
HAL Id: hal-01137844
https://hal.science/hal-01137844v1

Preprint submitted on 31 Mar 2015 (v1), last revised 23 Oct 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple path optimization method for motion planning
Mylène Campana, Florent Lamiraux, Jean-Paul Laumond

To cite this version:
Mylène Campana, Florent Lamiraux, Jean-Paul Laumond. A simple path optimization method for
motion planning. 2015. �hal-01137844v1�

https://hal.science/hal-01137844v1
https://hal.archives-ouvertes.fr


A simple path optimization method for motion planning

M. Campana1,2, F. Lamiraux1,2 and J.-P. Laumond1,2

Fig. 1: On top, the initial path from Visibility-PRM planner for a PR2 robot in a kitchen environment. On bottom, the
optimized path found with our algorithm. The cost of the initial path was 15.5, our optimizer reduced it to 3.0 in 28

iterations. Random shortcut has only downed it to 5.6 after 96 tries.

Abstract— Most algorithms in probabilistic sampling-based
path planning compute collision-free paths made of straight
line segments lying in the configuration space. Due to the
randomness of sampling, the paths make detours that need
to be optimized. The contribution of this paper is to propose a
gradient-based algorithm that transforms a polygonal collision-
free path into a shorter one, while both:
• requiring only collision checking, and not any time-

consuming obstacle distance computation, and
• constraining only part of the configuration variables that

may cause a collision, and not the entire configurations.
Moreover, the algorithm is simple and requires few parameter
tuning. Experimental results include navigation and manipula-
tion tasks, e.g. a PR2 robot working in a kitchen environment
and a sliding HRP2 robot.

I. INTRODUCTION AND PROBLEM STATEMENT

Motion planning for systems in cluttered environments
has been adressed for more than thirty years [1], [2]. Most
planners explore the system configuration space [3]. To
compute a collision-free optimized motion, mainly three
approches are used:
• Planning by path-optimization [4], [5] where obstacle

avoidance is handled by constraints or cost using com-
putation of the nearest obstacle distance. Most of these
planners are using non-linear optimization [6] under
constraints. Such planners provide close-to-optimality

*This work is partly supported by the project European Research Council
(ERC Advanced Grant 340050 Actanthrope) and by the European project
FP7 608849 EuRoc

1{mcampana, florent, jpl}@laas.fr
CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ. de Toulouse, LAAS, F–31400 Toulouse, France

paths and have smaller time computation for easy prob-
lems, but they are mostly unable to solve narrow passage
issues.

• Optimal random sampling [7] are also close to an
optimal solution, but computation time is significantly
higher than classical approaches. Moreover the roadmap
is only valid for a given motion planning problem.

• Combining a classical random sampling based plan-
ner [8], [9] with a path or trajectory optimizer. Sampling
based algorithms provide probabilitic completeness and
remain effective even in high dimensional configuration
spaces as required by humanoid inspired avatars.

For the last category of methods, random shortcut methods
are still very popular [10]–[12] for optimizing the output
of the path planning algorithm. However, random shortcut
requires fine tuning of the termination condition (see Algo-
rithm 2) and is not so efficient for long trajectories where
only a small part needs to be optimized. On the other hand,
numerical optimization methods like CHOMP [13] can be
used. They have clear termination conditions, but collision
avoidance is handled by inequality constraints sampled at
many points along the trajectory. Those methods therefore
require a pre-processing step of the robot (and/or envi-
ronment) model in order to make it simpler: [13] covers
PR2 bodies with spheres, while [14] needs to decompose
objects into convex subsets. Moreover, in the applications we
address, optimality is not desirable as such since the shortest
path between two configurations in a cluttered environment
usually contains contact with an obstacle.



For complex environments with numerous polyhedric-
mesh obstacles, distance computation is much more time-
consuming than collision-checking.

