
HAL Id: hal-01137953
https://hal.science/hal-01137953v1

Submitted on 2 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Semi-Automatic Floating-Point Implementation of
Special Functions

Christoph Lauter, Marc Mezzarobba

To cite this version:
Christoph Lauter, Marc Mezzarobba. Semi-Automatic Floating-Point Implementation of Special Func-
tions. IEEE 22nd Symposium on Computer Arithmetic, ARITH 22, Jun 2015, Lyon, France. pp.58-65,
�10.1109/ARITH.2015.12�. �hal-01137953�

https://hal.science/hal-01137953v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Semi-Automatic Floating-Point Implementation
of Special Functions
Christoph Lauter∗ and Marc Mezzarobba∗†

∗Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France
†CNRS, UMR 7606, LIP6, F-75005, Paris, France

christoph.lauter@lip6.fr, marc@mezzarobba.net

Abstract—This work introduces an approach to the computer-
assisted implementation of mathematical functions geared toward
special functions such as those occurring in mathematical physics.
The general idea is to start with an exact symbolic representation
of a function and automate as much as possible of the process
of implementing it.

In order to deal with a large class of special functions, our
symbolic representation is an implicit one: the input is a linear
differential equation with polynomial coefficients along with
initial values. The output is a C program to evaluate the solution
of the equation using domain splitting, argument reduction and
polynomial approximations in double-precision arithmetic, in the
usual style of mathematical libraries.

Our generation method combines symbolic-numeric manipu-
lations of linear ODEs with interval-based tools for the floating-
point implementation of “black-box” functions. We describe
a prototype code generator that can automatically produce
implementations on moderately large intervals. Implementations
on the whole real line are possible in some cases but require
manual tool setup and code integration. Due to this limitation
and as some heuristics remain, we refer to our method as “semi-
automatic” at this stage.

Along with other examples, we present an implementation
of the Voigt profile with fixed parameters that may be of
independent interest.

I. Introduction

Fixed-precision floating-point (“FP”) operations come with
varying performance and accuracy guarantees. Basic oper-
ations such as multiplication are typically implemented in
hardware and, being correctly rounded, provide perfect ac-
curacy. So-called elementary functions like exp and log are
provided in software through general-purpose mathematical
libraries (libms). They are well-optimized for performance and
either correctly rounded, as recommended by the IEEE754
Standard [16], or provided with maximum error not exceeding
one unit in the last place.

This work is concerned with special functions, i.e., “func-
tions which are widely used in scientific and technical appli-
cations, and of which many useful properties are known” [12].
Some, like Bessel functions or the Gaussian error function,
are present in some libms. Most are provided by specialized
libraries such as GSL or Root. Others are only available in
computer algebra systems like Maple and Pari and have no
efficient fixed-precision implementation. The NIST Digital Li-
brary of Mathematical Functions [1] contains a good overview
of existing implementations.

There is a huge gap in both performance and rigor be-
tween these implementations and state-of-the-art elementary
functions. However, implementing or reimplementing special
functions manually in the classical way is tedious and requires
considerable expertise. And indeed, in many cases, publicly
available implementations of a given special function all derive
from a single source, typically Cephes [23].

This article presents the first results of a project exploring
the implementation of special functions through automatic
code generation. In our view, this is the only feasible way to
implement wider classes of special functions while bridging
the quality gap with respect to elementary functions. Addi-
tionally, code generation allows for production of specialized
implementations taylored to specific applications, in terms of
accuracy, supported domain or code properties.

Our focus is on special functions satisfying linear ordinary
differential equations of the form

pr(x) f (r)(x)+· · ·+p1(x) f ′(x)+p0(x) f (x) = 0, pi ∈ Q[x]. (1)

Such functions are called D-finite or holonomic. A key idea
in the field of D-finite functions is that an equation such
as (1) along with initial values makes up a concise exact
representation of its solution that can be used in computations.

Many common special functions can be defined this way.
Among the better known special functions of mathematical
physics, univariate D-finite functions include in particular the
error function (and related functions such as the Dawson
functions or the Voigt profile), the Airy functions (as well as
Scorer functions, generalized Airy functions. . .), the Bessel
and Hankel functions, the Struve functions of integer order,
the hypergeometric and generalized hypergeometric functions,
the spheroidal wave functions, and the Heun functions.

Under the term code generator, we understand a software
tool which takes as input a description of a function f , a set
of floating-point inputs X and a target accuracy ε > 0, and
which generates source code (in our case, in C) that provides
a function f̃ satisfying

∀ x ∈ X,

∣

∣

∣

∣

∣

∣

f̃ (x) − f (x)
f (x)

∣

∣

∣

∣

∣

∣

≤ ε. (2)

In this work, we consider inputs in IEEE754 double precision
(binary64) format taken in a relatively small interval [a, b],
say of width b− a < 100, and accuracies compatible with that
format, i.e., 2−53 ≤ ε ≤ 1. These restrictions can be loosened

with some manual work so that implementations on the whole
set of double precision numbers become feasible.

Code generation for mathematical functions is not en-
tirely a new idea. A powerful toolbox, including in particular
Gappa [8] and Sollya [6], has been developed in recent years
to help human developers with the most tedious steps of the
implementation process. Building on these advances, several
authors have considered code generation both for “flavors” of
a fixed function and for “black-box” functions given as exe-
cutable code [19], [9], [3], [18], [4]. Independently, Beebe [2]
produced a new, very extensive mathematical library with the
help of semi-automatic code generation. We base our work on
the black-box approach of [19], where the starting point is ex-
ecutable code able to evaluate f and its first few derivatives
on intervals, up to any required precision. Providing such an
evaluator is easy when f is a composition of basic elementary
functions, thanks to multiple-precision interval libraries, but it
is a major limitation for more general functions.

