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Homotopic particle motion planning for humanoid
robotics

Andreas Orthey1, Vladimir Ivan2, Maximilien Naveau1, Yiming Yang2, Olivier Stasse1, Sethu Vijayakumar2

Abstract—Exploiting structure is essential to an understanding
of motion planning. Here, we exploit the topology of the envi-
ronment to discover connected components. Inside a connected
component, instead of planning one trajectory in configuration
space, motion planning can be seen as optimizing a set of
homotopically equivalent particle trajectories. In this paper,
we will concentrate on the problem of motion planning for a
humanoid robot. Our contributions are: i) finding the homotopy
classes of a single footstep trajectory in an environment, ii)
finding a single footstep trajectory in a single homotopy class
formulated as a convex optimization problem, and iii) finding
a feasible upper body trajectory given a footstep trajectory,
formulated as a set of convex optimization problems. This view
provides us with important insights into the difficulty of motion
planning, and – under some assumptions – allows us to provide
the number of local minima of a given motion planning problem.
We demonstrate our approach on a real humanoid platform with
36-dof in a highly restricted environment.

I. INTRODUCTION

Motion is one of the fundamental building blocks of in-
telligent behavior, and a deep understanding would enable
robots to achieve autonomous tasks in eldery care, deep space
exploration, and nuclear waste removal.

We study here the motion planning problem A =
{R, C, qI , qG,E} [1] with R be a robotic system, C the
configuration space of R, qI ∈ C the initial configuration,
qG ∈ C the goal configuration and E the environment.

The motion planning problem was shown to be NP-hard
[2], and for humanoid robots, computational time can become
several hours in a narrow environment [3], [4], [5]. We argue
that the main problem is the reliance on random sampling
techniques [6]: if the subset of feasible configuration gets
arbitrarily small, the convergence rate of random sampling
gets arbitrarily high [7]. While random sampling is excellent
for solving the problem in general, we argue here that to
design truly efficient algorithms, we need to study, understand
and exploit the underlying structure of the motion planning
problem.

Here, we concentrate on investigating and exploiting the
environment structure by extracting homotopy classes. A ho-
motopy class is a set of functions, which can be continuously
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Fig. 1. Left: Two functions are in the same homotopy class, if they can
be continuously deformed into each other, while fixing their end points. f1
would be not homotopically equivalent to f2, while f3 would be. Right: In
3d, we conduct homotopic motion planning for a set of particles, particles
with homotopically equivalent space curves.

deformed into each other, as depicted in Fig. 1. For each
homotopy class, we consider the trajectories of a set of
particles {τk}ηk=0 on the robot body moving through R3 on
space curves of the form τk : [0, 1]→ R3. We assume here that
all particle trajectories are homotopically equivalent. Motion
planning can then be conducted in the environment by first
finding a single particle trajectory, and then finding all particles
on the robot body by restricting them to belong to the same
homotopy class as the single particle trajectory.

Towards this goal, we decompose the open space of the
environment into smaller volumes and analyze their cover-
ing to compute homotopy classes of robot particles moving
through open space. We argue here that performing motion
planning locally in one homotopy class ensures continuity,
which is a requirement for optimization based planners. This
decomposition of motion planning is called homotopic motion
planning [8].

Our contributions are
• Identification of the homotopy classes in a given environ-

ment for a sliding footstep and the approximation of the
free space

• Formulation of the problem of finding a sliding contact
trajectory in one homotopy class as a convex optimization
problem

• Formulation of the problem of finding a set of particle
trajectories on the robot body, which are constrainted by
the contact trajectory, as a set of convex optimization
problems

Sec. II describes how we we decompose an environment
into walkable surfaces, homotopy classes and the free space
inside of one homotopy class. Sec. III formulates optimizing
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Fig. 2. The conceptual overview about this paper. Top: in section II we
decompose the environment E into walkable surfaces S, intersections I and
intersections I . From the start contact xI , the goal contact xG and the
connectivity graph GE we compute the homotopy classes H on S. Middle:
Given the homotopy classes H , the start contact xI and the goal contact xG,
we compute a sliding footstep trajectory τ0, supported on H . Bottom: We
compute upper-body particle trajectories Υ from a given footstep trajectory
τ0, planes P , cuboids B, and from cross-sections X generated by sampling
robot configurations C.

a single footstep trajectory as a convex optimization problem,
and Section IV formulates the upper body optimization as a
set of convex optimization problems under convex inequality
constraints from the environment. The reader is refered to
consult Fig. 2 for a technical overview.