The idea of our method is to find a good trade-off between
the simplicity of “blind” methods like shortcut algorithm,
and the complexity of distance based optimization tech-
niques. The idea is to use gradient-based information without
evaluating distances between objects. Moreover the way we
introduce constraints prevents the method to converge to
contact motions.

Our algorithm does not pretend to compute a path which is
optimal with respect to any criterion. Optimal paths rarely ex-
ist, and when they exist, their computation is most of the time
out of the scope of numerical optimization algorithms [15].
The method we propose is then issued from a pragmatical
compromise between generality, time computation efficiency
and solution quality.

Related work is presented in Section II. Section III ex-
plains how the path-optimizer works, from the formulation
of the problem to the implemented algorithm. Finally, we
conclude on experimental results in Section IV and lay out
future work perspectives.

II. RELATED WORK

In a similar framework to our approach, the CHOMP
algorithm [13] optimizes an initial guess and tries to smooth
it. It reduces a time invariant cost function using an efficient
covariant hamiltonian gradient-descent. The cost is quantified
by non-smooth parts (with high velocities) and an obstacle
avoidance term, provided by the distance to the nearest
obstacle for each iteration of the trajectory. But computing
these nearest distances is quite long because all object pairs
must be analysed at each time. Therefore the method starts
to build offline a map of distances that will be called during
the optimization at the requested time. Besides, meshes are
preprocessed into overlapping spheres so that distances are
computed faster in exchange of a geometry approximation.
Finally, avoiding obstacles may lead to convergence issues
when planning in narrow passages.

STOMP method [16], inspired by CHOMP, avoids to
compute an explicit gradient for cost optimization using
a stochastic analysis of local random samples. But as for
CHOMP, the obstacle cost term requires a voxel map to
perform its Euclidian Distance Transforms, and represents
the robot bodies with overlapping spheres. Such technique
provides lots of distance and penetration information but
remains very time consuming and is not as precise as
some distance computation techniques based on the problem
meshes as Gilbert-Johnson-Keerthi [17].

Some optimization-based planners may not require an ini-
tial guess but some naive straight-line manually or randomly-
sampled initialization as TrajOp [18]. Its trajectory is it-
eratively optimized with sequential convex optimization by
minimizing at each step its square length, linear constraints
and non-linear constraints considered as penalities. To com-
pute the collision-constraints, nearest obstacle distances are
calculated at each discrete time of the trajectory vector. This

can be a burden for a high-dimensional robot or a complex
environment as we propose to use, and may be compensated
with a short path composed of only one or two waypoints.

Torque command laws can be constructed from repulsive
potential and “internal” path deformation forces in the elas-
tic strips optimization [19]. This optimizer is based on a
spring formulation, looking for a path in the robot free-
space defined by geometry-overlapping spheres, which radii
are smaller than the nearest obstacle distance. For distance
computations, robot is also approximated with spheres in
order to apply hierarchical bouding sphere method [20].
As for CHOMP, the initial geometry of the problem is not
respected and spheres allow to increase the speed of distance
computations.

Some heuristics use random shortcuts on the initial guess
combined with a trajectory re-building that returns C 1 short-
cuts made of parabolas and lines (bang-bang control) [11].
Other smoothing methods randomly sample the initial trajec-
tory to interpolate with B-splines [21], even for SO3 joints
thanks to an exponential map. The returned trajectory is
shorter and C 2 except on a few points. The interpolation
is used in two stages: a global interpolation to smooth the
trajectory, and a local random sample shortcut choosing
between linear (with C 1 ends conditions) or spline inter-
polation, to decrease the trajectory length. However, the
convergence speed and the result quality remain probabilistic,
as for all shortcuts methods [10]. For example, if we consider
long paths which require only some local optimization,
random shortcut will fail to sample relevant configurations,
whereas numerical optimization algorithms as our method
will normally succeed.

III. PATH OPTIMIZATION

In this part, we describe our optimization problem: nota-
tions, cost function, constraints and finally the optimization
algorithm.

