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Distributed Estimation of the Inertial Parameters of an Unknown Load
via Multi-Robot Manipulation

Antonio Franchi, Antonio Petitti, and Alessandro Rizzo

Abstract— In this paper, we propose a distributed strategy
for the estimation of the kinematic and inertial parameters
of an unknown body manipulated by a team of mobile
robots. We assume that each robot can measure its own
velocity, as well as the contact forces exerted during the
body manipulation, but neither the accelerations nor the
positions of the contact points are directly accessible. Through
kinematics and dynamics arguments, the relative positions of
the contact points are estimated in a distributed fashion, and an
observability condition is defined. Then, the inertial parameters
(i.e., mass, relative position of the center of mass and moment of
inertia) are estimated using distributed estimation filters and a
nonlinear observer in cooperation with suitable control actions
that ensure the observability of the parameters. Finally, we
provide numerical simulations that corroborate our theoretical
analysis.

I. INTRODUCTION

Last decades have seen raising attention to cooperative
manipulation by teams of robotic agents, due to its relevant
applications in several fields, such as search and rescue and
disaster recovering, cooperative transportation, and service
robotics. In [1], for example, a path planner for cooperative
manipulation is proposed. It consists of two components;
a global path planner, responsible of obstacle avoidance,
and a local manipulation planner, responsible of the object’s
manipulation via the control of its position. In [2], the control
of robotic teams with the aim of combining optimal goal
regulation and relaxation of the formation rigidity constraint
is carried out. Cooperative manipulation has also been dealt
with in aerial applications [3], [4], using cables, or other
interaction tools. However, the majority of the works does
not focus on an accurate dynamic modeling of the payload,
which is either modeled as a point mass or as a rigid body
with unknown dynamical parameters. In [5], the problem of
cooperatively manipulating an object on a plane by a team
of non-holonomic wheeled robots is dealt with. The problem
is solved by defining the dynamics of the whole system (i.e.,
the robot team and the object) and through a decomposition
technique into a task and a null space. The dynamic model
of the object is accounted for, but its inertial parameters are
assumed to be known, as well as the positions of the contact
points between the robots and the object.

An accurate and on-line estimation of the inertial
parameters of the payload is very useful for at least two

A. Franchi is with LAAS-CNRS, 7 Avenue du Colonel Roche, 31077
Toulouse CEDEX 4, France. antonio.franchi@laas.fr

A. Petitti is with ISSIA-CNR, via Giovanni Amendola, 122/D-I 70126
Bari, Italy, petitti@ba.issia.cnr.it

A. Rizzo is with the MAE Dept, NYU Polytechnic School of Engineering,
Brooklyn NY, 11201, USA, alessandro.rizzo@nyu.edu

A. Petitti and A. Rizzo are also with DEI, Politecnico di Bari, 70126 Bari,
Italy [antonio.petitti, alessandro.rizzo]@poliba.it.

reasons: first, it allows to manipulate unknown objects
with effective techniques once the inertial parameters
are estimated, e.g., by exploiting force control and pose
estimation algorithms [6], [7]. Second, it is very important
when time-varying inertial parameters are present, such as,
e.g., when part of the load on a cart is dropped or an
additional load is added by an external agent. In the case of
time-varying parameters, their on-line estimation will allow
to implement effective adaptive control techniques, as well
as to carry out fault detection (e.g., raise an alarm when part
of the load is dropped during manipulation), or event-based
control (e.g., change the controller’s behavior when the
load changes one or more of its characteristics). Moreover,
since cooperative tasks exhibit great advantages when carried
out via decentralized strategies [8], decentralized inertial
parameter’s estimation algorithms are highly desirable, to
maintain the features of robustness, flexibility, and fault
tolerance of the cooperative manipulation system as a whole.

Some effort has been made in the estimation of inertial
parameters. In [6], an algorithm to estimate the inertial
parameters of an unknown planar object is proposed.
The object is pushed by robot fingers and the estimate
is carried out on the basis of the fingertip velocities
and accelerations, and of the exchanged forces. In [7],
an approach to estimate the inertial parameters of rigid
loads attached to a manipulator, is proposed. The proposed
algorithm estimates the inertial parameters on-line by a total
least-squares approach. The cited papers rely on acceleration
measurements and are based on centralized approaches.

