
HAL Id: hal-01137844
https://hal.science/hal-01137844v2

Preprint submitted on 23 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A simple path optimization method for motion planning
Mylène Campana, Florent Lamiraux, Jean-Paul Laumond

To cite this version:
Mylène Campana, Florent Lamiraux, Jean-Paul Laumond. A simple path optimization method for
motion planning. 2015. �hal-01137844v2�

https://hal.science/hal-01137844v2
https://hal.archives-ouvertes.fr

A simple path optimization method for motion planning

Mylène Campana1,2, Florent Lamiraux1,2 and Jean-Paul Laumond1,2

Fig. 1: In this motion planning problem, PR2 robot has just to exchange the positions of its arms. The task is simple,
however, in absence of explicit indication, any probabilistic motion planner will compute a path that makes the PR2 mobile

basis purposelessly moving. This is the case of RRT-connect algorithm (left). Path optimization is expected to remove
unnecessary motions. The popular random shortcut algorithm fails in this case (middle). Our algorithm succeeds (right).

Abstract— Most algorithms in probabilistic sampling-based
path planning compute collision-free paths made of straight
line segments lying in the configuration space. Due to the
randomness of sampling, the paths make detours that need
to be optimized. The contribution of this paper is to propose a
gradient-based algorithm that transforms a polygonal collision-
free path into a shorter one, while both:
• requiring mainly collision checking, and few time-

consuming obstacle distance computation,
• constraining only part of the configuration variables that

may cause a collision, and not the entire configurations,
and

• reducing parasite motions that are not useful for the
problem resolution.

The algorithm is simple and requires few parameter tuning. Ex-
perimental results include navigation and manipulation tasks,
e.g. an robotic arm manipulating throw a window and a PR2
robot working in a kitchen environment, and comparisons with
a random shortcut optimizer.

I. INTRODUCTION AND PROBLEM STATEMENT

Motion planning for systems in cluttered environments has
been addressed for more than thirty years [1], [2]. Most
planners today randomly sample the system configuration
space [3] in order to find a collision-free path. The main
issue using these techniques is that the computed path
makes unnecessary detours and needs to be post-processed

*This work has been supported by the project ERC Advanced Grant
340050 Actanthrope and by the FP 7 project Factory in a Day under grant
agreement n 609206

1{mcampana, florent, jpl}@laas.fr
CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ. de Toulouse, LAAS, F–31400 Toulouse, France

before being executed by a virtual or real robot. Alternative
strategies exist however.

• Planning by path-optimization [4], [5] where obstacle
avoidance is handled by constraints or cost using com-
putation of the nearest obstacle distance. Most of these
planners are using non-linear optimization [6] under
constraints.
Such planners provide close-to-optimality paths and
have smaller time computation for easy problems, but
they are mostly unable to solve narrow passage issues.

• Optimal random sampling [7] are also close to an
optimal solution, but computation time is significantly
higher than classical approaches. Moreover the roadmap
is only valid for a given motion planning problem.

In this paper, we propose a method aimed at shortening
path length after a path planning step. Note that we do
not address path planning, but that we take the result of
a probabilistic motion planner as the input to our path
optimization method.

For this shortening purpose, random shortcut methods are
still very popular [8], [9]. However, random shortcut requires
fine tuning of the termination condition (see Algorithm 2)
and is no efficient due to randomness for long trajectories
where only a small part needs to be optimized. Figure 2
presents another situation where random shortcut will always
fail to optimize the initial path, since it cannot decouple the
robot degrees of freedom (DOF) on which the optimization
occurs, contrary to our algorithm.

z

y

x

optimal path

initial pathshortcut tentative

qinit qfinal

top view

qinit qfinal

Fig. 2: Example of a path which random shortcut will never
manage to optimize: each shortcut tentative will provide a collision
or will not decrease the path length. The optimal path belongs to
the x− y plane containing qinit and qend .

On the other hand, numerical optimization methods like
CHOMP [10] can be used as a post-processing step. They
have clear termination conditions, but collision avoidance is
handled by inequality constraints sampled at many points
along the trajectory. These methods therefore require a pre-
processing step of the robot (and/or environment) model
in order to make it simpler: [10] covers PR2 bodies with
spheres, while [11] needs to decompose objects into convex
subsets. Moreover, in the applications we address, optimality
is not desirable as such since the shortest path between two
configurations in a cluttered environment usually contains
contacts with the obstacle, or is most of the time out of the
scope of numerical optimization algorithms [12].