A. Notations

Lets C denotes the configuration space of the robot of di-
mension nC. We want to optimize a polygonal path computed
by a sample-based planner, given the initial configuration q0
and the goal configuration qn+1. n is the number of waypoints
of the initial path, the vector of these waypoints xi ∈Cn will
be modified in order to reduce the path cost at the ith iteration
of the algorithm.

B. Problem definition

We want to reduce the sum of length squares of each
segment. The optimal solution without constraint for this
cost minimizes the total length of the path, but it also is
a quadratic function:

c(x) =
1
2

n

∑
k=1
‖qk+1−qk‖2

Optimizing the problem remains to find argminc(x), sub-
ject to constraints which will be defined in the following



q0

q1

qi

qi+1

qn+1

qi+1

qCB1

qC1qi
q1

xi

xi+1

qC2

qCB2

Fig. 2: Illustration of one iteration of our optimization. xi+1
appears to be in collision with the obstacle, border colliding
configurations qC1 and qC2 are returned by the collision
checker.

sections. In the above norm, each robot degree of free-
dom is weighed based on the farthest point moved by the
corresponding degree of freedom. We omit this fact in the
following developments for clarity.

If H denotes the constant Hessian of the cost function, an
iteration is described as follow:

pi,i+1 = H−1
∇c(xi)

T

xi+1 = xi−αipi,i+1
(1)

where αi is a real valued parameter. Taking αi = 1 yields
the unconstrained minimal cost path (all waypoints aligned at
equal distance from each other on the straight line between q0
and qn+1). As we checked before planning that this solution
is in collision, we set αi = α where α is a parameter that
will be precised in the algorithm section.

We iterate step (1) until path xi+1 is in collision. When a
collision is detected, we introduce a constraint and perform
a new iteration from xi as explained in the next section.

C. Constraints

Let T be a positive real number such that each path
xi is a mapping from interval [0,T ] into C: xi(0) = q0,
xi(T ) = qn+1 for all i. Let us denote by tcoll i the abscissa of
the first collision detected on path xi+1. Thus in configuration
xi+1(tcoll i) a collision has been detected. Two cases are
possible

1) the collision occured between two bodies of the robot:
B1 and B2, or

2) the collision occured between a body of the robot B1
and the environment.

In the first case, we denote by M ∈ SE(3) the relative
transformation of B2 with respect to B1 when the robot is
in configuration xi(tcoll i). We add the constraint that for any
iteration j > i+1, x j of the optimization process, the relative
position of B2 with respect to B1 is equal to M ∈ SE(3) in
configuration x j(tcoll i). In the second case, the constraint is
defined similarly, except that the constraint is on the position
of B1 with respect to the environment.

We denote by F the mapping from C to SE(3) such that
the constraint is written:

F(xi(tcoll i)) = M (2)

Jf (x3 − x1) = 0

c(x)

x0 x1 x2

x3
p2 = computeMinQP (x1)

Fig. 3: Some iterations of the optimization with a representa-
tion of the quadratic cost (ellipsoids), its minimum (dot) and
the constraints tangent-space (straight-line). x2 has collisions
that allow to compute constraints on x1 and then the step
minimizing the cost under the constraint leading to the new
x3 path. If x3 is collision-free, our resolution is over.

This constraint is non-linear in the state xi, but we linearize
it around xi to keep the quadratic program formulation of the
problem as explained in the next section.

D. Constrained quadratic program (QP)

The constraint on the position at tcoll i is a function that
depends only on two waypoints qk i

1, qk+1 i, with 0≤ k ≤ n.
There exists β ∈ [0,1] such that for any j:

x j(tcoll i) = (1−β )qk j +βqk+1 j

Therefore, the Jacobian JF of constraint (2) with respect to
x is(

0 · · · (1−β ) ∂F
∂q (x j(tcoll i)) β

∂F
∂q (x j(tcoll i)) · · · 0

)
Both F and ∂F

∂q are provided by our path planning frame-
work [22] as differentiable functions.