In this paper, we consider a team of Autonomous Ground
Vehicles (AGVs) that manipulate an unknown rigid body
by applying forces to contact points whose relative (and,
therefore, also absolute) position is not known a priori. We
propose a distributed algorithm for the estimation of the
relative positions of the contact points and of the inertial
parameters of the rigid body based on velocity measurements
only (neither absolute/relative positions nor the accelerations
of the contact points are needed). This is the first step in the
design and implementation of advanced cooperative control
strategies, based on the knowledge of the position of the
contact points and on the estimate of the dynamical model
of the payload.

The paper is structured as follows. In Sec. II we formally
define the model and the estimation problem. A general
overview of the estimation algorithm is given in Sec. III.
In Sec. IV, we deal with the distributed estimation of the
relative positions of the contact points, which is instrumental
to estimate the payload’s inertial parameters. In Sec. V, we
propose a distributed algorithm for the estimation of the
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Fig. 1: Top view of the problem setting. A manipulation task has
to be performed by a team of n = 4 AGVs endowed with a planar
manipulator each. The unknown inertial parameters of the load need
to be estimated using local action, sensing and communication.

inertial parameters whose main part consists of the design
of a nonlinear observer to track the relative position of the
center of mass. Finally, in Sec. VI we validate the proposed
approach by means of numerical simulations, and draw our
conclusions in Sec. VII.

II. PROBLEM STATEMENT

We consider a load modeled as a planar rigid body B,
whose center of mass is denoted with C. The load is
manipulated by a group of n AGVs, where each AGV
can exert a force on a contact point Ci, i = 1, . . . , n, of
B. We assume that the number n is constant and known
to all robots1. Consider a planar reference inertial frame
W = {OW−xW yW} and denote with pC ∈ R2 the position
of C in W , with pCi

the position of Ci in W and with fi
the force applied by the i-th robot at Ci and expressed inW .
Figure 1 schematizes the problem setting. We also assume
that friction on the load is negligible with respect to the total
force exerted by the robots2.

The dynamical model of the load B is therefore that of a
rigid body subjected to the n forces f1, . . . , fn

p̈C =
1

m

n∑
i=1

fi (1)

ω̇ =
1

J

n∑
i=1

(pCi
− pC)⊥

T
fi, (2)

where m > 0 is the mass of B, ω ∈ R is its angular velocity,
J > 0 is its moment of inertia, and the operator (·)⊥ is the
linear operator that, given a vector v ∈ R2, v = (vx vy)T ,
provides the perpendicular vector to v

v⊥ = Qv =

(
0 −1
1 0

)
︸ ︷︷ ︸

=Q

(
vx

vy

)
=

(
−vy
vx

)
. (3)

From an actuation and sensing point of view, we assume
that the i-th robot can control the exerted force fi and can
measure the velocity of its contact point ṗCi. Note that we

1This assumption, that is the only source of centralized information
needed, can be easily relaxed by implementing one of the several algorithms
for the distributed estimation of a graph size before the algorithm starts [9].

2This can be ensured, e.g., by endowing the load with wheels.

do not assume that the robot can measure the position of the
contact point, nor its acceleration.3 Furthermore, we do not
assume kinematically controlled robots, i.e., robots cannot
set the speed of the contact point at will.

From a communication point of view, we assume that
the robotic agents can transmit data through a network
modeled by an undirected graph G = (I, E), where I =
{1, . . . , n}, E ⊂ I × I is a set of unordered pairs of nodes
representing the one-hop communication channels between
agents. The set Ni = {j ∈ I : (i, j) ∈ E} indicates the
communication neighborhood of agent i. We also assume
that the communication graph is connected, and that the link
set E does not change in time.

Problem II.1 (Inertial Parameters’ Distributed Estimation).
Define a distributed algorithm such that each robot i is able
to compute an estimate of

1) the constant parameters m and J , and
2) the time-varying vector pCi − pC ∈ R2,

only controlling the local force fi (to be computed by the
algorithm), and only resorting to local measurement ṗCi

and to local information coming from the communication
neighbors.

In this work, we are interested in the fundamental
problem of letting a multi-robot system estimate the inertial
parameters in a distributed way. Thus, we consider a
deterministic setting, i.e., the noise affecting measurements,
control inputs, and communication inputs is negligible. The
noisy case will be the subject of a future work.

III. ESTIMATION ALGORITHM

Define pG = 1
n

∑n
i=1 pCi as the geometric center of all

the contact points and define also zij = pCi
− pCj

, zi =
pCi−pG, and zC = pG−pC . Note that pCi−pC = zi+zC .

We first recall a simple fact.