The idea of our method is to find a good trade-off between
the simplicity of blind methods like shortcut algorithm, and
the complexity of distance based optimization techniques.
The method iteratively shortens the initial path with gradient-
based information. When a collision is detected at a given
iteration, the method backtracks to the latest valid iteration
and inserts a linearized transformation constraint between the
objects detected in collision. Only few distances between
objects are evaluated, therefore no pre-processing of the
robot or environment models is necessary. The underlying
optimization algorithm is a quadratic program.

Related work is presented in Section II. Section III ex-
plains how the path-optimizer works, from the formulation
of the problem to the implemented algorithm. Finally, we
conclude on experimental results in Section IV.

II. RELATED WORK

CHOMP algorithm [10] optimizes an initial guess pro-
vided as input. It minimizes a time invariant cost function
using efficient covariant hamiltonian gradient descent. The
cost is quantified by non-smooth parts (with high velocities)

and an obstacle avoidance term, provided by the distance to
the nearest obstacle for each iteration of the trajectory. Cal-
culating these nearest distances however is time-consuming
because the distances between all pairs of objects must be
computed at each time step along the path. To reduce the
computation time, the method starts by building offline a
map of distances that will be called during the optimization
at the requested time. Besides, meshes are pre-processed into
bounding spheres so that distances are computed faster at the
cost of a geometry approximation.

STOMP method [13] avoids to compute an explicit gra-
dient for cost optimization using a stochastic analysis of
local random samples. But as for CHOMP, the obstacle cost
term requires a voxel map to perform its Euclidian Distance
Transforms, and represents the robot bodies with overlapping
spheres. Such technique provides lots of distance and pene-
tration information but remains very time consuming and is
not as precise as some distance computation techniques based
on the problem meshes as Gilbert-Johnson-Keerthi [14].

Some optimization-based planners may not require an ini-
tial guess but some naive straight-line manually or randomly-
sampled initialization as TrajOp [15]. Its trajectory is iter-
atively optimized with sequential convex optimization by
minimizing at each step its square length, linear and non-
linear constraints considered as penalties. To compute the
collision-constraints, nearest obstacle distances are calculated
at each discrete time of the trajectory vector. This can
be a burden for a high-dimensional robot or a complex
environment as we propose to use, and may be compensated
with a short path composed of only one or two waypoints.

The elastic strips framework [16] is also an optimization
based method. The path is modeled as a spring and obstacles
give rise to a repulsive potential field. Although designed
for on-line control purposes, this method may be used for
path shortening. In this case however, the number of distance
computation is very high. The authors also proposed to
approximate the robot geometry by spheres.

Some heuristics use random shortcuts on the initial guess
combined with a trajectory re-building that returns C1 short-
cuts made of parabolas and lines (bang-bang control) [9].
These local refined trajectories are time-optimal since they
comply with acceleration and velocity constraints.

In some way, our method shares similarities with [17]
since this latter method relies on collision checking and
backtracks when an iteration is detected in collision, instead
of trying to constantly satisfy distance constraints. Unlike
our method however, the iterations are composed of Cubic-
B-splines. The benefit of this method is that the result is a
differentiable path.

III. PATH OPTIMIZATION

A. Kinematic chain

A robot is defined by a kinematic chain composed of a tree
of joints. We denote by (J1, · · · ,Jm) the ordered list of joints.
Each joint Ji, 1 ≤ i ≤ m is represented by a mapping from
a sub-manifold of Rni , where ni is the dimension of Ji in
the configuration space, to the space of rigid-body motions

SE(3). The rigid-body motion is the position of the joint
in the frame of its parent. In the examples shown in this
paper, we consider 4 types of joints described in Table I. A
configuration of the robot

q = (q1, · · · ,qn1︸ ︷︷ ︸
J1

,qn1+1, · · · ,qn1+n2︸ ︷︷ ︸
J2

, · · ·qn), n ,
m

∑
i=1

ni

is defined by the concatenation of the joint configurations.
The configuration space of the robot is denoted by C ⊂Rn.

Note that the configuration of the robot belongs to a sub-
manifold of Rn.