The linearized constraint that future iteration should satisfy
is the following:

JF(x j− xi) = 0

where we recall that xi is the latest collision-free iteration.
We refer to [23] for solving constrained quadratic programs.
Using the Singular Value Decomposition (SVD) of Eigen
linear algebra library and a Cholesky LLT orthogonal decom-
position, this is straightforward to compute the step leading
to x j, the constrained QP minimum.

Figure 2 illustrates the case when xi+1 is in collision.
Two strategies are possible for adding constraints when
testing the path from q0 to qn+1: we can choose to return
the first configuration in collision qC1 with a discrete or
continous collision checker. However, if we want to gather a
maximum of colliding configurations from xi+1, in order to
compute more constraints in one iteration, we can compute
with a discrete collision checker input and output collisions
regarding each colliding obstacle.

Figure 2 is in that second case: qC1 and qC2 are both
returned as colliding configurations. Thus, qCB1 and qCB1
represent the configuration for which constraints are com-
puted and will be applied when calculating xi+2. This method

1qk i denotes waypoint k along path xi.



could prevent from calculating more iterations to resolve
collisions, but in pratice, we found that it is much heavier
to compute these collisions and the numerous obtained
constraints is alterating the path optimality. Therefore we
choose to compute only first the collision using a discrete
collision checker.

Figure 3 illustrates briefly our first iterations according to
the quadratic cost and the constraints sub-space.

E. Algorithm

In this part we describe the path-optimizer algorithm 1
according to the previous step definitions. The main difficulty
here is to handle the scalar α determining how much of
the computed step p will be traveled through, and also to
return a collision-free path. Typically, we chose αinit = 0.2
to process small steps. αinit = 0.5 is more encountered in
the optimization literature, procuring larger steps but with
more risks of collision. imax represents the maximal number
of iterations. The iteration counter is basically incremented
each time a collision test occurs.

Algorithm 1 Description of the path optimization algorithm.
1: procedure OPTIMIZE(x0)
2: i← 0 α ← αinit
3: while True do
4: p← H−1∇c(x)T

5: xtmp← x−αp
6: i← i+1
7: if collision(xtmp) then BREAK
8: x← xtmp
9: α ← αmax−0.8(αmax−α)

10: while True do
11: addCollisionConstraints(J f ,xtmp)
12: p← computeMinQP(x)
13: if isFullRank(J f ) or i > imax then return x

14: xtmp← x−p
15: i← i+1
16: if not(collision(xtmp)) then return xtmp

17: α ← αinit
18: xtmp← x−αp
19: i← i+1
20: if not(collision(xtmp)) then
21: while True do
22: x← xtmp
23: p← computeMinQP(x)
24: xtmp← x−αp
25: i← i+1
26: if collision(xtmp) then BREAK
27: if i > imax then return xtmp

28: α ← αmax−0.8(αmax−α)

29: end procedure

The following part describes in details the algorithm 1.
Lines 2 represents the initialization, the following loop
(begining line 3) is the first unconstrained QP iterative

resolution. The more iterations of the loop, the higher α

becomes, toward αmax (line 9). Thus we are converging to
the minimum of our unconstrained QP, until the loop breaks
because of a detected collision (line 7).

The second main loop of our algorithm (line 10), manages
new collision constraints at its begining (line 11) and com-
putes the step leading to the minimum of the constrained QP
(line 12). Since no relaxation of our constraints is considered,
our problem may become full constrainted, equivalent to J f
being full rank (line 13). In that case, the last collision-free
path will be returned.

Globally, each time a collision-constraint is added, we
directly compute and test the solution of the QP under
previously added constraints with an equivalent of α = 1
since if this path is collision free, the algorithm is over
(lines 14 and 16). Thus we do not waste time computing
smaller iterations that would have lead to the same result, if
no obstacle has been jumped at line 14.