Nevertheless, if f satisfies some kind of functional equa-
tion, any rigorous arbitrary-precision numerical solver could
in principle play the rôle of the black box. In the case of
D-finite functions, such solvers can be built in practice [25],
[31]. Moreover, the behavior of D-finite functions in the neigh-
borhood of their singularities is well-understood, opening the
door to further extensions of the method. These observations
were, in some sense, the starting point of the present work.
We soon observed that the interval black-box model it is not
well suited to our case, as the number of queries to the func-
tion tends to be very large. This led us to favor a different
interface, based on polynomial approximations, as described
in Section II.

This article is organized as follows. Section II describes the
general architecture of our function generation pipeline and
introduces our prototype implementation. Section III focuses
on the frontend part, that is, the rigorous ODE solver. Sec-
tion IV discusses the backend, which is the part in charge of
floating-point implementation choices. The remaining section
presents experimental results and applications.

II. Overall architecture

This text describes both an approach to code gener-
ation for D-finite functions and experiments performed
with a prototype implementation of this approach.
Our prototype, named Frankenstein, is available from
https://gforge.inria.fr/git/metalibm/frankenstein.git. It is based
on modified versions of two existing software packages, Met-
alibm [18], written in Sollya [6], and NumGfun [21], written
in Maple. The name should give a pretty accurate idea of how
the combination is realized. Thus, not all design choices have
the same significance: while some would survive a cleaner
rewrite, others are only justified by the goal of producing a
usable prototype out of two research-quality codes that had
never been intended to work with each other. Here we focus
on the former category, with brief mentions of more peculiar
features of Frankenstein as necessary.

differential equation

truncated Taylor series

compact rough approx.

tight approximation

representable approximation

implemented polynomial

C code

bounds, recurrence

economization

Remez algorithm,
domain splitting

FP coeff. optim.

error-free transf.,
FP error analysis

Frontend

Backend

Figure 1. A piecewise polynomial approximation pipeline.

Consider a sufficiently small interval I = [a, b] ⊂ R and
a solution f of (1) defined on I. Assume for simplicity that
0 ∈ I and pr(x) , 0 for x ∈ I. The function f is then analytic
on I, and the vector of initial values F(0) = (f (0), . . . , f (r−1)(0))
characterizes f among the solutions of (1). Assume addition-
ally that | f (x)| ≤ 21024(1−2−53) for x ∈ I. Then, special floating-
point values (NaN, ±∞) occur neither on input nor on output.
Denoting by F the set of double-precision numbers, our goal
is to produce a program computing a value f̃ (x) ∈ F satisfy-
ing (2) with X = I ∩ F.

Our method takes as input (pi)r
i=0 and F(0) (which together

define f), I, ε, and various constraints on allowable imple-
mentations. It either succeeds and produces a program satisfy-
ing (2) by construction1, or fails if no implementation fitting
the constraints is found. Failure does not imply that no feasible
solution exists.

One way to view the process leading from the definition
of f by (1) to an implementation is as a rigorous piecewise
polynomial approximation pipeline, as illustrated on Figure 1.
Each stage receives a set of approximations of f (and possibly
its first few derivatives) by polynomials on subintervals of I
and produces approximations with different properties that are
passed on to subsequent stages. The subintervals vary from
stage to stage, and typically overlap even within a single stage.
For example, the domain splitting procedure can use both a
rough approximation on the whole domain to get a general
picture of the behavior of f , and tight approximations on tiny
intervals to compute precise values.

1This is not entirely true of Frankenstein yet. Although the overwhelming
part of the code uses rigorous error bounds, some heuristic estimates remain.

https://gforge.inria.fr/git/metalibm/frankenstein.git

The complete pipeline can be approximately divided into
a frontend and a backend. Roughly speaking, the frontend is
the part where decisions are driven by the analytic proper-
ties of f . The backend is the part where they are driven by
the floating-point environment and other implementation con-
straints. To work with another class of mathematical functions,
one would replace the frontend; to target a different evaluation
environment (fixed-point arithmetic, say), one would swap out
the backend. There is no formal abstraction of how the back-
end can query the function, though, and both parts have full
knowledge of the implementation problem.

In Frankenstein, the frontend and the backend respectively
correpond to NumGfun and Metalibm. For convenience rea-
sons, the process is driven by the backend, which can ask
the frontend for approximations of variable quality on vari-
ous subintervals. As we reuse code written for the black-box
function model, the backend mostly uses these approximations
to perform interval evaluations, but we expect to make more
direct use of the polynomial representation in future develop-
ments.

Our general implementation strategy fits the standard pattern
of special function implementations and is especially close to
that of Harrison [14]. Classical argument reduction algorithms
based on algebraic properties of elementary functions typically
do not apply. Accordingly, the only feature of f that we con-
sider to reduce the implementation domain is its parity. Parity
properties can be detected either by numerical comparison of
f (x) and f (−x) (as Frankenstein currently does), or based on
the differential equation. Periodic functions could be handled
in a similar way but are very uncommon.

We then single out a small number of “interesting points”,
the neighborhood of which need to be handled in a special
way. Under our working hypotheses, interesting points include
x = 0, where the floating-point grid is denser than usual, and
the points x with f (x) ≃ 0, where obtaining a relative error
bound requires special care. In a more general setting, one
would add at least ±∞ and the singularities of f to the list.
In a small interval around each interesting point, approxima-
tions of f are computed and implemented in a way that takes
into account the special constraints. The remaining subinter-
vals (if any) are further subdivided until approximation by
small-degree polynomials becomes feasible.

Let us now consider in more detail the main ingredients of
the process, starting with the frontend.