The velocity of each joint Ji, 1 ≤ i ≤ m is defined by a
vector of Rpi , where pi is the number of DOF of Ji. Note
that the velocity vector does not necessarily have the same
dimension as the configuration vector.

The velocity of the robot is defined as the concatenation
of the velocities of each joint.

q̇ = (q̇1, · · · , q̇p1︸ ︷︷ ︸
J1

, q̇p1+1, · · · , q̇p1+p2︸ ︷︷ ︸
J2

, · · · q̇p), p ,
m

∑
i=1

pi

a) Operations on configurations and vectors: by anal-
ogy with the case where the configuration space is a vector
space, we define the following operators between configura-
tions and vectors:

q2−q1 ∈ Rp, q1,q2 ∈ C

is the constant velocity moving from q1 to q2 in unit time,
and

q+ q̇ ∈ C , q ∈ C q̇ ∈ Rp

is the configuration reached from q after following constant
velocity q̇ during unit time.

Note that the definitions above stem from the Riemanian
structure of the configuration space of the robot. The above
sum corresponds to the exponential map. We do not have
enough space in this paper to develop the theory in a more
rigorous way. The reader can easily state that “following a
constant velocity” makes sense for the four types of joints
defined in Table I. We refer to [18] Chapter 5 for details
about Riemanian geometry.

Name dimension config space velocity
translation 1 R R

bounded rotation 1 R R
unbounded rotation 2 S1 ⊂ R2 R

SO(3) 4 S3 ⊂ R4 R3

TABLE I: Translation and rotation joint position are defined by
1 parameter corresponding respectively to the translation along an
axis and a rotation angle around an axis. Unbounded rotation is
defined by a point on the unit circle of the plane: 2 parameters
corresponding to the cosine and the sine of the rotation angle.
SO(3) is defined by a unit quaternion. The velocity of translation
and unbounded rotation joints is the derivative of the configuration
variable. The velocity of an unbounded rotation joint corresponds
to the angular velocity. The velocity of a SO(3) joint is defined by
the angular velocity vector ω ∈ R3.

B. Straight interpolation

Let q1,q2 ∈ C be two configurations. We define the
straight interpolation between q1 and q2 as the curve in C
defined on interval [0,1] by:

t→ q1 + t(q2−q1)

This interpolation corresponds to the linear interpolation for
translation and bounded rotations, to the shortest arc on S1

for unbounded rotation and to the so called slerp interpolation
for SO(3).

C. Problem definition

We consider as input a path composed of a concatenation
of straight interpolations between wp + 2 configurations:
(q0,q1, · · · ,qwp+1). This path is the output of a random
sampling path planning algorithm between q0 and qwp+1.
We wish to find a sequence of waypoints q1,...,qwp such
that the new path (q0,q1, · · · ,qwp+1) is shorter and collision-
free. Note that q0 and qwp+1 are unchanged and that the
workspace of the robot contains obstacles. We denote by x
the optimization variable:

x , (q1, · · · ,qwp)

1) Cost: let W ∈ Rp×p be a diagonal matrix of weights:

W =

w1Ip1 0

w2Ip2
. . .

0 wmIpm

where Ipi is the identity matrix of size pi and wi is the weight
associated to joint Ji. We define the length of the straight
interpolation between two configurations as:

‖q2−q1‖W ,
√

(q2−q1)TW 2(q2−q1).

Weights are used to homogenize translations and rotations in
the velocity vector. For rotations, the weight is equal to the
maximal distance of the robot bodies moved by the joint to
the center of the joint.

Given q0 and qwp+1 fixed, the cost we want to minimize
is defined by

C(x),
1
2

wp+1

∑
i=1

λi−1‖qi−qi−1‖2
W

where the λi−1 coefficients benefit will be explained in the
results section. For now we can assume that ∀i, λi−1 = 1.

Note that C is not exactly the length of the path, but it
can be established that minimal length paths also minimize
C. This latter cost is better conditioned for optimization
purposes.

D. Resolution

We assume that the direct interpolation between the initial
and final configurations contains collisions. Let H denote
the constant Hessian of the cost function, an iteration is
described as follow:

pi,i+1 =−H−1
∇c(xi)

T

xi+1 = xi +αipi,i+1
(1)

where αi is a real valued parameter. Taking αi = 1 yields the
unconstrained minimal cost path, i.e. all waypoints aligned
on the straight line between q0 and qn+1. Since this solution
is in collision, we set αi = α where α is a parameter that
will be explained in the algorithm section.