Fact III.1. Denote with z1 and z2 the relative positions
between two pairs of points of B expressed in W .
Then, consider two time instants t′ and t′′. The following
relation, based on the rigid-body constraint, provides a
straightforward way to compute z2(t′′) from z1(t′), z2(t′),
and z1(t′′):

z2(t′′) = Γ(z1(t′), z2(t′), z1(t′′)) = (4)

=

(
z2(t′)T z1(t′)

)
z1(t′′) +

(
z2(t′)T z⊥1 (t′)

)
z⊥1 (t′′)

‖z1(t′)‖
.

The proposed distributed estimation algorithm follows a
multi-step approach whose main parts are described in the
next sections. Before going into the details, in order to
facilitate the comprehension of the whole algorithm, we
sketch all the steps in a chronological order (refer to Fig. 2
for a block diagram representation of the interconnections
among the several steps).

The algorithm starts at time t = t0 and passes through
four key time instants t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 that define

3Measuring the absolute position would require an additional sensing
system, e.g., a GPS. Measuring the acceleration, on the other hand, is
typically noisy. Measuring the instantaneous velocity can be instead reliably
done on board by odometry, optical flow, etc...
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Fig. 2: A block diagram showing the sequence of estimators applied in order to solve Problem II.1.

when some crucial quantities become available due to the
convergence time of some of the estimation steps. After t4,
the algorithm has identified the two constant parameters m
and J and can observe the time-varying parameter pCi

−pC .
Step 1: zij(t) becomes available after t1. Robot i

employs the velocity measurement ṗCi and the velocities
of its neighbors ṗCj

, with j ∈ Ni, in order to obtain, in
a distributed fashion, an estimate of the relative positions
zij(t), j ∈ Ni and sign(ω). This estimation process needs a
short convergence time to retrieve the inter-distance between
contact points. Therefore, zij(t) will be available for any
time t ≥ t1, where t1 ≥ t0. This step is detailed in Sec. IV;

Step 2: zi(t) becomes available after t1. For any time
t ≥ t1, robot i uses the relative position measurements zij(t)
(available thanks to Step 1) to compute, using the algorithm
in [10], the vector zi(t);

Step 3: ω(t) becomes available after t1. For any time
t ≥ t1, robot i uses the following formula to compute,
locally, the angular velocity of B:

ω(t) = sign(ω)

∣∣∣∣∣ żTijz⊥ij(t)‖zij‖2

∣∣∣∣∣ , (5)

where j can be any possible neighbor in Ni;
Step 4: J becomes available after t2. For all t ∈

(t1, t2), each robot i applies a force fi(t) = z⊥i (t) (available
thanks to Step 2) and observes ω(t) (available thanks to (5)).
This allows robot i to reach, at t = t2, an estimate of the
constant parameter J . Therefore, for any t ≥ t2, J is known
by all the robots. This step is detailed in Sec. V-A;

Step 5: pCi
− pC becomes available after t3. For

any t ∈ (t2, t3), each robot i applies the same constant
nonzero force fi(t) = f and measures ω(t). Using the
nonlinear observer detailed in Sec. V-B together with the
estimated value of J (known thanks to Step 4), each robot
is able to obtain an estimate that eventually converges to the
time-varying vector zC . For any t ≥ t3, each robot is then
able to compute the sought vector pCi − pC using

pCi
(t)− pC(t) = zi(t) + zC(t) = (6)

= zi(t) + Γ(zC(t3), zij(t3), zij(t)),

where Γ is defined in (4) and j is any neighbor in Ni;
Step 6: ṗC(t) becomes available after t3. For any t ≥

t3, the velocity of the center of mass is computed locally by
any robot i using

ṗC(t) = ṗCi(t)− ω(t)(pCi(t)− pC(t))⊥, (7)

where all the quantities in the right hand side of (7) are
known at any t ≥ t3 thanks to all the previous steps;

Step 7: m becomes available after t4. For all t ∈

(t3, t4), each robot i applies the same constant nonzero force
fi(t) = fm and measures ṗC(t) thanks to (7). This allows
robot i to reach, at t = t4, an estimate of the constant
parameter m, as detailed in Sec. V-C. Thus, at any t ≥ t4
the mass m is known by all the robots.

For t ≥ t4, the constant parameters m and J are known by
every robot (Steps 7 and 4). Furthermore, each robot i can
instantaneously compute pCi(t)−pC(t) (Step 5). Therefore,
Problem II.1 is solved.

In the following sections we detail the algorithms used in
Steps 1, 4, 5, and 7.