III. From a differential equation to rigorous approximations

The frontend’s rôle is to provide the backend with rigorous
polynomial approximations of f of the form

∀x ∈ J, | f (x) − p(x)| ≤ η (3)

for various subintervals J ⊆ I. As Equation (3) suggests, in
our architecture, the approximations come with absolute error
bounds. Indeed, these are often easier to obtain and this choice
does not hinder the use of relative error bounds in later stages.

Values of J above can range from point intervals J = {x}
to J = I. It is not necessary that the frontend be able to find

approximations on arbitrarily wide intervals, as the backend
has the necessary logic to split J if the returned error bound is
infinite (or too large). The only requirement is that sufficiently
precise queries on sufficiently thin intervals eventually produce
satisfying approximations.

The smallest useful value of η in our setting is slightly less
than the smallest subnormal number, 2−1074. In principle, it
would be possible to replace f once and for all by a set of
polynomial approximations achieving such an accuracy. The
frontend of Frankenstein is more flexible and can compute
arbitrarily good approximations. Precise polynomial approx-
imations on wide intervals quickly become large and costly
to compute. For historical reasons, our frontend provides a
separate interface dedicated to points and very thin intervals
that always returns “polynomial approximations” reduced to
constants, which can reach absolute precisions log η−1 in the
hundred of thousands if necessary.

The computation of the approximations (3) is based on a
combination of classical techniques that we now summarize.
We refer the reader to [31], [21] for details.

A. Transition matrices

Recall that f is specified by the differential equation (1) and
the vector of initial values F(0), or, to be precise, rigorous ar-
bitrary precision approximations of F(0). Let us also extend
the notation F(x) = (f (x), . . . , f (r−1)(x)) to arbitrary x. Polyno-
mial approximations on an interval J ⊆ I will be derived from
the Taylor expansion of f around the center c of J. This ex-
pansion is easily computed from the differential equation and
the “initial value” F(c). To deduce F(c) from F(0), we use
Taylor expansions at intermediate points x0 = 0, x1, . . . , xn = c
chosen in such a way that xk+1 lies within the disk of con-
vergence of the Taylor expansion of F at xk. In other words,
our frontend is essentially a rigorous ODE solver based on the
so-called method of Taylor series [20].

More precisely, we proceed as follows [7], [31]. By linearity
of (1), for all x, y ∈ I, there exists a matrix ∆x(y) ∈ Rr×r

depending only on (1) (not on the particular solution f) and
such that F(y) = ∆x(y) F(x). We have ∆x(z) = ∆y(z)∆x(y) for
all x, y, z, and hence

F(c) = ∆0(c)F(0) = ∆xn−1 (c) . . .∆x1 (x2)∆0(x1) F(0). (4)

The entries of ∆x(y) are values at y of solutions of (1) corre-
sponding to unit initial values at x (or derivatives thereof). De-
noting by ρ(x) the distance from x to the nearest complex root
of the leading coefficient pr of (1), the Taylor expansion at x
of any solution of (1) has radius of convergence at least ρ(x).
It is a classical fact that the coefficients of these expansions
obey linear recurrences with polynomial coefficients, making
it easy to compute as many terms as needed. As we assumed
that pr does not vanish on I, computing F(c) reduces to form-
ing the product (4), where each factor ∆x(y) can be evaluated
by summing convergent power series whose coefficients are
easy to compute. Binary splitting can be used to compute the
partial sums efficiently to very high precisions [7].

Our assumption that the initial values are provided at a point
of I is artificial: the above argument still works with 0 < I
as long as the leading coefficient pr(x) of (1) does not vanish
between 0 and I. In addition, (1) actually defines f for complex
values of x, and nothing prevents the path (x0, . . . , xn) from
going through the complex plane. If pr(s) = 0 for some s
between 0 and I, analytic continuation along a path avoiding s
still defines f on I (in general in a way that depends on the
path). Furthermore, when 0 < I, we can relax the assumption
that pr(0) , 0: the theory extends to the case where 0 is a so-
called regular singular point of (1) [32], [21]. Both of these
extensions are supported in Frankenstein, albeit with specific
tool setup and subject to heuristic error estimates in some
cases. The second one is useful because many classical special
functions are best characterized by their behavior at regular
singular points of their defining equation. A typical example
is the family of Bessel functions (see Example 3 below).

B. Error bounds

It is crucial that the frontend provides rigorous error bounds
on the approximations it computes, as these approximations
are the backend’s only access to the function f . Here, we
recall a simple bound computation technique based on the
theory of majorizing series [15, Chap. 2]. Frankenstein (via
NumGfun) actually uses a more sophisticated variant of the
same technique [22], but the present version conveys the main
ideas and would probably suffice for our purposes.

Consider a power series with matrix coefficients (or, equiva-
lently, a matrix of power series) Y(x) =

∑∞
n=0 Ynxn ∈ Rr×r[[x]],

and let ‖ · ‖ denote a matrix norm. We write Y 4 w if
w(x) =

∑∞
n=0 wnxn ∈ R+[[x]] is a power series that bounds Y

coefficient-wise, i.e., ‖Yn‖ ≤ wn for all n ∈ N. The method
transfers such bounds on the coefficients of differential equa-
tions to similar bounds on the solutions.

Our goal is to control the error committed by truncating
the Taylor expansions of a solution of (1). Without loss of
generality, we restrict ourselves to Taylor expansions at the
origin. Rewrite (1) in matrix form, as

Y′(x) = P(x)Y(x), (5)

where P ∈ Q(x)r×r is a companion matrix with entries of
the form p(x)/pr(x), and for notational simplicity Y is also
taken to be a matrix. The matrix function P admits a conver-
gent power series expansion at 0, whose coefficients Pn satisfy
||Pn|| = O(αn) for all α > ρ(0)−1. Given such an α, it is not
too hard to compute M > 0 such that

P(x) 4 q(x) :=
αM

(1 − αx)
.

