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Abstract—Most solutions to the SLAM problem in
robotics have utilized Range and Bearing sensors as
the provided perception data is easy to incorporate,
allowing immediate landmark initialization. This is
not the case when using Bearing-Only information
because the distance to the perceived landmarks is
not directly provided. A whole estimate of a landmark
position will only be possible via a set of measurements
taken from different points of view. The vast majority
of contributions to this problem utilize a parallel
task to get this estimate, and hence the landmark
initialization is delayed.

We give a new insight to the problem and present a
method to avoid this delay by initializing the whole
ray that defines the direction of the landmark. We
utilize a minimal and computationally efficient form
to represent this ray and a new strategy for the
subsequent updates. Simulations have been carried
out to validate the proposed algorithms.

Index Terms— SLAM, vision, initialization, bearing
only, undelayed.

I. Introduction

The Simultaneous Localisation and Mapping problem
(SLAM) is fundamental in mobile robotics. It consists of
incrementally building a map of a previously unknown
environment from measurements taken from the robot as
it moves, and getting localized in it. The original solution
[1] utilized an Extended Kalman Filter (EKF) to fuse
data acquired by a laser range scanner or other range
and bearing sensors, leading to Range and Bearing EKF-
SLAM.

Today, many other solutions to Range and Bearing
SLAM exist that perform fairly well in real time, in
large environments, even in three dimensions. But the
sensors they rely on are not convenient: they tend to be
delicate, big and expensive. Consider vision instead: a
cheap, small and reliable camera is capable of providing
a huge amount of spacial information, at the price of
losing one dimension of the world we want to observe –
the distance to the perceived objects. Using such a sensor
leads to Bearing-Only SLAM.

Landmark Initialization in Bearing-Only EKF-SLAM
is a difficult task. EKF requires Gaussian representations
for all the involved random variables that form the map
(the robot pose and all landmark’s positions). Moreover,
their variances need to be small to be able to approximate
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Fig. 1. Landmark initializations. Left : Range and Bearing SLAM.
Right : Acquiring baseline b in Bearing-Only SLAM.

all the non linear functions with their linearized forms.
From one bearing measurement, we cannot establish
an estimate of the landmark position that satisfies this
fundamental rule. This estimation is only possible via
successive measures from different points of view, when
enough baseline has been accumulated (Fig. 1).

This reasoning leads to systems that have to wait for
this baseline to be available. Ref. [2] uses a separate Parti-
cle Filter to estimate the distance, which is not correlated
with the rest of the map. Initialization is deferred until
range variance is small enough to consider a Gaussian
estimate. In [3] past poses of the robot are stacked in the
map, together with associated measures, until baseline
is sufficient to permit a Gaussian initialization. Once
initialized, the batch of observations is used to refine and
correct the whole map. These methods suffer from two
drawbacks: they need a criteria to decide whether or not
the baseline is enough, and they introduce a delay in the
landmark initialization until this criteria is validated.

Avoiding both criteria and delay is an interesting issue.
The criteria is often expensive to calculate, and the
system becomes more robust without it as no binary
decisions have to be taken. Without the delay, having the
bearing information of the landmark in the map permits
its immediate use as an angular reference. It also allows
the use of landmarks that lie close to the direction of
travel of the robot, for which baseline would take too
long to grow. This is crucial in outdoor navigation where
straight trajectories are common and vision sensors will
naturally look forward.

To our knowledge, only [4] proposes an undelayed
method. It defines a set of hypothesis for the position
of the landmark, and includes them all inside the map
from the beginning. On successive observations, sequen-
tial ratio test (SRT) based on likelihoods is used to prune
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Fig. 2. Landmark initializations. Left : EKF-SLAM; Center : GSF-
SLAM; Right : FIS-SLAM.

bad hypothesis, and the one with maximum likelihood is
used to correct the map. The way these hypothesis are
initialized is not detailed, and convergence and consis-
tency issues are not discussed.

We will show that the theoretically motivated solution
to the undelayed initialization implies the abandonment
of the EKF (Fig. 2 left) and that, following a multi
hypothesis reasoning, the proper way to include all the
information in the map is the creation of a set of weighted
maps, one for each hypothesis (Fig. 2 center). But this
leads to untreatable algorithms such as the Gaussian Sum
Filter (GSF) [5], for which computational load grows
multiplicatively.