If this path has collisions, we do not compute associated
constraints because they may not be relevant since this path
is very optimized and not similar to its previous iteration.
Instead, we re-use the found optimal step p limited by α

(line 18) and test it. If this path has collisions, we go back
to the begining of the loop (line 10) and add constraints to J f .
In the other case, we continue the gradient-descent adapting
our QP solution to the current path x (lines 23 and 24) until
a collision is detected (line 26) or until the maximal number
of iterations is reached (line 27).

At last, the algorithm parameters are that not numerous
compared to other numerical optimizations based on distance
computation: αinit , αmax and imax.

IV. RESULTS
This part gathers optimization results performed on the

planning software Humanoid Path Planner [22]. The initial
trajectory is obtained with two kind of probabilistic planners:
Visibility-PRM [24] and RRT-connect [25].

A. From 2D basic examples...

Figure 4 shows several iterations of our optimizer on 2D
cases. Since in this special case, transformation constraints
are equivalent to compulsory configurations to pass through,
we can verify that our optimized path is applying all com-
puted constraints. We can also analyse which collisions have
lead to the backtracked constraints.

Besides, these examples give a better understanding of
how the tuning of α has to balance lot of iterations and
relevant collision-constraint addition. For example, if we
alterate a lot the initial path with a large gradient step and
compute the corresponding collisions, constraints will be
chosen on a very-not optimal path and will not be pertinent
with regard to the obstacles we wanted to avoid.

B. Toward 3D complex problems

We also experiment our algorithm on more complex
robots, with transformation collision-constraints.

In the included video, five problems present the good
properties and limits of our algorithm. On the 3-DOF arm,



Fig. 4: Path-optimization results on a 2D-ponctual robot,
moving around obstacles. Initial paths are in red, optimized
ones in black. Grey paths represent intermediate iterations,
red dots colliding configurations and blue dots the associated
configurations where constraints are computed. Respectively
on top and bottom, 8 and 13 iterations have occured.

optimization is efficient since constraints are computed for
the end-effector in the global frame to slightly go along the
obstacle. We even noticed that in practice, the smaller alpha,
the nearer the robot is from the white cylinder.

For the following example with a 6-axis manipulator arm
(Figure 5) in a cluttered environment, path reduction only
manages to reduce some but not all detours. We explain this
behaviour by a path over-constraining due to the important
proximity of the robot to the obstacles during the whole path,
and because there are not so many DOF to play on to easily
avoid collisions and return a small-cost solution. We advance
this explaination because on the two last high-DOF examples

Fig. 5: 6-DOF robot arm on which our path-optimization has
been tested.

Algorithm 2 Random shortcut as adapted from [10] Sec-
tion 6.4.1. steeringMethod returns the linear interpola-
tion between two configurations. x|I denotes path x restricted
to interval I. maxNbFailures is a parameter that affects time
of computation and quality of the result.

1: procedure RANDOMSHORTCUT(x)
2: nbFailures ← 0
3: while nbFailures < maxNbFailures do
4: f ailure← true
5: T ← upper bound of x definition interval
6: t1 < t2← random numbers in [0,T ]
7: l p0← steeringMethod(x(0),x(t1))
8: l p1← steeringMethod(x(t1),x(t2))
9: l p2← steeringMethod(x(t2),x(T ))

10: newPath← empty path defined on [0,0]
11: if l p0 is collision-free then
12: newPath← l p0; f ailure← f alse
13: else
14: newPath← x|[0,t1]
15: if l p1 is collision-free then
16: newPath← concatenate(newPath, l p1)
17: f ailure← f alse
18: else
19: newPath←concatenate(newPath,x|[t1,t2])

20: if l p2 is collision-free then
21: newPath← concatenate(newPath, l p2)
22: f ailure← f alse
23: else
24: newPath←concatenate(newPath,x|[t2,T ])

25: x← newPath
26: if f ailure then nbFailures← nbFailures+1

return x
27: end procedure

of the video (and Figures 1 and 6), results are far better in
terms of cost and quality.