IV. DISTRIBUTED ESTIMATION OF RELATIVE POSITIONS
OF THE CONTACT POINTS

In this section, we propose an algorithm to compute the
relative positions zij , for each j ∈ Ni, only resorting to local
sensing and 1-hop communication.

The fact that Ci and Cj belong to the same rigid body
constrains their inter-distance to be constant over time, i.e.,

zTijzij = const. (8)

Taking the time derivative of both sides of (8), we obtain a
constraint on the difference between the velocities of Ci and
Cj which, in fact, has to be perpendicular to zij , i.e.,

żTijzij = 0. (9)

Noting that ‖żij‖ > 0 and ‖zij‖ > 0, constraint (9) can be
rewritten as

zij
‖zij‖

= sign(ω)
ż⊥ij
‖ż⊥ij‖

i.e., zij = sign(ω)‖zij‖ yij ,

(10)

where we compactly recast
ż⊥
ij

‖ż⊥
ij‖

as yij to emphasize that
quantity yij is available to robot i resorting to sensing and
one-hop communication. Thus, the constant distance between
the two points ‖zij‖ represents the only unknown toward the
computation of the time-varying vector zij .

Differentiating both sides of (10), we obtain

żij = sign(ω)‖zij‖ ẏij , (11)

which cannot be directly used to compute ‖zij‖, since only
żij and yij are measured, but ẏij is not. Therefore, we apply
the technique described in the Appendix using żfij and yf

ij

instead of żij and yij , respectively. We observe that the sign
of (11) depends on sign(ω). Therefore, in order to estimate
a positive quantity, we use the squared norm of the filtered
quantities. We can then summarize the previous derivations
in the following result:
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Proposition IV.1 (Relative position estimation from velocity
measures). For each (i, j) ∈ E , if ‖zij‖ > 0 and ‖żij‖ > 0,
then zij can be computed using only the velocities of Ci and
Cj by means of the following estimator

zij =

√√√√√ ‖żfij‖2

k2f

∥∥∥yij − yf
ij

∥∥∥2yij (12)

where (·)f is a first-order low-pass filter and kf is its gain.

Finally, we obtain sign(ω) as sign
[(

żfij

)T
(yij − yf

ij)

]
.

V. ESTIMATION OF THE INERTIAL PARAMETERS

In this section we describe in detail the estimation
algorithms for the constant quantities J and m, and a
nonlinear observer for zC , which can be used in (6) in order
to have an estimate of the sought parameter pCi

− pC .
Since pCi

− pC = zi + zC , we rewrite (2) as

ω̇ =
1

J

n∑
i=1

z⊥i
T
fi +

1

J
z⊥C

T
n∑

i=1

fi. (13)

Each vector zi can be computed in a distributed way by
the i-th robot resorting to the distributed algorithm presented
in [10], which can be applied since the communication graph
is connected by assumption.

A. Estimation of the moment of inertia J
It is easy to verify that

∑n
i=1 z

⊥
i = 0. Thus, if

fi = z⊥i , ∀i = 1 . . . n,∀t ≥ 0 (14)

then (13) simplifies in

ω̇ =
1

J

n∑
i=1

z⊥i
T
z⊥i =

1

J

n∑
i=1

‖zi‖2. (15)

Thus, J can be computed by applying the following
distributed algorithm:

1) Distributively compute the value w =
∑n

i=1 ‖zi‖2 using
an average consensus algorithm [11], i.e., each robot
sets a local state variable ξi|t=t0 = ‖zi‖2 and applies
the local update rule

ξ̇i =
∑
j∈Ni

(ξj − ξi), (16)

which, since the communication graph is connected
by assumption, leads ξi to be asymptotically equal to
w/n. Thus, after consensus is reached, each robot can
compute w = nξi;

2) Each robot applies a constant force fi = z⊥i ;
3) Locally estimate J by using the filtering approach

described in the Appendix, substituting u with w, y
with ω, which is known locally thanks to (5), and θ
with 1

J .

Remark V.1. No time synchronization is needed for the
starting time of applications of forces in (14). The only
requirement is that, eventually, all robots are applying the
required forces.

Remark V.2. When applying the constant forces detailed in
the previous algorithm, two cases can occur. The first case
is that the body moves of pure rotation, therefore, the center
of mass does not moves. This is, in any case, adequate to
our purposes. The second case is that the body moves with
constant angular acceleration. In this case, the forces can
be safely applied only for a limited time, after which the
movement of the body must be stopped, e.g., with a pure
damping force based on velocity feedback. However, should
the time be not enough for estimation purposes, the process
can be repeated several times after each stop, to ensure the
acquisition of the necessary measurements.