The method we present is an approximation of the
GSF that permits undelayed initialization with simply an
additive growth of the problem size (Fig. 2 right). At the
first observation, the robot only knows the optical ray on
which the landmark is located. This ray, with associated
covariances, define a conic probability distribution func-
tion (PDF) for its position. A minimal representation of
this PDF is introduced as a geometric series of Gaussians;
they are all included in one single EKF- SLAM map.
As with all approximations, this representation has the
risks of inconsistency and divergence, which we discuss.
To minimise these risks we propose a strategy for all the
subsequent updates which we name Federated Informa-
tion Sharing (FIS). We define a very simple criteria for
pruning the less likely members of the ray. Simulation
results are provided to demonstrate the pertinence of all
these choices.

The rest of this paper is as follows. Section II states
the problem. Section III develops all the contributions.
Section IV presents the simulation results and section V
closes with a discussion.

II. Undelayed Bearing Only SLAM

A. Range and Bearing EKF-SLAM

A random state vector containing robot pose and
landmark positions will be our map:

X =

[

Xv

XM

]

. (1)

where X>

v = [r>v ,q>

v ] is the robot state containing
position and orientation and X>

M = [x>

1 , . . . ,x>

n ] is the
set of landmark positions. In the EKF framework, the a
posteriori density is approximated by a Gaussian density
with mean and covariances matrix defined by

X̂ =

[

X̂v

X̂M

]

P =

[

Pvv PvM

PMv PMM

]

(2)

The evolution of the robot and the measure of land-
mark i are defined by the functions

X+
v = f(Xv ,u)

yi = h(Xv ,xi) + υ
(3)

where u is a vector of controls assumed to be Gaussian
with mean û and variance U, and υ is a white Gaussian
noise with variance R. We get the prediction step1

X̂+
v = f(X̂v , û)

P+
vv = Fv · Pvv · F>

v + Fu ·U · F>

u

P+
vM = Fv · PvM

(4)

and the correction step at observation of landmark i

Zi = HiPH>

i + R

Ki = PH>

i · Z−1
i

P+ = P −KiZiK
>

i

X̂+ = X̂ + Ki · (yi − h(X̂v , x̂i))

(5)

where2 Fv = ∂f
/

∂X>
v

∣

∣(X̂v ,û), Fu = ∂f
/

∂u>
∣

∣(X̂v ,û) and
Hi = ∂h

/

∂X>
∣

∣(X̂).

Landmark initialisation consists of stacking its position
xp into the map as

X+ =

[

X
xp

]

(6)

and defining the PDF of this new state (the resulting
map) conditioned to observation yp. This task is easily
performed from the first observation given by yp =
h(Xv ,xp) + υ as all the components of xp are observed.
The classic method [6] performs the variable change

wp = h(Xv ,xp) (7)

so measurement is now yp = wp + υ. Then it defines the
function g, inverse of h, in order to obtain an explicit
expression of xp

xp = g(Xv ,wp). (8)

Assuming that Pvv and R are small enough we can write

xp ≈ g(X̂v,yp) + Gv(Xv − X̂v) + Gw(wp − yp) (9)

1The notation A+ means the updated value of A, for any A.
2The vertical slash | stands for evaluated at.



where Gv = ∂g
/

∂X>

v

∣

∣(X̂v ,yp), Gy = ∂g
/

∂w>

p

∣

∣(X̂v ,yp)

and PvX =
[

Pvv PvM

]

. Then xp can be considered
approximately Gaussian with mean and covariances
matrices defined by

x̂p = g(X̂v,yp)

PpX = Gv ·PvX

Ppp = Gv ·Pvv ·G>

v + Gy · R ·G>

y

(10)

and the augmented map is finally specified by

X̂+ =

[

X̂
x̂p

]

P+ =

[

P P>

pX

PpX Ppp

]

. (11)

B. A proper solution for Undelayed Initialization in
Bearing-Only SLAM

In the Bearing-Only case the measurement is lacking
the range information and the initialization procedure
is not that straightforward. We separate range s from
bearing bp and write

wp =

[

bp

s

]

(12)

so measurement is now yp = bp + υ. This leads to the
re-definition of g

xp = g(Xv,bp, s) (13)

where all but range s can be safely considered Gaussian.
The a priori values of s cover the interval s ∈ (0,∞),

but knowledge on the current application can reduce it
to s ∈ [smin, smax]. This interval defines a uniform PDF
p(s) which is not small enough. The linear approximation
of g is not valid and the landmark initialization procedure
of EKF-SLAM no longer holds. To solve the problem, we
must define a non-Gaussian characterization of p(s), and
look for an alternative to EKF to manage it. We propose
the Gaussian sum approximation

p(s) ≈
Ng
∑

j=1

cj · Γ(s − sj ; σ
2
j ) (14)

where Γ(s − sj ; σ
2
j ) = exp((s − sj)

2/2(σj)
2)/

√
2πσj .