Let us consider the worked-out example of a mobile
40-DOF PR2 performing a manipulation task in a kitchen
environment (Figure 1). The task is simple: the robot has just
to move his hands from the top to the bottom of the table.
First, a sampling based path planning algorithm computes
a solution that includes large detours for the platform and
useless moves of the arms and the head of the robot (see
Figure 1 top). We want and manage to optimize it to a
logically trajectory Our optimizer manages to reduce its
cost and improves its quality (Figure 1 bottom) just adding
constraints between the table and the robot’s grippers. Thus,
the robot just slightly moves backward its mobile platform
and uses its arm DOF to avoid the table.

We also experiment our optimizer on an other high-DOF
robot, a sliding HRP2 [26]. The robot simply has to pass its
left arm from its front to its back. Once again, the planner
offer us detours and activates non-usefull DOF such as the
left arm and the translation on the ground (Figure 6 top).
This example is here interesting to compare the optimized



path quality between random shortcut (Algorithm 2) and our
method, because the first one will never completely kill the
translation move of the robot and other useless DOF uses,
unlike our optimized-path which mainly results in moving
the left arm as expected (Figure 6 bottom). The removal of
the translation is also a consequence of our cost ponderation
as described in the previous section.

We are dependent on the shape and number of waypoints
of the output x0 of the planner, dependancy we tried to
anihilate computing 30 runs of each problem and using the
two cited planners. The results are presented in the table I.

The comparaison with random shortcut (Algorithm 2) is
presented in Table I. In all cases, we have a smaller average
computation time than random shortcut since it is computing
many more iterations until satisfying its final criterion. Now
regarding the cost, for high-DOF examples where we expect
to beat random shortcut in terms of computation time of
path cost as HRP2 and PR2, the challenge is succeeded.
However, there are still scenarii where our algorithm needs
some improvement, as the 6-DOF arm. We believe that, since
high-mobility results are better, this limitation is linked to the
rigidity of our collision-constraints. Adding a possibility to
relax or cancel well-chosen constraints would improve this
statement.

Moreover, the termination condition of random shortcut
allows it to try shortening the path until 15 iterations of non-
improvement are reached (corresponding to maxNbFailures
in Algorithm 2). This is not equivalent to our iteration
limitation imax. But we admit that restrincting the number of
random shortcut iterations is neither a acceptable criterion
because of randomness.

V. CONCLUSIONS

We managed to settle a path optimization for high di-
mension articulated robots. Our algorithm uses standard
numerical tools as collision checking, singular value de-
composition and QP resolution. The algorithm correlates
theses tools in a simple but effective way, playing on the
scalar iteration parameter. Therefore, our method does not
require distance computation, geometry pre-processing nor
offline optimization. We demonstrate that the optimizer is
time-competitive comparing to random shortcut and proposes
better quality paths for high-DOF robots.

In a future work, we plan to implement user-defined
constraints of the problem, simply modifying our collision-
constraint jacobian, and also to improve matrix computations
to increase the optimization speed and be more competitive.
It would egally be interesting to study the possibility of
relaxing our collision-constraints to locally improve our path
iterations.

REFERENCES

[1] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Pérez, and M. T.
Masson, Robot Motion: Planning and Control, 1983.

[2] J. Schwartz and M. Sharir, “On the piano movers problem ii: General
techniques for computing topological properties of real algebraic
manifolds,” Advances of Applied Mathematics, vol. 4, no. 3, pp. 298–
351, 1983.

[3] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Transactions on Computers, vol. 32, no. 2, pp. 108–120, 1983.

[4] C. Park, J. Pan, and D. Manocha, “ITOMP: incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Proceedings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo,
Brazil, 2012.

[5] M. Garber and M. Lin, “Constraint-based motion planning using
voronoi diagrams.” in Algorithmic Foundations of Robotics V, volume
7 of Springer Tracts in Advanced Robotics, 2004, pp. 541–558.