Expanding both sides of (5) in power series and collecting the
matching powers of x, we obtain

(n + 1)Yn =

n
∑

j=0

PnYn− j. (6)

The same reasoning applied to the equation w′(x) = q(x)w(x)
yields

(n + 1)wn =

n
∑

j=0

qnwn− j. (7)

Now assume w0 > ‖Y0‖. Comparing (6) with (7), we see by
induction that Y(x) 4 w(x). But the second equation is solvable
in closed form: we have

w(x) =
w0

(1 − αx)M
.

This explicit expression makes it easy to bound the tails wnxn+

wn+1xn+1 + · · · , and hence also Ynxn + Yn+1 xn+1 + · · · , which
yields truncation orders that guarantee a certain accuracy.

C. Polynomial approximations

We are now ready to combine the results of the previous
sections to obtain rigorous polynomial approximations on a
given interval J. Write J = [c − δ, c + δ], and assume that
δ < ρ(c). With the notation of Section III-A, we have

F(c + ξ) = ∆c(c + ξ)∆xn−1 (c) . . .∆x1 (x2)∆0(x1) F(0) (8)

for |ξ| ≤ δ. Each factor (except F(0)) is given by power series
that we can truncate so as to guarantee a prescribed accuracy.
Error bounds on the individual factors are combined by re-
peated use of the inequality

‖ÃB̃ − AB‖ ≤ ‖Ã‖ ‖B̃ − B‖ + ‖Ã − A‖ ‖B‖.
Once we replace each series by a truncation (and F(0) by an
approximation with rational entries), the entries of (8) become
polynomials in ξ with rational coefficients.

Thus, we compute the entries of ∆c(c + ξ) truncated to a
suitable order as polynomials in ξ and multiply the resulting
matrix by an approximation of ∆0(c) F(0). The entries of the
result readily provide the first r derivatives of f . Higher-order
derivatives, if needed, can be obtained by multiplying F(c+ ξ)
on the left by a row vector of rational functions (or polyno-
mial approximations of rational functions) deduced from (1).
In Frankenstein, most of these steps are performed exactly, us-
ing multiple precision rational arithmetic. Roundoff errors in
the remaining steps are taken into account in the result.

Taylor series typically do not provide good approximations
on intervals. Additionally, the bounds of Section III-B can be
quite pessimistic. For these reasons, polynomials computed as
outlined above tend to have very high degree. However, due
to the way they are constructed, the rescaled coefficients cnδ

n

quickly decrease to zero, and typically |cn ξ
n| ≪ η for large n.

Before handing it to the backend, the frontend hence re-
duces the degree of the computed polynomial p by economiza-
tion [11, §4.6]: while the leading term of p is small compared
to η, a multiple of the Chebyshev polynomial Tn (rescaled to
the interval J) chosen so that the leading terms cancel is sub-
tracted from p. The error bound is updated accordingly. (The
choice of Chebyshev polynomials makes it possible to take
advantage of the fact that the error bound only needs to hold
for x ∈ J, not for complex x with |x − c| < δ.) This procedure
is very effective at producing polynomials of reasonable size
that can easily be manipulated by the backend.

IV. From rigorous approximations to evaluation code

It is the backend’s job to transform the high-degree, rough
approximation produced by the frontend into fine-tuned ap-
proximations with suitable FP properties and eventually, into
source code. In absence of classical argument reduction tech-
niques, implementation of the function is reduced to piece-
wise polynomial approximation. The backend hence needs to
compute four pieces of information, as discussed in the next
subsections.

1) The implementation interval I needs to be split into
subintervals Ik, together covering I, such that an approxima-
tion polynomial of small degree is possible over each Ik.

2) These small degree polynomials need to be computed,
initially with real coefficients.

3) Connected with the approximation step is the problem of
choosing an appropriate translation f (tk + ·) on a new domain
Ik − tk. Indeed, the evaluation of the approximation behaves
better when Ik − tk is a small interval around 0.

4) The backend needs to transform the small-degree approx-
imation polynomial on each subdomain into a polynomial with
FP coefficients, suitable for evaluation in FP arithmetic, and
generate code for that FP-based polynomial evaluation.

A. Domain splitting

Given a target accuracy ε and a maximum degree d, the
backend starts with computing a list of intervals Ik touching
each other in so-called split-points sk, i.e. such that Ik−1∩ Ik =

{sk}, covering the whole interval I =
⋃

k Ik and such that for
each k there exists a polynomial pk ∈ R[x] of degree no larger
than d approximating f on Ik with a relative error at most ε:

∀ k, ∀ x ∈ Ik,

∣

∣

∣

∣

∣

pk(x) − f (x)
f (x)

∣

∣

∣

∣

∣

≤ ε. (9)

Such a splitting can be computed using an algorithm [18]
based on bisection, interpolation of f in Chebyshev nodes
and application of de la Vallée-Poussin’s theorem [5]. In
Frankenstein, we leverage the existing Sollya procedure
guessdegree [6] to implement this step.

B. Small degree polynomial approximation

On each subdomain Ik, the backend computes a polynomial
approximation pk ∈ R[x] of degree at most d for the function f .
The pk are computed as minimax approximations with relative
error, using a modified Remez-Stiefel algorithm [5]. However,
these polynomials with real coefficients2 are not immediately
suitable to IEEE754 FP evaluation. Several problems arise.

When 0 < Ik, in particular when Ik contains values x ∈
Ik that are significantly larger than 1, Horner evaluation (or
any other Estrin-like evaluation) may behave badly. Roughly
speaking, at each step qi+1(x) = ci + x × qi(x), the evaluation
error accumulated on qi(x) will be amplified by multiplication
with x when |x| ≫ 1, not attenuated [19]. After splitting Ik if
its radius is too large, we translate both the function f and the

2As the underlying Sollya environment is FP-based, any polynomial we can
exhibit has of course FP coefficients. However, as precision may be increased
at will at this generation stage, the polynomials appear to have real coefficients.

interval Ik by tk to always be in the case when all x ∈ Ik − tk
stay small. In most cases, taking (a rounded value of) the
midpoint of Ik is appropriate, while ensuring that the translated
argument ξ = x− tk can be computed exactly in FP arithmetic
thanks to Sterbenz’ lemma [29], [19]. Special care is used
when f has a zero in Ik (see Section IV-C). Further, tk may be
optimized to take into account FP effects on the coefficients
of the polynomial [19].