II. ENVIRONMENT HOMOTOPY DECOMPOSITION

In this section, we describe how we compute the free space
of a given environment, and its connectivity. We start by
reasoning about surfaces on which a foot contact is possible,
which we call walkable surfaces. For each walkable surface,
we compute its free space stack, a set of boxes on top of the
surface in which the swept volume of the robot R necessarily
has to lie. We further represent the connectivity of surfaces by
a graph structure. This graph structure then enables us identify
homotopy classes.

We will consider a decomposition of the environment into
a set of objects as

E = O1 t · · · tOα (1)

with Oi being a bounded convex polytope

Oi = {x ∈ R3|a(i)T
j x ≤ b(i)j , ‖a(i)

j ‖2 = 1, j ∈ [1, αi]} (2)

We make here the assumption that every object Oi is a
convex polytope. If an object is not a convex polytope, we
decompose it into convex subobjects [9], such that we can
operate w.l.o.g. on convex polytopes.

For every object Oi, we define the p-th surface element as

Spi = {x ∈ R3|a(i)T
p x = b(i)p , a

(i)T
j x ≤ b(i)j ,

j = 1, · · · , p− 1, p+ 1, · · · , αi}
(3)

with a(i)
p the surface normal, and b(i)p the distance to the origin.

Definition 1 (Walkable Surface). A surface element Spi is
called walkable, if

1) the slope of Spi is smaller than the maximum slope Rθ
the robot can stand on

‖a(i)
p − vg‖ ≤

√
(2− 2 cos(Rθ)) (4)

with vg = (0, 0, 1)T

2) the foot of radius RFR is fully contained inside Spi ,
meaning the following convex problem is feasible (based
on the maximum inscribed circle problem [10])

maximize
x∈Rn,r∈R

R

subject to aTi x+RaTi a
′
i ≤ bi,

i = {1, · · · , p− 1, p+ 1, · · · , αi}
aTp x = bp

R ≥ RFR

(5)

whereby r is the radius of the circle, x the center, a′i is
the orthogonal projection onto the hyperplane of ap, i.e.
a′i = ai − (aTi ap)ap. Visualized in Fig. 3.
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Fig. 3. Left: a polytope (light gray), a surface element (dark gray) and an
inscribed circle with radius R and center x. Right: a set of cuboids Bp

i on
top of one surface element Sp

i (dark gray)

We now add a notion of connectivity:

Definition 2 (Connectivity). Two walkable surfaces Si, Sj are
called connected, iff d(Si, Sj) < RStep, with RStep being the
maximum step size of the robot R

This connectivity gives rise to a graph structure GE , which
contains walkable surfaces a nodes, and an edge between two
connected surfaces.

To approximate the free space, we stack cuboids on top of
each walkable surface. A cuboid of height δ and with distance
∆L to Spi is defined as Bpi (∆L,∆L+δ) See Fig. 3. The stack
of cuboids on Spi will be denoted by

Bpi = {Bpi,k}
β
k=1

Bpi,k = Bpi (kδ, (k + 1)δ)}
(6)

β is choosen such that β >
RHU
δ with RHU the maximum

height of the robot. For each Bpi,k, we apply a clipping
algorithm [11] to decompose it into smaller convex cuboids.

Additionally we define the intersection element between two
stacks of cuboids Bi, Bj as Iij = Bi ∩Bj .
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Fig. 4. A function τ has support on a walkable surface Si at the time
[ti, ti+1].

Now, given two configurations qI , qG ∈ C of the robot, we
compute the right foot position as xI = T (qI), xG = T (qG)
by using a forward kinematics operator T . Given xI , xG, we
define SI = argmin

Sk∈S
d(xI , Sk) to be the initial surface, and

SG = argmin
Sk∈S

d(xG, Sk) to be the goal surface.