We iterate step (1) until path xi+1 is in collision. When a
collision is detected, we introduce a constraint and perform
a new iteration from xi as explained in the next section. We
use a continuous collision checker inspired of [19] to validate
our paths and to return the first colliding configuration
along a path. This step corresponds to validatePath in
Algorithm 1.

E. Constraints

Let T be a positive real number such that each path xi is a
mapping from interval [0,T] into C : xi(0) = q0, xi(T) = qn+1
for all i. Let us denote by tcoll i the abscissa of the first
collision detected on path xi+1, which previous iteration
xi was collision-free (see Figure 3). Thus in configuration
xi+1(tcoll i) a collision has been detected. Two cases are
possible:

1) the collision occurred between two bodies of the robot:
B1 and B2, or

2) the collision occurred between a body of the robot B1
and the environment.

In the rest of this section, we will only consider the first
case. Reasoning about the second case is similar, except that
the constraint is on the transformation of B1 with respect to
the environment.

Let M∗ ∈ SE(3) denote the homogeneous transformation
between frames of B1 and B2 in configuration xi(tcoll i). Let
M ∈ SE(3) denote the same transformation in configuration
x(tcoll i) where x is any path in C wp. Let R ∈ SO(3) (resp.
R∗) and t∈R3 (resp. t∗) be the rotation and translation parts
of M (resp. M∗). See also Figure 4 for notations.

q0

q1

qi

qi+1

qwp+1

qi+1

xi(tcoll i)

xi+1(tcoll i)

qiq1

xi

xi+1

Fig. 3: Illustration of one iteration of our optimization. xi+1 appears
to be in collision with the obstacle, the first colliding configuration
xi+1(tcoll i) is returned by the continuous collision checker. The cor-
responding constraint will be computed in configuration xi(tcoll i).

B1

B2
B2

M

M∗

M−1M∗

r

d

r

Fig. 4: Transformation constraint notations.

We denote by F the mapping from C wp to R6 defined by

F(x) =
(

RT (t∗− t)
log(RT R∗)

)
(2)

log(RT R∗) represents here a vector v of R3 such that RT R∗ is
the rotation of axis v and of angle ‖v‖. Note that F vanishes
for any path x such that in configuration x(tcoll i) the relative
position of B2 w.r.t. B1 is equal to M∗. Let r denote the
radius of the bounding sphere of B2 centered at the origin
of B2 local frame. Let us denote by d the minimal distance
between B1 and B2 in configuration xi(tcoll i). We have the
following property.

Property 1: Let x ∈ C wp be a path and let us denote by
t and v respectively the 3 first coordinates and the 3 last
coordinates of F(x). If

‖t‖+ r‖v‖ ≤ d

then in configuration x(tcoll i), B1 and B2 are collision-free.
The proof is straightforward: expressed in reference frame of
B1, the motion of B2 between configurations x(tcoll i) and
xi(tcoll i) is a translation of vector t followed by a rotation of
angle ‖v‖. No point of B2 has moved by more than ‖t‖+
r‖v‖. Therefore no collision is possible.

When a collision is detected at tcoll i along path xi+1, we
wish to add constraint

F(x) = 0 (3)

However, as this constraint is non-linear, we linearize it
around xi:

∂F
∂x

(xi)(x−xi) = 0

for any later iteration x j, j ≥ i+1.
We refer to [20] for solving constrained quadratic pro-

grams (QP). This corresponds to computeIterate in
Algorithm 1.

F. Relinearization of constraints

As constraint (3) is not exactly enforced, but linearized, a
new collision may appear at tcoll i on a later iteration between
B1 and B2. To avoid this undesired effect, we check the
values of all the constraints at each iteration. The constraints

that fail to satisfy Property 1 are relinearized around the latest
valid path xk, k > i+1, as follows:

∂F
∂x

(xk)(x−xk) =−F(xk)

This step is performed by solveConstraints in Algo-
rithm 1.

G. Algorithm

In this part we describe the path-optimizer Algorithm 1
according to the previous step definitions. The main difficulty
here is to handle the scalar parameter α determining how
much of the computed step p will be traveled through,
and also to return a collision-free path. Typically, we chose
αinit = 0.2 to process small steps. αinit = 0.5 is more encoun-
tered in the optimization literature, procuring larger steps but
with more risks of collision.