When Ik is small and the function f is symmetrical around
some point in Ik, the minimax approximation polynomial pk

tends to reflect the symmetry: some monomials have very
small coefficients compared to others. This effect may hin-
der FP Horner evaluation due to catastrophic cancellation but
it can also be exploited to reduce the number of non-zero co-
efficients of the polynomial [10].

C. Achieving relative error bounds for functions with zeros

Clearly, the ratio (pk(x)− f (x))/ f (x) can stay bounded only
if f has no zero in the domain for x ∈ Ik or if pk has a
zero wherever f has one. Classical polynomial approximation
theory either considers absolute error bounds or excludes func-
tions with zeros. It can be extended to cover approximation
with relative error of functions f with f (0) = 0 as follows:
when f is known to have a zero of multiplicity m at x = 0,
one computes a polynomial approximation qk of x−m f (x) and
takes pk(x) = xm · qk(x). The only requirement is not to use
Remez’ original minimax algorithm but an enhanced version
by Stiefel [5].

Since the backend anyway uses approximation domains Ik−
tk containing 0, the technique above already makes it possible
to handle functions with a zero at some FP number. It suffices
to take Ik small enough to contain a single zero of f and tk
equal to that zero in order to obtain f (tk+ξ) = 0 for ξ = 0. The
value of tk, can easily be computed with any numerical solver,
such as Newton’s iteration. No rigor is required in this step; if
the zero is not correctly determined, relative error polynomial
approximation will simply fail.

The technique no longer applies when f has a zero c < F.
However, in this case, f is actually never zero on the FP num-
bers it is to be evaluated at. This means that even if the ratio
(pk(x) − f (x))/ f (x) is unbounded for x ∈ Ik, it stays bounded
over Ik ∩ F. Provided that the procedure we use to bound the
relative error only takes into account FP numbers, approxi-
mation of a function f with non-FP-representable zeros boils
down to two subproblems: computing a minimax polynomial
for f and translating the original function such that FP-based
polynomial evaluation will exhibit bounded evaluation error.

The minimax polynomial can be computed as follows: the
function g(x) = f (c + x) has an exact (FP-representable) zero
at 0, and can be evaluated at any desired precision by comput-
ing c with a rigorous Newton algorithm. In the Sollya frame-
work, g is implemented by an expression tree containing a
constant function c whose evaluation algorithm searches the
original domain Ik for a zero of f whenever and at whatever
precision needed. This is enough for the Remez-Stiefel mini-
max algorithm to be applicable to g.

Once c itself and a polynomial p(x) approximating g(x) over
Ik − c are known, we set tk to c rounded to the nearest FP
number. The polynomial r(x) = p(tk−c+ x) then approximates
f (tk + x) over Ik − tk ∋ 0. At x = tk (the FP value nearest to c),
the translated argument ξ = x − tk is exactly zero, hence FP
Horner evaluation of r will return the constant coefficient of
r, which is equal to (a rounded version of) f (c). For the FP
x just after the zero, ξ will fit on a small number of bits
due to cancellation in ξ = x − tk, hence FP Horner evaluation
will behave correctly, too. The accuracy of evaluation can be
checked statically using Gappa as explained below.

Note, though, that the polynomial r passed to the code gen-
eration step then contains coefficients involving the Newton-
iteration based representation of c. In contrast, in the usual
case (when f has no zero in the domain), the coefficients di-
rectly come from the Remez-Stiefel minimax algorithm.

D. FP code generation for polynomials

Finally, the backend needs to generate a code sequence,
based on IEEE754 FP arithmetic, for each subdomain Ik, and
to connect these code sequences through a branching sequence
determining the appropriate subdomain given an input x ∈ I.
Generating the subdomain determination sequence is easy.

Generating the polynomial evaluation is harder. The back-
end takes the following four sub-steps.

1) It determines the minimal precisions needed for the co-
efficients of the approximation polynomial pk on each subdo-
main, following the approach described in [19].

2) It replaces the polynomial pk ∈ R[ξ] with a polynomial
p̃k ∈ F[ξ] with FP coefficients. This could be done by rounding
the real coefficients, however, equi-oscillation properties of the
minimax polynomial and therefore accuracy might be affected
too much. We therefore use a technique [5] based on lattice
reduction which globally searches for a FP-valued-coefficients
polynomial “close” to the original real-coefficients polynomial.

3) Starting with the target accuracy ε, the backend esti-
mates suitable accuracies for the intermediate steps of a Horner
evaluation of p̃k. This choice of accuracies determines the
FP precisions—and, possibly, double-double or triple-double
expansions—to be used in the different steps. The technique
is described in [10], [19]. The backend then outputs C code
for polynomial evaluation along with a Gappa [8] proof script.

4) Finally, the backends runs the proof script using Gappa,
hence verifying the correctness of the accuracy estimates es-
tablished in the previous step.

E. Evaluation-based vs. polynomial-based interfaces

In a cleanly designed special function code generator, the
backend would take the rough polynomial approximations pro-
duced by the frontend and proceed with refining them without
ever returning back to the original function f . However, this
would require the frontend to take into account the relative er-
ror due to replacing f by a polynomial, which requires some
understanding of FP properties of the eventual implementation
when f has zeros in the domain.