Given SI , SG, we compute H = {H1, · · · , HR}, the set of
R simple connected paths on the environment graph GE . We
call H ∈ H a homotopy, and we will write the connection of
walkable surfaces as H : S0 → · · · → SRH . As a note, the
complexity of finding all connected paths in a graph with V
vertices is O(|V |!) [12].

To summarize, in this section we preprocessed the environ-
ment E, to decompose it into
• A set of Nw walkable surfaces S1, · · · , SNw
• A set of Nw stack of cuboids B1, · · · , BNw
• A set of Ni connector elements I1, · · · , INi
• The environment graph GE , describing the connectivity

between walkable surfaces
• A set of homotopies H for given xI , xG

III. CONVEX OPTIMIZATION OF FOOTPATH HOMOTOPIES

Given H : S0 → · · · → SRH , our goal is to find a sliding
footstep trajectory supported on the surfaces S0, · · · , SRH .
More formally, we will consider the functional space of space
curves as

Ω(xI , xG, H) = C1([0, 1],R3) (7)

under the constraints that for all τ ∈ Ω(xI , xG, H) we have
τ(0) = xI , τ(1) = xG, and that a segment τ(t) for t ∈
[ti, ti+1] has support on a walkable surface Si, as depicted in
Fig. 4. In between support, we assume that the function is not
supported, i.e. the foot can freely move through space, under
the restriction that the non-support movement is smaller than
the maximum stepsize.

We represent the functional space Ω(xI , xG, H) by a linear
combination of basis functions [10], based on the Stone-
Weierstrass theorem. The Stone-Weierstrass theorem [13]
guarantees that every continuous function from C([0, 1],R3)
can be approximated arbitrarily close by a polynomial func-
tion, i.e. we have

Theorem 1 (Stone-Weierstrass). Let τ ∈ C1([0, 1],R3). For

every ε > 0 there exists a polynomial p(t) =
∞∑
i=0

wit
i such

GE

Fig. 5. Two homotopy classes of footsteps, and two solutions, obtained by
solving one convex optimization program in each homotopy class. Also we
show the environment graph GE for this particular example, which represents
connectivity between walkable surfaces.

Fig. 6. Four homotopy classes in the environment: Our algorithm finds the
homotopy classes via graph search, and then solves one convex optimization
problem in each class to find the global optimal solution trajectory.

that for all t ∈ [0, 1] we have

‖τ(t)−
∞∑
i=0

wit
i‖ < ε (8)

Conceptually, we represent a continuous function by a linear
combination of an infinite set of basis functions. We will make
the assumption that higher-order terms are negligible such

that we choose a finite K � 0, and use p(t) =
K−1∑
i=0

wit
i.

We will denote F = {x0, · · · , xK−1} ∈ RK×D, with K
basis functions, and D the discretization of [0, 1]. For all
t ∈ [0, 1] we denote the approximation by τ = WTF (t),
with W ∈ RK×3. The complete convex optimization problem
in homotopy class H becomes

minimize
τ∈Ω(xI ,xG,H)

c(τ) (9)

subject to τ(0) = xI , τ(1) = xG (10)
∀Si ∈ {S0, · · · , SR}, t ∈ [ti, ti+1] :

Aiτ(t) ≤ bi
(11)

∀t ∈ [0, 1] :

‖τ(t)− τ(t+ ∆t)‖ ≤ RStep
(12)

∀t ∈ [0, 1] :

‖τ(t)−WTF (t)‖ ≤ ε
(13)

whereby we have the following parameters



TABLE I
RESULTS FOR PLANNING PATHS IN THE TWO SCENARIOS SHOWN IN FIG. 5

AND FIG. 6. R IS THE NUMBER OF HOMOTOPIES, TW IS THE TIME TO
EXTRACT WALKABLE SURFACES FROM THE ENVIRONMENT, TG THE TIME

TO COMPUTE THE CONNECTIVITY BETWEEN SURFACES, TP THE
PLANNING TIME OF SOLVING R CONVEX OPTIMIZATION PROBLEMS, AND
T IS THE ACCUMULATED TIME OF ALL STAGES TOGETHER (AVERAGED

OVER 10 RUNS, ROUNDED).