The Gaussian sum approximation may be viewed as
a two-step distribution. First, one has to choose j with
probability P (j) = cj and, conditionally to j, the range s
is Gaussian with mean sj and variance σ2

j . Hence, we can
use this information to initialize an hypothesis for a map
with a landmark xj

p at a certain range sj . Using (13) and
the standard procedure of section II-A we get

x̂j
p = g(X̂v ,yp, sj)

P
j
pX = Gj

vPvX

Pj
pp = Gj

vPvvG
j>
v + Gj

y
RGj>

y
+ Gj

sσ
2
j G

j>
s .

(15)

with Gj
v = ∂g

/

∂Xv

∣

∣(X̂v ,yp,sj), Gj
y

= ∂g
/

∂wp

∣

∣(X̂v ,yp,sj)

and Gj
s = ∂g

/

∂s
∣

∣(X̂v ,yp,sj). The hypothetic map j is then

X̂j =

[

X̂
x̂j

p

]

Pj =

[

P P
j>
pX

P
j
pX Pj

pp

]

(16)

and the PDF of the obtained map state is the weighted
sum

p(X+|yp) =

Ng
∑

j=1

c′j · Γ(X+ − X̂j ;Pj). (17)

In conclusion, we will have Ng maps for every new
landmark, and we will have as much as N m

g maps
in the case we initialise m new landmarks. The map
management would have to utilize the standard GSF, but
such a multiplicative increase of the problem size makes
this solution untreatable.

III. Ray Initialisation using FIS

We need to find a computationally compelling alterna-
tive to GSF. Following the same multi-hypothesis reason-
ing, we can consider that each hypothesis corresponds to
a different landmark. We can then initialize them all in
one single Gaussian map using the standard EKF-SLAM
procedure of section II-A. The result (Fig. 2 right) is
a map that has grown in an additive way, avoiding the
undesired multiplicative effect.

The problem is that, at the arrival of a second observa-
tion, we will not know to which hypothesized landmark
it corresponds. As all hypothesis are correlated with the
same map, using this observation to correct the map at
the wrong hypothesis would probably make the whole
map diverge. Alternatively, as EKF requires observation
noises to be mutually uncorrelated, using the same mea-
surement to correct at each hypothesis would make the
map inconsistent.

The hereafter proposed FIS technique relies on likeli-
hood evaluations of the hypothesis to weight the effect
of the different corrections. This allows the minimization
of both divergence and inconsistency risks. Aggregated
likelihoods are also used to progressively eliminate the
wrong hypothesis.

This section first proposes a minimal representation
for the Gaussian sum that define the range’s PDF. This
will minimise the number of hypothesis. Then it goes on
detailing our FIS initialization method, which could be
seen as a shortcut to the more proper GSF-SLAM.

A. The Ray: a geometric series of Gaussians

We look for a minimal implementation of (14). For
that, we start by giving the general realization of (8)

xp = rv + s · Rv(qv) · dir(bp) (18)

where dir(bp) is a direction vector in robot frame defined
by bp; Rv(qv) is the rotation matrix associated with the
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Fig. 3. The conic Ray: a geometric series of gaussian distributions

robot orientation; and s is the range, now unknown.3 We
then recall that the observed bp is inversely proportional
to s. It is shown in [7], [8] that in such cases EKF is only
relevant if the ratio αj = σj/sj is small enough (up to
30% in practice). This ratio determines the validity of
the linearization. This leads to define p(s) as a geometric
series with αj = α = constant:

p(s) =

Ng
∑

j=1

ci · Γ(s − βj−1s1, (β
j−1σ1)

2). (19)

An overview of the series with its parameters is shown
in Fig. 3. From the bounds [smin,smax], and the choice
of the ratio α and the geometric base β, we need to
determine the first term (s1, σ1) and the number of terms
Ng. We impose the conditions s1 − σ1 = smin and
sNg

+ σNg
≥ smax to get

s1 = (1 − α)−1 · smin

σ1 = α · s1

Ng = 1 + ceil

[

logβ

(

1 − α

1 + α
· smax

smin

)]

(20)

where ceil(x) is the next integer to x.
The geometric base β determines the sparseness of

the series. Fig. 4 shows plots of the obtained PDF for
different values of α and β. A more detailed discussion
on the effect of these parameters can be found in [9]. The
couple (α, β) = (0.3, 3) defines a series that is somewhat
far from the original uniform distribution, but experience

3Let bp = (u, v) be the metric coordinates of a pixel in a camera
with focal length f . We have dir(bp) = [u/f, v/f, 1]>. Landmark
depth is denoted by s.