For that reason and for reasons due to the reuse of exist-
ing code, Frankenstein works in a slightly different way. The
backend binds a Sollya function object, corresponding to f , to
the evaluator dedicated to tiny intervals provided by the fron-
tend. This would in principle be enough for the backend to run,
since the backend—in all steps, even its polynomial approxi-
mation ones—is purely based on (interval or point) evaluation.
In practice, this simple interface is not enough. The number
of function evaluations is too large to allow for reasonable
code generation performance. In addition, an evaluation-based
interface makes it hard to capture non-local properties of the
function f , such as monotonicity.

We therefore enhanced Sollya to allow a function object,
such as the one bound to the frontend’s representation for f ,
to be annotated with an alternate approximate representation
along with a bound on the approximation error. The approx-
imation polynomials generated by the frontend provide such
an approximate representation. When it needs to evaluate the
function f at some point or over some interval, Sollya first
tries to use the annotation. If this first try is inconclusive, for
instance if the approximation error is too large in view of
the evaluation precision, it falls back to the original evaluator
bound to the frontend. Interval evaluation using the annota-
tion exploits global properties of the polynomial. In particular,
monotonicity over the whole annotation interval is detected
once and for all and later used to reduce interval evaluations
on subintervals to evaluations at their endpoints.

That combination has given Frankenstein the necessary per-
formance. We should mention however that making the anno-
tation mechanism usable for our purposes required some fine-
tuning in the Sollya architecture. In particular, as we have seen,
the backend manipulates not only f itself, but also expression
trees containing compositions of f with other functions, which
need to be reflected on any polynomial annotation. In addition,
code written in the evaluation-based model tends to perform
high-precision evaluations with no real need (that is, to re-
quest information on f that cannot have any influence on the
correctness of the generated code). The whole benefit of the
polynomial annotations can be lost if too many evaluations
fall back to a slow arbitrary-precision evaluator that will try
to satisfy these requests.

V. Examples and experiments

A. Bounded intervals

As already mentioned, there is no complete guarantee that
Frankenstein succeeds to implement a given D-finite function.
The following experiments show how it performs on classical
special functions. All these examples were handled automati-
cally, with minimal manual setup. The reported timings were
measured on a typical desktop computer.

We start with a simple example where the functions stays
away from zero on the whole implementation domain.

Example 1: The complementary error function erfc(x) =
1 − 2π−1/2

∫ x

0
e−t2

dt can be defined as the solution of

f ′′(x) + 2x f ′(x) = 0, f (0) = 1, f ′(0) = −2/
√
π.

-1.2e-19

-1e-19

-8e-20

-6e-20

-4e-20

-2e-20

0

2e-20

4e-20

6e-20

8e-20

1e-19

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2. Relative overall error of generated implementation of erfc on [−2; 2].

We implemented erfc in the range I = [−2; 2], with a tar-
get accuracy ε = 2−62, under the constraint that no generated
polynomial have more than 14 non-zero coefficients. Such a
target accuracy slightly beyond double precision is typical for
first phases of correctly rounded implementations [24], [19].
Though we excluded them above, our code generator is able
to handle such accuracies in simple cases, automatically intro-
ducing double-double expansions [28], [19] as necessary.

Figure 2 shows a plot of the relative error f̃ (x)/ f (x) − 1
of the implementation. Code generation took around 780 sec-
onds. The code generator split I into 16 subdomains of varying
length. In the subdomain I7 = [−2/3; 2/3], the only nonzero co-
efficients of the generated polynomial are those of odd degree
and that of degree 22, taking advantage [10] of an approxi-
mate symmetry around 0. Accordingly, the Horner evaluation
code for x ∈ I7 performs evaluations in x2 in all but one steps.
When executed, our implementation takes between 110 and
350 machine cycles per call, with most calls completing in
260 cycles. For comparison, a call to a typical libm exponen-
tial takes around 80 cycles.

We then consider an example with several zeros, none of
which is representable in floating-point.

Example 2: The Airy function Ai satisfies

Ai′′(x) − x Ai(x) = 0,

Ai(0) = 3−2/3Γ(2/3)−1, Ai′(0) = −3−1/3Γ(1/3)−1.

We implemented Ai on I = [−4.5; 0], asking for an accuracy
ε = 2−45. Frankenstein takes 280 seconds to generate an imple-
mentation. It splits the domain into 10 subdomains. In two sub-
domains polynomials with some zero coefficients are used; the
generated code precomputes x2 accordingly. It can be checked
that all subdomains containing zeros of Ai(x) are translated by
an amount equal to the double-precision number nearest to the
zero, and an error plot confirms that the target accuracy is met
even in the neighborhood of the zeros. Evaluation of the gener-
ated function takes 60 to 90 cycles, with most calls completing
in 72 cycles.

Our last example directly parallels Harrison’s implementa-
tion of Bessel functions for “small” arguments [14, Section 3].

Example 3: The Bessel functions J0 and Y0 are defined as
solutions of Bessel’s equation

x f ′′(x) + f ′(x) + x f (x) = 0. (10)

We consider the function J0 on the interval I = [0.5; 42] with
a target accuracy of ε = 2−45. The immediate neighborhood
of 0 is excluded because (10) is singular at x = 0 (its lead-
ing coefficient vanishes). For the same reason, initial values
f (0), f ′(0) do not make sense for an arbitrary solution of (10).
However, J0 can still be defined as the unique solution whose
value tends to 1 as x → 0. As mentioned in Section III-A,
Frankenstein’s frontend supports such generalized initial con-
ditions.

Code generation starting from this specification took about
33 minutes. The code generator splits the domain I into 18 sub-
domains. The approximation polynomials in all subdomains
have non-zero coefficients. For some subdomains containing
zeros of J′0(x), the implementer choses to store the coefficients
as double-double expansions even though it rounds the final
result to double precision. Evaluation of the generated imple-
mentation takes between 60 and 500 machine cycles, with
most calls completing in 75 cycles.