[6] J. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. Society for Industrial and Applied
Mathematics, 2010.

[7] S. K. Sertac and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[8] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, 1996.

[9] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2001, pp. 293–308.

[10] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. Overmars, “Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems,” International Journal of Robotics Research, vol. 17,
no. 8, pp. 840–857, 1998.

[11] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
2010, pp. 2493–2498.

[12] R. Guernane and N. Achour, “Generating optimized paths for motion
planning,” Robotics and Autonomous Systems, vol. 59, no. 10, pp.
789–800, 2011.

[13] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. Dellin, J. Bagnell, and S. Srinivasa, “CHOMP: covariant hamilto-
nian optimization for motion planning,” The International Journal of
Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[14] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 28, no. 5, 2014.

[15] J.-P. Laumond, N. Mansard, and J. Lasserre, “Optimality in robot
motion: Optimal versus optimized motion,” Communications of the
ACM, vol. 57, no. 9, pp. 82–89, 2014.

[16] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, 2011, pp. 4569–4574.

[17] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,”
IEEE Journal of Robotics and Automation, vol. 4, no. 2, pp. 193–203,
1988.

[18] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[19] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[20] S. Quilan, “Efficient distance computation between non-convex ob-
jects,” in Robotics and Automation. ICRA 1994. Proceedings of the
IEEE International Conference on, 1994, pp. 3324–3329.

[21] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth trajec-
tory computation in cluttered environments,” International Journal of
Robotics Research, vol. 31, no. 10, 2012.

[22] F. Lamiraux and J. Mirabel, “Humanoid path planner,”
http://projects.laas.fr/gepetto/index.php/Software/Hpp.

[23] J. Nocedal and S. Wright, Numerical Optimization, Second Edition.
Springer New York, 2006.

[24] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility based proba-
bilistic roadmaps for motion planning,” Advanced Robotics Journal,
vol. 14, no. 6, 2000.

[25] J. J. Kuffner and S. M. Lavalle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, IEEE
International Conference on, vol. 2, 2000, pp. 995–1001.

https://github.com/humanoid-path-planner/hpp-core/blob/df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/random-shortcut.cc#L62


Fig. 6: Sliding HRP2 robot. On top, path returned by the sample-based planer, with large translations. On bottom, path
optimized by our method, the robot does not move its feet anymore. The cost has been down from 13.4 to 1.38 in 30
iterations.

Non-optimized cost Optimized cost Average time computation gain Average number
compared to random shortcut of iterations

Our optimizer Random shortcut Our optimizer Random shortcut
2D-robot with obstacles (RRT) 23.6±2.4 17.3±1.7 15.5±3.7 32% 14 108

3-DOF arm (RRT) 7.03±1.23 5.18±1.35 3.70±1.08 36% 12 69
6-DOF arm (RRT) 13.1±1.8 12.4±2.0 6.83±1.54 75% 30 106

PR2 in kitchen (PRM) 15.1±2.2 5.75±1.6 5.90±1.04 50% 19 104
HRP2 (PRM) 9.45±1.69 1.82±0.28 3.42±1.24 14% 14 52

TABLE I: Results for 30 runs of the presented examples with our path-optimization method (with parameters imax = 30,
αinit = 0.2 and αmax = 0.9). RRT and PRM stand for the used planner (resp. RRT-connect and Visibility-PRM). Average
time computation gain column concerns only the optimization part of the process.

[26] S. Dalibard, A. E. Khoury, F. Lamiraux, M. Taı̈x, and J.-P. Lau-
mond, “Small-space controllability of a walking humanoid robot,” in
Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International
Conference on, 2011, pp. 739–744.


	INTRODUCTION AND PROBLEM STATEMENT
	RELATED WORK
	PATH OPTIMIZATION
	Notations
	Problem definition
	Constraints
	Constrained quadratic program (QP)
	Algorithm

	RESULTS
	From 2D basic examples...
	Toward 3D complex problems

	CONCLUSIONS
	References