Algorithm 1 Gradient-based path-optimization.
1: procedure OPTIMIZE(x0)
2: α ← αinit ; ε ← 10−3

3: minReached← f alse
4: validConstraints← true
5: while (not(noCollision and minReached)) do
6: p = computeIterate()
7: minReached = (||p||< ε or α = 1)
8: x1← x0 +α p
9: if (α 6= 1) then

10: if (not(solveConstraints(x1))) then
11: α ← α ∗0.5
12: validConstraints← f alse
13: else
14: validConstraints← true
15: if (not(validatePath(x1))) then
16: noCollision← f alse
17: if (α 6= 1) then
18: addCollisionConstraints()
19: α ← 1
20: else
21: if (validConstraints) then
22: α ← αinit

23: else
24: x0← x1
25: noCollision← true
26: α ← 0.5∗ (1+α)

return x0
27: end procedure

Each time a collision-constraint is added, the solution of
the current QP is tested (i.e. α = 1). If this path is collision-
free, the algorithm returns it as the solution (lines 7-25).
Otherwise, smaller steps are iteratively applied and tested
toward the minimum (lines 21-22), and constraints are added
each time a collision is found (line 18).

If the constraint relinearization fails to validate Property 1,
α is halved and the algorithm restarts from the latest valid
path (lines 10-12).

Fig. 5: Path-optimization results on a 2D-ponctual robot, moving
around obstacles. Initial paths are in red, optimized ones in black.
Grey paths represent intermediate iterations, red dots colliding con-
figurations and blue dots the associated collision-free configurations
of the backtracked paths where constraints have been computed.

IV. RESULTS

This part gathers optimization results performed on the
planning software Humanoid Path Planner [21]. The initial
trajectory is obtained with two kind of probabilistic planners:
Visibility-PRM [22] and RRT-connect [23].

A. From 2D basic examples...

Figure 5 shows several iterations of our optimizer on 2D
cases. Since in this special case, transformation constraints
are equivalent to compulsory configurations to pass through,
we can verify that our optimized path is applying all com-
puted constraints. We can also understand which collisions
have led to the constraints.

Besides, these examples give a better understanding of
how the tuning of α has to balance lot of iterations and
relevant collision-constraint addition. For example, if we
alter a lot the initial path with a large gradient step and
compute the corresponding collisions, constraints will be
chosen on a very-not optimal path and will not be pertinent
w.r.t. the obstacles we wanted to avoid.

Figure 5 illustrates a path example that random shortcut
will not manage to optimize in an affordable time, because of
probabilistically failing to sample configurations in the box.
Our gradient-based algorithm succeeds to optimize the path
contained in the box, with the following cost coefficients

λi−1 =
1√

(qi0−qi−10)TW 2(qi0−qi−10)

q0 qwp+1

robot

Fig. 6: Case of a long dashed initial path (above) containing a small
part that can be optimized (below). Random shortcut is unlikely to
optimize the part containing detours in the box, whereas our method
succeeds (in blue).

aiming at keeping the same ratio between path segment
lengths at minimum as at initial path, represented by the
waypoints (qi0)1≤i≤n+1. Without these coefficients, the path
that minimizes the cost corresponds to a straight line with
the waypoints equidistantly allocated, which is not adapted
for the Figure 6 type of problems with a local passage very
constrained by obstacles. Note that this cost is also working
with all other examples presented in this paper.

B. To 3D complex problems

We also experiment our algorithm on more complex
robots, with transformation collision-constraints. Unless an-
other value is given, αinit is set to 0.2.

In the included video, we present four situations where
our algorithm has been tested and compared to random
shortcut [24] (Algorithm 2). The termination condition of
random shortcut allows it to try shortening the path until 5
iterations of non-improvement are reached (corresponding to
maxNbFailures in Algorithm 2).

On the 5-DOF double-arm problem, one arm has to get
around an obstacle while the other is relatively far from
obstacles. As expected, the initial path given by RRT-connect
activates both arms to solve the problem. Contrary to random
shortcut, our optimizer manages to cancel the rotation of the
free-arm while optimizing the first arm motion. Initial path
length 5.17 has been decreased to 4.55 by random shortcut
and to 3.20 by the gradient-based optimizer.