B. Implementation on the whole real line: an example

In some cases at least, automatically generated implemen-
tations on bounded intervals can be combined to implement a
special function on the whole set of double-precision floating-
point numbers. We illustrate how this can be done on a simple
example. The manual steps we take are really an instance of
a method of some generality, but we leave it to future work
to handle such cases without human intervention.

The Voigt profile V(x) (Figure 3) is a probability distribu-
tion used in particular in spectrography, and whose computa-
tion has been the subject of abundant literature [27], [30]. It
depends on two parameters λ, σ > 0 and is defined for x ∈ R
as a convolution of a Gaussian distribution and a Cauchy dis-
tribution,

V(x) =
1

σ
√

2π

λ

π

∫ +∞

−∞

exp −x2

2σ2

(x − t)2 + λ2
dt.

A change of variable yields the alternative expression

V(x) =
1

σ
√

2π

λ

π

∫ +∞

−∞

exp (u−x)2

2σ2

u2 + λ2
du, (11)

and it is not hard to see that (11) satisfies

σ4V ′′(x) + 2σ2V ′(x) + (x2 + λ2 + σ2)V(x) =
λ

π
,

V(0) =
1

σ
√

2π
exp

(

λ2

2σ2

)

erfc

(

λ

σ
√

2

)

, V ′(0) = 0.
(12)

(To remain in our general setting, a homogeneous ODE can
be derived by differentiating one more time.)

The Voigt profile with arbitrary parameters can be expressed
in terms of the Faddeeva function, itself a renormalization of
the complex error function. A general implementation of these
functions, due to Johnson [17], is used for instance in the stan-
dard library of the Julia programming language. Here we are
interested in implementing the function V(x) for fixed λ and σ,
with an overall relative accuracy ε = 2−45. In our experiment,

0

0.05

0.1

0.15

0.2

0.25

0.3

-10 -5 0 5 10

Figure 3. V(x) for σ = 1, λ = 1
2 .

we take σ = 1 and λ = 1
2 , but the method applies verbatim to

any moderate rational values.
We start with generating an implementation for x ∈ [0; 10].

With approximations having at most 11 nonzero coefficients,
[0; 10] is split into 33 subdomains of width varying from about
0.1 around x = 5 to about 0.6 near the endpoints.

For large x, however, the computation of polynomial ap-
proximations starting with the initial values at 0 as described
in Section III is no longer feasible. Also, it would not make
any sense to split [10; 21024] into small subintervals. An obvi-
ous remedy is to consider f (ξ) = V(1/ξ) on (0, 0.1). A change
of variable in (12) shows that

σ4ξ6 f ′′(ξ)+2σ2ξ3(σ2ξ2−1) f ′(ξ)+(λ2ξ2+σ2ξ2+1) f (ξ) =
λξ2

π
.

This equation has an irregular singular point at 0, beyond
the scope of the polynomial approximation method we dis-
cussed. Nevertheless, looking for solutions as formal power
series yields a unique divergent series (compare to [13])

ξ2L(ξ) = ξ2 + (2σ2−λ2) ξ4+ (1σ4−10σ2λ2+λ4) ξ6 + · · · (13)

whose coefficients again satisfy a simple linear recurrence. It
is well-known that such formal solutions at infinity are asymp-
totic expansions of “true” analytic solutions and provide good
approximations for large x [26]. In the present case, the solu-
tions of the homogeneous part of the equation decrease expo-
nentially as ξ → 0, ξ > 0, so all solutions of the homogeneous
equation share the same asymptotic expansion (13).

With our values of σ and λ, we estimated that the polyno-
mial L̃ obtained by truncating L(ξ) to the order 90 satisfies
|L̃(1/x) − x2V(x)| < 2−65 for all x > 10. For the purposes of
this experiment, this truncation order was found numerically.
Rigorous bounds could likely be derived by the method of
Olver [26, Chap. 7]. NumGfun does not support evaluations
near irregular singular points, but as L̃(ξ) stays away from zero
on [0, 0.1], we could directly pass it to the Frankenstein back-
end. The resulting code uses two polynomials of degree 11
with floating-point coefficients.

We then manually combined the two automatically gener-
ated codes into implementation that works correctly on the
whole of F. The Voigt function is even, so the final code starts
by dropping the sign of the argument. Based on a simple com-
parison, it then calls either the code for V(x) around zero or
computes ξ = 1/x (in double precision) and calls the code for
V(1/x) around zero.

-1.5e-14

-1e-14

-5e-15

0

5e-15

1e-14

1.5e-14

0 5 10 15 20 25

Figure 4. Relative overall error of our implementation for V(x).

Figure 4 shows a plot of the relative error of the imple-
mentation of V . The plot covers all subdomains, both around
zero and around infinity. It confirms that the accuracy target
ε = 2−45 is satisfied. Evaluations take 48 to 180 cycles, with
most calls in the domain around zero completing in 60 cycles
and most calls around infinity completing in 96 cycles.

VI. Outlook

Our prototype code generator is a step forward towards eas-
ier, more adaptive and widespread implementation of special
functions. However, it currently comes with several limita-
tions.

First, though we expect it to succeed for all typical examples
satisfying the assumptions laid out in Section II, code genera-
tion might fail on some functions. Making it work for a given
function may also require some deal of human intervention.

Second, our code generator handles double precision and
double/triple-double expansions, but does not work for any
other FP format, let alone, say, fixed-point arithmetic. It would
be interesting to extend it in that direction, perhaps with the
help of other existing code generation backends.

Finally, and most importantly, automatic code generation is
currently limited to bounded domains. A major perspective for
future research is to provide automatic support for evaluation
near infinity and singularities of the function, similar to what
we outlined in the case of the Voigt profile. This also means
extending our framework to handle infinite families of quasi-
regularly spaced zeros in the style of [14].