Environment R Homotopies TW (s) TG(s) TP (s) T (s)
Stepping 1 (Fig. 5) 2 0.27 1.92 6.53 8.73
Stepping 2 (Fig. 6) 4 0.26 1.68 20.34 22.28

• RStep the maximum step size of the robot
• ε > 0 approximation constant to circumvent numerical

instabilities
• K number of basis functions
• c(τ) is a convex objective function on τ , for example the

shortest path as c(τ) =
1∫

t=0

‖τ(t)− τ(t+ ∆t)‖22dt

The given convex problem describes the set of all trajecto-
ries restricted to one homotopy class. A valid footstep at t can
be modeled as a convex inequality constraint:

∀t ∈ [0, 1] : Aiτ(t) ≤ bi −RF diag(ATi A
′
i) (14)

whereby Ai = {a0, · · · , aMi
} contains the normals of

the polytope associated to the walkable surface Si, A′i =
{a′0, · · · , a′Mi

} with a′j = aj − (aTj ap)ap, and RF being the
radius of the foot. Compare to (5).

Fig. 5 shows the result of our convex optimization problem
for an environment with 2 homotopy classes. A more complex
version with 4 homotopy classes is shown in Fig. 6. The final
planning results are depicted in Table I, all generated by using
the splitting conic solver (SCS) [14] inside cvxpy [15].

IV. UPPER BODY OPTIMIZATION

We have showed so far how to optimize a single footstep
trajectory τ0 ∈ Ω(xI , xG, H) in one homotopy class of the
environment via a convex optimization problem. Now we
assume that τ0 is fixed. Our goal is to find a set of particle
trajectories in the same homotopy class as τ0, belonging to
the swept volume of R, such that those particles are feasible
in E. To put if differently, instead of searching for a single
configuration space trajectory, we are searching for a set of
mutually constrained particle trajectories in the environment.
This section describes one possible way to constrain those
particle trajectories to lie in the same homotopy class as τ0.
Please consult also Fig. 2 for an overview.

Each particle of the swept volume moves along a space
curve in R3. Let Υ = {{τ lk, τ rk}}

η
k=0 be the set of space curves

of 2(η + 1) particles, with τ
{l,r}
k ∈ C1([0, 1],R3), and τ lk

represents the left outer hull of the swept volume of the robot
at height kδ, and τ rk the right hull. If we take a cross-section of
the swept volume, then τk is represented by a point at height
kδ, as depicted by the red dots in Fig. 7. To achieve this, we
apply three constraints on the functional space Υ

1) τk(t) ∈ P (t), the plane orthogonal to the foot trajectory
τ0 at instance t (cmp. Fig. 8)

P (t) = {x ∈ R3|aTP (t)x = bP (t)} (15)

with aP (t) =
τ ′
0(t)
‖τ0(t)‖ and bP (t) = aT (t)τ0(t).

2) τk(t) has to be feasible in E, i.e. if τ0 is supported on
Spi at t, then

τk(t) ∈ Bpi (kδ, (k + 1)δ) (16)

3) At instance t, all particles resemble a cross-section Xk

of the robot
τk ∈ Xk (17)

The first two constraints are a linear equality and a convex
inequality, respectively. The third constraint however is non-
convex. To obtain Xk, we sample the configuration space C
and compute cross-sections. A cross-section of a configuration
is defined as its swept volume on the plane in movement
direction, i.e. at t, the volume of q ∈ C is projected onto
P (t), as depicted in Fig. 7. As a simplification, we use only
irreducible configurations of the robot [3]. An irreducible
configuration is a configuration which has a minimal swept
volume. Basically, we sample {q1, · · · , qσ} ∈ C, apply a cross-
section operator φ : C → X × X and compute the cross-
sections X = {{xl,1, xr,1}, · · · , {xl,N , xr,N}}. xl stands for
the left points of the swept volume, and xr for the right points
and we note that xr = Alxl.