For the following example with a 6-axis manipulator arm
in a cluttered environment, path reduction only manages
to reduce some but not all detours. This behavior can be
explained by a path over-constraining due to the important
proximity of the robot to the obstacles during the whole
path, and because there are not so many DOF to play on
to easily avoid collisions and return a small-cost solution.
We advance this explanation because on the two following
high-DOF examples of the video (and Figure 1), results are
better in terms of path length and quality.

In the example presented Figure 1 and in the video, the
mobile 40-DOF PR2 simply has to cross its arms from the
left arm up position to the right arm up one. Lengths of
the initial path, the random shortcut optimized path and the
gradient-based optimized path are respectively 14.5, 6.34 and

Algorithm 2 Random shortcut as adapted from [8] Sec-
tion 6.4.1. steeringMethod returns the linear interpolation
between two configurations. x|I denotes path x restricted to interval
I. maxNbFailures is a parameter that affects time of computation
and quality of the result.

1: procedure RANDOMSHORTCUT(x)
2: nbFailures ← 0
3: while nbFailures < maxNbFailures do
4: f ailure← true
5: T ← upper bound of x definition interval
6: t1 < t2← random numbers in [0,T]
7: l p0← steeringMethod(x(0),x(t1))
8: l p1← steeringMethod(x(t1),x(t2))
9: l p2← steeringMethod(x(t2),x(T))

10: newPath← empty path defined on [0,0]
11: if l p0 is collision-free then
12: newPath← l p0; f ailure← f alse
13: else
14: newPath← x|[0,t1]
15: if l p1 is collision-free then
16: newPath← concatenate(newPath, l p1)
17: f ailure← f alse
18: else
19: newPath←concatenate(newPath,x|[t1,t2])
20: if l p2 is collision-free then
21: newPath← concatenate(newPath, l p2)
22: f ailure← f alse
23: else
24: newPath←concatenate(newPath,x|[t2,T])
25: x← newPath
26: if f ailure then nbFailures← nbFailures+1

return x
27: end procedure

3.62. The RRT-connect planner returns detours and activates
non-useful DOF such as the head, the torso lift and the
translation on the ground. Once again, random shortcut will
hardly optimize the mobile base translation of the robot
and other unnecessary DOF uses, unlike our optimized-
path which mainly results in moving the arms as expected
(Figure 1 right).

We obtain similar results on the PR2 performing a manip-
ulation task in a kitchen environment (see the video). The
robot has to move his hands from the top to the bottom of
a table. Our optimizer manages to reduce the initial length
15.8 from the visibility-PRM planner and improves the path
quality just adding transformation constraints between the
table and the robot’s arms and grippers. Thus, the robot just
slightly moves backward and uses its arm DOF to avoid the
table, instead of processing a large motion to get away from
the table. With our method, the path length is downed to
4.59, against 8.24 for random shortcut.

Optimization computation time and path length averages
are presented for 30 runs of the PR2-crossing-arms in the
Table II. In the same way, time computation averages for

Computation Path Traveled distance
time length by the base

Initial 13.7 10.9
Gradient-based 781ms 3.69 10−6

Random shortcut 823ms 3.82 2.94

TABLE II: Results for 30 runs of the PR2-crossing-arms example.
For each run, a solution path is planned by Visibility-PRM as initial
guess for each optimizer. αinit is set to 0.2. The right column
represents the distance that is traveled by the robot mobile base
during the path.

the PR2-in-kitchen example have been calculated: 59.5s
(gradient-based optimizer) and 76.2s (random shortcut).
Thus our method presents similar computation times and
path lengths for mobile manipulation tasks. However, the
extinction of the mobile base motion in the gradient-based
optimized path is advanced in the right column of Table II.
Thus the problem addressed Figure 2 is solved considering
this DOF.

V. CONCLUSIONS
We managed to settle a path optimization for decoupled-

DOF robots such as mobile manipulators. Our algorithm
uses standard numerical tools as collision checking and QP
resolution, and correlates them in a simple but effective
way, playing on the scalar iteration parameter. Therefore, our
method only require few distances computation, so geometry
pre-processing or offline optimization are not necessary to
remain time competitive. We demonstrate that the optimizer
is time-competitive comparing to random shortcut and pro-
poses better quality paths for high-DOF robots, removing
unnecessary DOF motions. Our optimizer also manages to
reduce a local detour in a long path while random shortcut
methods will mostly fail.