B. Observer for relative position of the Center-of-Mass zC

Denoting with f ∈ R2 any nonzero constant vector, if

fi = f , ∀i = 1, . . . , n, ∀t ≥ 0, (17)

then (13) becomes

ω̇ =
1

J

(
n∑

i=1

z⊥i
T

)
f +

n

J
z⊥C

T
f =

n

J
z⊥C

T
f , (18)

where we rely, as before, on the fact that
∑n

i=1 z
⊥
i
T

= 0.
Letting f̄ = (n/J)f we have

ω̇ = z⊥C
T
f̄ . (19)

It is clear that, to keep the distributed character of the
algorithm the value of f must be agreed on in a distributed
way. This can be easily achieved by means of standard
consensus algorithms [12], [13]. Without loss of generality,
up to a suitable coordinate change, we assume f̄ = ( 0 f̄y)T .
Considering that the vector zC has constant length and is
rigidly attached to the object, we also have

ż⊥C = −zCω. (20)

We can write (19) and (20) as the following autonomous
nonlinear system 

ẋ1 = −x2x3
ẋ2 = x1x3

ẋ3 = x1f̄y

y = x3,

(21)

where we set zxC = x1, zyC = x2, ω = x3. We observe
that the only available output is y = x3, since the angular
velocity is locally measurable by each robot using (5). Thus,
the problem of estimating zC is tackled as the following
nonlinear observability problem:

Problem V.1. Distributively estimate zC is equivalent to
observe the state of the autonomous nonlinear system (21),
with output y = x3 = ω, where f̄y 6= 0, is a given constant
value.

In order to be able to design a suitable nonlinear observer
we have first to study the observability of system (21).

Proposition V.1. If x3 6= 0 and f̄y 6= 0, then system (21) is
locally observable in the sense of [14].
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Proof. The proof, omitted due to space constraints, follows
the line of arguments in [14] and is based on the computation
of the nonlinear observability matrix.

Thus, zC is observable if and only if the angular velocity
of the object and the constant force applied by each robot
are both nonzero.

Since observability depends on the angular velocity ω =
x3, it is important to analyze the trajectories of system (21).
In particular, trajectories for which the angular velocity
is constantly zero or asymptotically converges to zero
would lead to an unobservable system. On the other hand,
trajectories for which the angular velocity grows unbounded
are practically unfeasible.4

The following result shows that, apart from a zero measure
set, the trajectories of system (21) yield angular velocities
that are suitable regarding both the observability and the
practical feasibility issues.

Proposition V.2. The following facts hold for system (21):
1) the origin is a stable equilibrium point;
2) the angular velocity x3 is bounded, and in particular:

|x3| ≤
√
x23(0) + 4f̄y‖zC‖ (22)

3) ∃T ≥ 0 such that x3(t) = 0 ∀t ≥ T if and only if the
initial angular velocity x3(0) is such that:

x23(0) = 2f̄y(x2(0)± ‖zC‖). (23)

Proof. Omitted due to space constraints. It is based on
Lyapunov arguments.

Proposition V.2 guarantees that the angular velocity x3
does not vanish, and therefore the system remains observable
for all time, except for at most four initial condition points,
which constitute a zero measure set that has probability
zero to happen in real-world robotics applications. Moreover,
the Proposition shows that the angular velocity x3 and its
derivatives remain bounded and gives an upper bound that
can be decreased by acting on the input. This last feature
is very important for the real applicability of the proposed
method.

Theorem V.1. The dynamical system
˙̂x1 = −x̂2x3 + f̄y(x3 − x̂3)

˙̂x2 = x̂1x3
˙̂x3 = x̂1f̄y + ke(x3 − x̂3),

(24)

where ke > 0, is an asymptotic observer for system (21), i.e.,
defining x̂ = (x̂1 x̂2 x̂3)T and x = (x1 x2 x3)T , x̂ → x
asymptotically, except for the zero measure initial condition
set defined in (23).

Proof. Omitted due to space constraints. It is based on
Lyapunov-LaSalle arguments.

Note that observer (24) can be implemented in a
distributed fashion by resorting only to local information.

4One cannot, in this case, stop the motion and restart it, as suggested in
Remark V.2, since we are estimating a time-varying quantity and therefore
we cannot restart the process each time with an improved initial estimate.