We now have to find a feasible cross-section for each plane.
As a simplification, we consider the cross-sections only at
intersections Ir of the environment, since those intersections
represent the narrow passages. We note that we have only
convex boxes in-between intersections, and so we assume that
we can linearly interpolate two intersection points.

Our algorithm proceeds in the following manner: we com-
pute the feasibility of N cross-sections by solving N con-
vex optimization problems Θi

1, · · · ,Θi
N for all intersections

i ∈ [1, V ] in I1, · · · , IV . A feasible path is then a sequence
λ1, · · · , λV of feasible cross-sections Θ1

λ1
, · · · ,ΘV

λV
with

Θi
λj
<∞. We can represent this as a solution matrix

Λ =

Θ1
1 · · · ΘV

1
...

. . .
...

Θ1
N · · · ΘV

N

 (18)

whereby we have that Θi
j solves the problem of feasibility

of a cross-section Xj on an intersection element Ii. Let ti be
such that τ(ti) ∈ Ii. Then Θi

j becomes

Θi
j = minimize

{τ0,··· ,τη}∈Υ
c(τ0, · · · , τη) (19)

subject to ∀k ∈ [0, η] :

τk(ti), ALτk(ti) ∈ P (tr) (20)
τk(ti), ALτk(ti) ∈ Ii(kδ, (k + 1)δ) (21)
τk(ti), ALτk(ti) = Xj (22)



Fig. 7. Left: The cross-section space for a humanoid robot. Each line
represents a certain height above a walkable surface. The cross-section of
the robot intersects each height at two points, which we call xL and xR
for left and right, respectively. We assume that every cross-section gives rise
to only two points, i.e. we ignore configurations, where this is not the case.
Overlaid (white line segments) are the constraints by the wall environment,
which impose a convex box inequality on the cross-sections.Right: the final
experiment, with the humanoid robot HRP-2 walking through a narrow
environment.

Fig. 8 represents the complete algorithmic output: from
an environment, we compute walkable surfaces, we compute
a footstep trajectory, we compute planes orthogonal to the
footstep, we solve a set of convex optimization problems
at each intersection, and we compute a final set of particle
trajectories in the environment.

Finally, our main point here is that we have investigated
the structure of the planning problem. Given our assumptions,
we can compute the number of local minima of our planning
problem as

L =

R∑
i=1

NVi (23)

with R the number of homotopy classes, N the number of
cross-sections, and Vi the number of intersections inside the
i-th homotopy class. For the wall environment in Fig. 8 we
have N = 144,V = 2,R = 1 and so L = 20736.

While our work is preliminary and non-complete, we want
to stress the fact that knowing the number of local minima is
important for understanding the inherent complexity of motion
planning.

V. EXPERIMENTS

We implemented the algorithms in python, and used cvxpy
[15] to compute solutions to the local minima. The source
code to reproduced the experiments is available at

https://github.com/orthez/mpp-path-planner

For experimental verification, we have chosen the wall
environment depicted in Fig. 8, which contains 145 objects.

The following parameters were used: β = 40, δ = 0.05,
such that βδ = 2.0 > RH with RH = 1.539m the maximum
height of HRP-2 [16]. For Problem (9), we used ε = 0.02,
D = 1000, K = 2000, and we used a minimum number of
Di = 15 samples for each walkable surface Si.

The environment decomposition took 3m20s, and our al-
gorithm computed N = 144 cross-section configurations. We
employ a greedy version of our algorithm, which computes

Fig. 8. From Left to Right, Top to Bottom: 1) all polytopes in the wall
environment 2) the extracted walkable surfaces from our algorithm, 3) the
footstep trajectory in the single homotopy class, computed by solving the
convex optimization problem (9), 4) the vertical planes along the footstep
trajectory, 5) the intersection of boxes on each walkable surface to create
the connection elements 6) the final plan of workspace trajectories, all
homotopically equivalent and representing a configuration space trajectory.