The experimental results show that transformation con-
straints may in some cases be overconstraining. We also
tried distance constraints without much success due to the
non-continuous differentiability of distance. In a future work,
we will study other one-dimensional constraints in order to
achieve better results.

REFERENCES

[1] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Pérez, and M. T.
Masson, Robot Motion: Planning and Control, 1983.

[2] J. Schwartz and M. Sharir, “On the piano movers problem ii: General
techniques for computing topological properties of real algebraic
manifolds,” Advances of Applied Mathematics, vol. 4, no. 3, pp. 298–
351, 1983.

[3] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE Transactions on Computers, vol. 32, no. 2, pp. 108–120, 1983.

[4] C. Park, J. Pan, and D. Manocha, “ITOMP: incremental trajectory
optimization for real-time replanning in dynamic environments,” in
Proceedings of the Twenty-Second International Conference on Au-
tomated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo,
Brazil, 2012.

[5] M. Garber and M. Lin, “Constraint-based motion planning using
voronoi diagrams.” in Algorithmic Foundations of Robotics V, volume
7 of Springer Tracts in Advanced Robotics, 2004, pp. 541–558.

[6] J. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. Society for Industrial and Applied
Mathematics, 2010.

[7] S. K. Sertac and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[8] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. Overmars, “Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems,” International Journal of Robotics Research, vol. 17,
no. 8, pp. 840–857, 1998.

[9] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
2010, pp. 2493–2498.

[10] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “Chomp: Gradi-
ent optimization techniques for efficient motion planning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[11] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 28, no. 5, 2014.

[12] J.-P. Laumond, N. Mansard, and J. Lasserre, “Optimality in robot
motion: Optimal versus optimized motion,” Communications of the
ACM, vol. 57, no. 9, pp. 82–89, 2014.

[13] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, 2011, pp. 4569–4574.

[14] E. Gilbert, D. Johnson, and S. Keerthi, “A fast procedure for computing
the distance between complex objects in three-dimensional space,”
IEEE Journal of Robotics and Automation, vol. 4, no. 2, pp. 193–203,
1988.

[15] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[16] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” The International Journal of
Robotics Research, vol. 21, no. 12, pp. 1031–1052, 2002.

[17] J. Pan, L. Zhang, and D. Manocha, “Collision-free and smooth trajec-
tory computation in cluttered environments,” International Journal of
Robotics Research, vol. 31, no. 10, 2012.

[18] P. A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms
on matrix manifolds. Princeton University Press, 2008.

[19] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking
of robot paths,” in Algorithmic Foundations of Robotics V, 2004, pp.
25–41.

[20] J. Nocedal and S. Wright, Numerical Optimization, Second Edition.
Springer New York, 2006.

[21] F. Lamiraux and J. Mirabel, “Humanoid path planner,”
http://projects.laas.fr/gepetto/index.php/Software/Hpp.

[22] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility based proba-
bilistic roadmaps for motion planning,” Advanced Robotics Journal,
vol. 14, no. 6, 2000.

[23] J. J. Kuffner and S. M. Lavalle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, IEEE
International Conference on, vol. 2, 2000, pp. 995–1001.

[24] F. Lamiraux, “Random shortcut code in hpp,”
https://github.com/humanoid-path-planner/hpp-core/blob/
df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/random-shortcut.
cc#L62.

https://github.com/humanoid-path-planner/hpp-core/blob/df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/random-shortcut.cc#L62
https://github.com/humanoid-path-planner/hpp-core/blob/df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/random-shortcut.cc#L62
https://github.com/humanoid-path-planner/hpp-core/blob/df6d3ffb89555faa254bb42145ff398ed9d8a0c2/src/random-shortcut.cc#L62

	INTRODUCTION AND PROBLEM STATEMENT
	RELATED WORK
	PATH OPTIMIZATION
	Kinematic chain
	Straight interpolation
	Problem definition
	Cost

	Resolution
	Constraints
	Relinearization of constraints
	Algorithm

	RESULTS
	From 2D basic examples...
	To 3D complex problems

	CONCLUSIONS
	References