Acknowledgements

The authors are grateful to S. Chevillard, F. Chyzak, B.
Salvy and A. Vaugon for interesting discussions on topics re-
lated to this work, to V. Innocente and D. Piparo for suggesting
the Voigt profile as a case study, and to the referees for their
comments. This work was partly supported by the Agence na-
tionale de la recherche grant ANR-13-INSE-0007-02 MetaL-
ibm.

References

[1] Digital library of mathematical functions, 2010, companion to the NIST
Handbook of Mathematical Functions.

[2] N. H. F. Beebe, A new math library, International Journal of Quantum
Chemistry 109 (2009), no. 13, 3008–3025.

[3] N. Brunie, Contributions to computer arithmetic and applications to
embedded systems, Thèse de doctorat, ÉNS de Lyon, 2014.

[4] N. Brunie, F. de Dinechin, O. Kupriianova, and C. Lauter, Code gener-
ators for mathematical functions, this volume.

[5] S. Chevillard, Évaluation efficace de fonctions numériques. Outils et
exemples, Thèse de doctorat, ÉNS de Lyon, 2009.

[6] S. Chevillard, M. Joldes, , and C. Lauter, Sollya: An environment for the
development of numerical codes, ICMS 2010 (K. Fukuda et al., eds.),
LNCS, vol. 6327, Springer, 2010, p. 28–31.

[7] D. V. Chudnovsky and G. V. Chudnovsky, Computer algebra in the ser-
vice of mathematical physics and number theory, Computers in Math-
ematics (D. V. Chudnovsky and R. D. Jenks, eds.), Dekker, 1990,
p. 109–232.

[8] F. De Dinechin, C. Lauter, and G. Melquiond, Certifying the floating-
point implementation of an elementary function using Gappa, IEEE
Transactions on Computers 60 (2011), no. 2, 242–253.

[9] F. de Dinechin, M. Joldes, and B. Pasca, Automatic generation of
polynomial-based hardware architectures for function evaluation, ASAP
2010, p. 216–222.

[10] F. de Dinechin and C. Lauter, Optimizing polynomials for floating-point
implementation, Real Numbers and Computers (RNC 8), 2008, p. 7–16.

[11] L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis,
Oxford University Press, 1968.

[12] A. Gil, J. Segura, and N. M. Temme, Numerical methods for special
functions, SIAM, 2007.

[13] J. A. Gubner, A new series for approximating Voigt functions, Journal
of Physics A: Mathematical and General 27 (1994), no. 19, L745.

[14] J. Harrison, Fast and accurate Bessel function computation, ARITH 19
(J. D. Bruguera et al., eds.), IEEE, 2009, p. 104–113.

[15] E. Hille, Ordinary differential equations in the complex domain, Wiley,
1976, Dover reprint, 1997.

[16] IEEE Microprocessor Standards Committee, Floating-Point Working
Group, IEEE standard for floating-point arithmetic, 2008, Second edi-
tion.

[17] S. G. Johnson, Faddeeva package, 2012.
[18] O. Kupriianova and C. Lauter, Metalibm: A mathematical functions code

generator, ICMS 2014 (H. Hong and C. Yap, eds.), LNCS, vol. 8592,
Springer, 2014, p. 713–717.

[19] C. Lauter, Arrondi correct de fonctions mathématiques – fonctions uni-
variées et bivariées, certification et automatisation, Thèse de doctorat,
Université de Lyon – ÉNS de Lyon, 2008.

[20] J. H. Mathews, Bibliography for Taylor series method for D.E.’s, 2003.
[21] M. Mezzarobba, NumGfun: a package for numerical and analytic com-

putation with D-finite functions, ISSAC ’10 (S. M. Watt, ed.), ACM,
2010, p. 139–146.

[22] M. Mezzarobba and B. Salvy, Effective bounds for P-recursive
sequences, Journal of Symbolic Computation 45 (2010), no. 10,
1075–1096.

[23] S. L. Moshier, Cephes mathematical function library, 1984–.
[24] J.-M. Muller et al., Handbook of floating-point arithmetic, Birkhäuser,

2010.
[25] M. Neher, K. R. Jackson, and N. S. Nedialkov, On Taylor model based

integration of ODEs, SIAM Journal on Numerical Analysis 45 (2007),
no. 1, 236–262.

[26] F. W. J. Olver, Asymptotics and special functions, A K Peters, 1997.
[27] F. Schreier, The Voigt and complex error function: a comparison of com-

putational methods, Journal of Quantitative Spectroscopy and Radiative
Transfer 48 (1992), no. 5, 743–762.

[28] J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast
robust geometric predicates, Discrete & Computational Geometry 18
(1997), no. 3, 305–363.

[29] P. H. Sterbenz, Floating-point computation, Prentice-Hall, 1974.
[30] W. J. Thompson et al., Numerous neat algorithms for the Voigt profile

function, Computers in Physics 7 (1993), no. 6, 627–631.
[31] J. van der Hoeven, Fast evaluation of holonomic functions, Theoretical

Computer Science 210 (1999), no. 1, 199–216.
[32] , Fast evaluation of holonomic functions near and in regular sin-

gularities, Journal of Symbolic Computation 31 (2001), no. 6, 717–743.

	Introduction
	Overall architecture
	From a differential equation to rigorous approximations
	Transition matrices
	Error bounds
	Polynomial approximations

	From rigorous approximations to evaluation code
	Domain splitting
	Small degree polynomial approximation
	Achieving relative error bounds for functions with zeros
	FP code generation for polynomials
	Evaluation-based vs. polynomial-based interfaces

	Examples and experiments
	Bounded intervals
	Implementation on the whole real line: an example

	Outlook
	References