Planning
Instance

RRT [3] PP

0 3h37m 15m41s
1 6h07m 16m03s
2 3h55m 16m01s
3 9h34m 16m12s
4 6h37m 15m41s
5 0h44m 15m41s
6 16h19m 15m42s
7 2h45m 15m43s
8 43h57m 15m45s
9 2h03m 15m16s

Fig. 9. Comparison of running time on 10 instances for RRT (red) (adapted
from [3]) and for our particle planning (PP) algorithm (blue). For PP, the time
depends on the discretization

all local minima for the first intersection, and then checks
if the next intersection can be solved by the solution to
the first intersection. For each intersection, we computed all
minima and found out that 11/144 have been feasible (7.64%).
The computation took 12m15s (averaged over 10 runs). All
together we have a total computation time of 15m35s. We
compared the results of all runs with the results of a rapidly
exploring random tree [6], operating on the irreducible con-
figuration space [3]. The results in Fig. 9 show that we have a
lower variance while performing better at the given sampling
resolution.

To move the robot in the real world, we add small footsteps
along the path, one every 0.1m. Given footsteps and trajectory
of the upper body, we use a dynamical solver to compute
zero-moment point trajectories for the robot. We have used
those results to verify the motion in the dynamical simulator
OpenHRP [17], and executed it on the humanoid robot HRP-2
[16]. The video can be found here

http://homepages.laas.fr/aorthey/videos/wall-homotopy.mp4

https://github.com/orthez/mpp-path-planner
http://homepages.laas.fr/aorthey/videos/wall-homotopy.mp4


VI. RELATED WORK

Bhattacharya et al. [8] compute homotopy classes in the
environment, and use them as a constraint for graph-based
search. Our work is complementary in the sense that we in-
vestigate how to formulate planning in one homotopy class as
a set of convex optimal problems, while their work investigates
how to compute the homotopy classes in the first place.

The technique presented in [18] estimates a single homotopy
class by growing random spheres. Our approach tries to be
more systematic in that we reason about contact surfaces,
and restrict the free space by the robots geometry. Also, we
consider planning inside a homotopy class not as a potential
field controller, but as a global optimization procedure.

The work by [19] consider sweeping a spherical object
to find weakly collision free footstep positions. Our work
is similar for footsteps but precomputes homotopy classes to
identify high-level minima.

[20] identifies narrow passage in the environment, and com-
putes important waypoint configurations inside those narrow
passages. This idea inspired our computation of connector
elements, elements which connect two contact surfaces.

Ivan et al. [21] introduce different topological representa-
tions to easier solve certain subproblems of motion planning.
Our work is complementary, in that we would be able to
analyze which representation to use given a certain problem.

The authors of [22] discover convex regions of footsteps in
an environment, and employ mixed-integer programming to
find a solution. Our work explores how adding more structure
in form of connectivity can help to discover the homotopy
classes, and formulate the resulting problem as a set of convex
optimization problems.

Farber [23] introduced the topological complexity of a con-
figuration space. Our work can be seen as a practical means of
identifying the covering of the workspace volume and thereby
its topological complexity. Our optimization algorithms are
then one proposal to find paths inside of a given covering.

This work is fundamentally based on the work by [3], who
introduced irreducible configuration for humanoid robots. Our
work is complementary in that we are restricting our motions
to the space of irreducible configuration while exploiting
environment structure.

VII. CONCLUSION

We decomposed the general motion planning problem into
a set of homotopic motion planning problems, with the goal of
developing more efficient algorithms for the homotopic motion
planning problem.

We presented three results: I) how to identify homotopy
classes in an environment, based on walkable surfaces, sur-
faces on which a robot can make a foot contact. II) how to
find a single contact trajectory inside a given homotopy class,
formulated as a single convex optimization problem, and III)
how to find a feasible upper body trajectory by solving a set
of convex optimization problems.

Regarding future work, we currently work on incorporating
our particle planning into a local motion planning algorithm

to produce a dynamical feasible motion. We also would like to
investigate when a surface is walkable, depending on physical
properties like density, geometry, maximum pressure, and
slippage. Finally, we would like to investigate the complexity
properties of homotopic particle motion planning.
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