Fig. 4. Geometric distributions for smin/smax = 10: Left: (α, β) =
(0.2, 1.8). Center: (α, β) = (0.3, 2). Right: (α, β) = (0.3, 3). Dotted
line is at smax.

showed that the overall performance is not degraded and
the number of terms is minimized.

Table I shows the number of gaussians for three typical
applications. Note how, thanks to the geometric series,
increasing smax/smin by a factor 10 implies the addition
of just two members.

TABLE I

Number of gaussians for α = 0.3 and β = 3.

Scenario smin (m) smax (m) smax

smin
Ng

Indoor 0.5 5 10 3
Outdoor 1 100 100 5

Long range 1 1000 1000 7

B. Map management

The aim of the initialization procedure is twofold: We
want to choose the gaussian in the ray that best repre-
sents the real landmark, while using at the same time the
angular information this ray provides. It consists of three
main operations: the inclusion of all the members of the
ray into the map; the subsequent updates using Federated
Information Sharing; and the successive pruning of bad
members. Fig. 5 gives a compact view of the whole
process.

1) Iterated Ray Initialization: As discussed earlier, we
include all landmark hypothesis that conform the ray in
a single Gaussian map. All ray members are stacked in
the same random state vector as if they were different
landmarks:

X+ =











X
x1

p

...

x
Ng

p











(21)

An iterated method is used to construct its mean and
covariances matrix (Fig. 6). Landmark hypothesis are

4321

Fig. 5. Ray updates on 4 consecutive poses. Grey level indicates
Aggregated Likelihood that is used to discard bad hypothesis. Dash
and dot line is the true distance to the landmark
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Fig. 6. Iterated Ray Initialization for Ng = 3. Each arrow states
for an EKF-SLAM-based landmark initialization.

stacked one by one by iteratively applying the procedure
of section II-A. The result looks like this:

X̂+ =











X̂
x̂1

p

...

x̂
Ng

p











P+ =













P P
1 >

pX · · · P
Ng>

pX

P1
pX P1

pp

...
. . .

P
Ng

pX P
Ng

pp













.

(22)

Initially, all hypothesis are given the same credibility
so their weighting must be uniform. We will discuss
later the evolution of these weights, that will reflect the
Aggregated Likelihood (AL) of each hypothesis with the
measurements. By now, let us write the uniform AL
vector that we have to initialize associated with the newly
added ray:

Λ =
[

Λ1 · · · ΛNg

]

; Λj = 1/Ng. (23)

2) Map updates via Federated Information Sharing:
This is the most delicate stage. We have a fully correlated
map with all hypothesis in it, so a correction step on
one hypothesis has an effect over the whole map. If the
hypothesis is wrong, this effect will cause the map to
diverge.

Of course we would like to use the observation to
correct the map at the right hypothesis. As we don’t
know which one it is, we are obliged to actuate on all
of them. This involves the risk of inconsistency : if we
incorporate multiple times the same information (remark
that we have a unique observation for all hypothesis), the
map covariance P will shrink according to the multiple
application of the EKF correction equations (5), leading
to an overconfident estimate of the map X .

The proposed FIS method is inspired by the Federated
Filter (FF) in [10] to address these problems. FF is
a decentralized Kalman filter that allows a parallelled
processing of the information. In the case this infor-
mation comes from a unique source, as it is our case,
FF applies the Principle of Measurement Reproduction
[11] to overcome inconsistency. This principle can be
resumed as follows: The correction of the estimate of a
random variable by a set of measurement tuples {y;Rj}
is equivalent to the unique correction by {y;R} if

R−1 = ΣR−1
j (24)

{ , Ryp / }ρ1

{ , Ryp / }ρj

{ , Ryp / }ρN

{ , R}yp

xp :of
Observation px 1^

xp
^ j

xp
^ N

...
...

...
...

EKF update on 

EKF update on 

EKF update on 

Fig. 7. Update via Federated Information Sharing

This is what is done by FIS. The idea (Fig. 7) is
to share the information given by the observation tuple
{yp;R} among all hypothesis. Doing Rj = R/ρj , condi-
tion (24) is satisfied if Σρj = 1.

The divergence risk is also addressed by FIS. We need
to choose a particular profile for ρj that privileges the
corrections on more likely hypotheses. A flexible way to
do so is by taking ρj ∝ λn

j , where λj is the likelihood of
hypothesis j given the observation yp

λj = exp(−0.5 · zjZ
−1
j z>j )

/

√

2π|Zj | (25)

with zj = yp − h(X̂v, x̂
j
p), Zj = HjPjHj> + R and

Hj = ∂h
/

∂X>
∣

∣(X̂v ,x̂j
p). These two conditions over ρj

lead to
ρj = λn

j /ΣN
i=1λ

n
i . (26)

The parameter n is a measure of how much we want to
privilege strong hypothesis over weak ones, with appro-
priate values between n = 1 and n = 3.

