(a) in (—ayn, ), the limit

limy, o0 XEL)(a) = x¢(«) exists. Moreover, for such a’s,

xt(a) = /ReaAEdIP’t(AE)

and

[xe(a)] < R,
It follows that

Xt (Fam)| < o),

The last estimate gives
E, (eo‘m\AEl) < Xe(—am) + xe(am) < 2efHem)

and the theorem follows.

a. Spin—fermion  models. Electronic  transport
through a 1D-lattice containing a single magnetic impu-
rity is a typical problem involving bounded interactions.
The Anderson model [28, 29] commonly used to study
this question is a specific example of a general class of
spin—fermion models to which our main theorem applies.

The study of the FCS of charge transport through the
impurities in such models is an active field of research[30-
34]. We emphasize, however, that here we are only con-
cerned with the statistics of the total energy.

The impurity is described by a quantum dot support-
ing four different eigenstates: empty, occupied by a single
electron with either spin up or spin down, or occupied by
two electrons with opposite spins. The remaining parts
of the lattice, regarded as fermionic (say left and right)
reservoirs at different chemical potentials, are described
in the tight binding approximation.

Here, the subsystem A is the left side of the lattice
together with the impurity. The lattice right side is the
subsystem B.

The operator ¢j,, ,(x) (ci/ro(2)) creates (annihilates)
an electron with spin o at the lattice site x of the left (z <
0)/right (z > 0) reservoir. Similarly, the operator d* (d,)
creates (annihilates) and electron with spin o in the dot.
The anti-commutation relations {c;/, »(2), ¢}, ,.(2')} =
0z,0/00,00 a0d {dy,d%, } = 0, hold while the ¢ operators
commute with the d operators. We use the shorthand
Clyro(®) =2, &(x)cl/na(z). The reservoir Hamiltonians

are
H, = Z

o=+;z,2/ <0
|z —=’|=1

¢ o (2)cro (),

with a similar expression for H... Let h;/, be the discrete
Laplacian of the left/right part of the lattice. Since hy,
is a bounded operator,

eaHl/TCl/r,a(qs)e_aHl/T = Cl/r,a(eahl/r(b)



for all real . In particular, for all «,
o1 ¢y o (8)e™ 7| < oo, (10)
The total Hamiltonian is
H=Hs+H + H,

where Hs =€) d’ds+Ud’ dyd* d_ is the Hamiltonian
of the dot. Regarding the subdivision in A /B subsystem,
we have Hy = H; + Hs and Hg = H,. The coupling of
the conduction electrons with the dot is described by

V= Z (& (cr.0(Vi0) + Cro(vrs)) + huc.)

for some coupling functions v/, ,(z). In the context of
the Anderson model, the superscript L refers to the con-
finement of the reservoirs to the finite part of the lattice
defined by |z| < L. Such confinement is necessary to
allow for a meaningful definition of the repeated mea-
surement protocol leading to the FCS. The limit L — oo
restores the extended reservoirs. It follows from relation
that R(«) is finite for all o, and that our theorem
holds for all «,,, > 0. Hence we have inequality :

P, <AtE > 6) < 96R(C/9~Ct

for any € > 0 and any C > 0.

We also note that one can consider instead the FCS of
H' = H, + H, by setting V' = Hs + V. Then H, = H,
and Hp = H,. One then obtains the same result by
replacing AE with AE’. The energy of the impurity is
irrelevant in the large time limit.

b. Spin systems. Another popular class of models
involving bounded interactions are locally interacting
spin systems. In [26] we prove that, under general con-
ditions, our theorem applies to locally interacting spin
systems in arbitrary dimension. Moreover, for 1D spin
systems with finite range interactions, Araki’s results [35]
give that R(a) < oo for all «, and hence that our the-
orem holds for all «,,, > 0. We restrict ourselves to the
description of a simple example.

Consider a 2D square lattice of %—spins. Let Ay C Z?
be the finite sub-lattice of size 2L x 2L. We denote by
A% its left/right half. Subsystems A and B are the spins
in A} and Az respectively (see Figure .

The system Hilbert space is H(L) = ®x6AL C2?. The
Hamiltonian is that of an XY-spin model where the spins
on A} do not interact with that on A} [36]:

HW®) = g-) 4 g+,
with

H(Lvi) = —

ST

Z (ag)aél) + Jf)a?(f)) ,

z,y nearest

neighbors in AT

FIG. 1. A partitioned finite spin system A + B. Solid lines
represent the nearest neighbour coupling J and dashed lines
the interaction K, , between the 2 subsystems.

where J is a coupling constant. The interaction is

1
v == N K, (0ol + 0Pel?),

z€AL yeAS

€
= ——
Y1+ 23

if 2 = (0,29) € A and y = (1,22) € A} and K, , =0
otherwise. The boundary between the two halves of the
lattice is between the lines 1 = 0 and 1 = 1. Note that
the interaction intensity decreases as one moves away
from (0,0). An assumption of this type is necessary if
V) is to remain bounded in the thermodynamic limit
L — o0.

For this model one can show that there exists a,,, > 0
such that holds and that our theorem applies. Hence
we have inequality @:

IP;,t ('AtE Z E) § 267team+R(am)

for any € > 0.

c. Discussion. Under a general condition on the reg-
ularity of the interaction evolution in imaginary time, we
have proven a sharp form of the first law of thermody-
namics for the FCS of energy variation.

Our result holds for any initial state of the system.
If one assumes that systems A and B are initially in
thermal equilibrium at temperatures T4y and T, then
the suppression of the fluctuations of the total energy
current can be also proven by following the arguments of
[21].

Under additional assumptions it is possible to deal with
cases where several reservoirs drive the joint system to-
wards a non-equilibrium steady state and to derive prop-
erties of the joint distribution of the energy variations
in each part of the system. A more strict condition on
R(«) allows for the generalization of a symmetry of the
limiting cumulant generating function proposed in [21].
Combined with time reversal invariance this leads to On-
sager’s reciprocity relations. We investigate these topics
in [26].



In the present note we have limited ourselves to
bounded interactions. The case of unbounded interac-
tions (an example is the spin-boson model) is more tech-
nical and requires a separate analysis based on an appli-
cation of Ruelle’s quantum transfer operators [18]. Al-
though the physical picture emerging from this analysis is
of an independent interest, the final results are much less
general than in the case of bounded interactions [37] 38].
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