Fig. 3: The simulated payload is an eight-sides polygon, obtained
from a rectangular plate of sides 2m×4m, where a smaller
rectangular portion of 0.5m×2.5m sides has been cut off from
the longer side. The n = 4 contact points, C1, C2, C3, C4, the
position of the center of mass, C, and the position of the geometric
centroid, G, are illustrated.

C. Estimation of the mass m

After having estimated J and observed zC , the quantity
piC is known by each robot i using (6), and therefore each
robot can estimate ṗC using (7). Thus, if each robot applies
the same force vector as in Sec. V-B, Eq. (1) of the dynamical
model of the payload becomes

p̈C =
n

m
f , (25)

i.e., a linear system with measured output ṗC . Thus, an
approach similar to the one used to estimate J , relying on the
technique recalled in the Appendix, can be applied again to
estimate m. We omit here the details for brevity. We remark
that this solution is again distributed, since each robot needs
only to receive velocity vectors from its neighbors.

VI. NUMERICAL SIMULATIONS

A network of n = 4 robots manipulates a C-shaped
unknown planar object B, see Fig. 3. The object has a
uniformly distributed mass m = 5 kg, and its inertia moment
is J = 12.3795 kg m2. The robot’s communication network
is a line topology, i.e., E = {(1, 2), (2, 3), (3, 4)}.

First, each robot executes Step 1 to estimate the relative
positions of its neighbors by setting a random force fi. The
results of such estimates are illustrated in Figs. 4(a)–4(f).
Then, once Steps 2–3 are performed, Step 4 is executed,
in which each robot i sets its input force as fi = z⊥i in
order to estimate the inertia moment J . The initial guess
of J is set to 1 kg m2. The evolution of the estimate Ĵ is
illustrated in Fig. 5(a). In Step 5, the input force is set as
fi = f = (0 fy)T , for all i ∈ I, in order to estimate the vector
zC . The convergence of the observer to zC is illustrated in
Fig. 6(a), where the value fx = J/n is used by each agent
so that f̄y = 1. Figures 6(b) and 6(c) show the trend of
the error e and of the Lyapunov function V (e) used in the
proof of the observer, respectively. Both converge quickly to
zero, as predicted by our theory. At this point, each robot
is able to measure the velocity of the center of mass, ṗC ,
in order to estimate the mass m, whose initial guess is set
at m̂ = 1 kg. Convergence of the estimated parameter is
illustrated in Fig. 5(b).

VII. CONCLUSION

In this paper, we have proposed a distributed strategy
for the estimation of the inertial parameters of an unknown
body manipulated by a team of networked mobile robots.
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Fig. 4: Estimated coordinates of the displacements between the
contact points (continuous lines) vs. ones (dashed lines) for (a)
pC1 − pC2 (b) pC2 − pC1 (c) pC2 − pC3 (d) pC3 − pC2 (e)
pC3 − pC4 (f) pC4 − pC3 .

The estimation is performed through a series of steps, that
eventually yields a complete estimation. All the assumptions
made are realistic. In particular, we do not assume that the
robots’ velocity can be controlled, yet applied forces have to
be measured and controlled. Moreover, only the velocity of
contact points should be measured, whereas their positions
and accelerations are not needed. The proposed strategy
involves low computational burden, simulation results are
very satisfactory and confirm the effectiveness of our
approach.

APPENDIX

We briefly recall a well known parameter estimation
procedure based on filtering linear dynamics [15], which
is used in our algorithm during the estimation of constant
parameters such as the inter-distance between contact points,
the moment of inertia J and the mass m. Notably, given
the linear system ẏ = θu, the problem is to estimate
the unknown constant parameter θ ∈ R on the basis of
measurements of the quantities u ∈ Rl and y ∈ Rl only,
where l ≥ 1. To this aim, a low-pass filtered versions of the
measured signals u and y, namely uf and yf , is computed
as

u̇f = kf (u− uf ), ẏf = kf (y − yf ),

with kf > 0. Due to the linearity, ẏf = θuf holds, i.e.,

kf (y − yf ) = θuf , (26)

which relates known quantities, except for θ. We remark
that (26) holds after a transient phase due to the filter initial
conditions.
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Fig. 5: Estimation of the inertia moment J (a) and of the mass m
(b) of the unknown payload B made by the 4 robotic agents.
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Fig. 6: Observation of the center-of-mass position: (a) Cartesian
coordinates of the displacement zC = pG−pC and of the angular
velocity ω (dashed lines) versus their real values (continuos lines),
(b) estimation errors, and (c) plot of the Lyapunov function V (e).
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