3) Ray member pruning: The divergence risk also calls
for a criteria for pruning those members with very low
likelihood. This will in turn allow the ray to collapse to
a single Gaussian.

As in the standard GSF, the weight of each hypothesis
is successively updated with its measure of likelihood
λj , leading to the notion of Aggregated Likelihood (AL).
Evolution of the AL Λj with likelihood λj is given by

Λ+
j = Λj · λj . (27)

AL vector Λ is then normalized so that ΣjΛj = 1.
For pruning, we use a simple threshold on the AL

which is dependent on the actual number N of remaining
members. Ray member j is deleted if

Λj < τ/N (28)

where τ is in the range
[

0.001 0.1
]

, typically 0.01. For
obvious efficiency reasons, we will apply pruning before
updating. When N = 1, we say the ray has collapsed to
a single Gaussian and so we are back to standard EKF-
SLAM.

IV. Simulation results

Simulations for a two-dimensional implementation
have been carried out to validate the proposed meth-
ods. The following figures illustrate the results of these
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Fig. 8. Indoor simulation.
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Fig. 9. 3σ bound robot position error estimates vs true error for
the Indoor simulation

simulations. Ground truth landmarks are represented by
small crosses. Small or elongated ellipses represent the
3σ-bound regions of the landmark Gaussian estimates.
Estimated trajectories are plotted in dotted lines.

Three different scenarios have been simulated. In the
first (Fig. 8), a robot makes two turns following a circular
trajectory inside a square cloister of some 20m in size,
where the columns are treated as landmarks. The linear
and the angular speeds are 1m/s and 1rad/s. Odometry
errors are simulated by corrupting these values with white
Gaussian noises with standard deviations of 0.3m/s and
0.3rad/s respectively. Bearings are acquired every 100ms
with a sensor that is looking forward with a field of view
of ±45◦ and an accuracy of 1◦. A consistency test that
plots the 3σ-bound estimated error for the robot position
against the true error is given in Fig. 9

The second scenario (Fig. 10) simulates an outdoor
area of 140x140m, populated with 60 randomly dis-
tributed landmarks. The robot follows a circular trajec-
tory of some 80m of diameter at a linear speed of 2m/s
and an angular speed of 0.05rad/s. Odometry errors are
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Fig. 10. Large outdoor area simulation.
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Fig. 11. Straight trajectory simulation.

0.3rad/s and 0.3rad/s respectively. Bearings are acquired
every 100ms with a sensor with a field of view of ±30◦

and an accuracy of 0.5◦. Odometry integration trajectory
is plotted in dash-and-dot line for this simulation.

The third simulation (Fig. 11) uses the same previous
outdoor scenario, except that the trajectory is now a
straight line.

V. Conclusions

In the present work we have proposed an undelayed
method to initialize landmarks within the Bearing-Only
EKF-SLAM framework. Care has been taken to show
that a complete stochastic representation of the state
of a map with a newly initialized ray is in the form of



a weighted sum of maps. This representation leads to
filtering algorithms that are untreatable on-line. As today
a SLAM system must be intended to work in real time,
such algorithmic solutions fall out of interest. We have
proposed a method to solve the problem by generating a
multi-hypothesised Gaussian map that includes the whole
ray that represents the PDF of the landmark’s position.
Such a method is suitable to work in real time but, as an
approximation of the proper solution, it has some risks.
Those risks have been identified and discussed in order
to give means to minimise them and make the proposed
algorithms sufficiently safe for their use in real robotics
tasks.

The relatively high degree of mathematical insight,
which is not usually found in many other works on the
subject, will allow the prospection of other shortcuts that
may eventually beat the performances of the here pro-
posed FIS-SLAM. In this paper we made use of the ideas
that are at the base of the Federated Filter, notably the
Principle of Measurement Reproduction, with excellent
results. A Gaussian approximation that keeps the mean
and the covariance of the original non-gaussian map is
another option that we have already discovered.

Simulations showed that the undelayed initialization is
suitable for robots that use vision sensors with a very
narrow field of view and that look in the direction of
travel. These are very delicate situations that have been
often avoided by previous works, but that turn out to be
very interesting for real outdoor applications, not only
for robots but also –and very particularly– for intelligent
vehicles in road environments.

Real experiments that use vision and the full 3D
FIS-SLAM algorithm are being carried out at the date of
submission of this paper. Results are expected to confirm
the pertinence of this work.
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