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Multi-Target Visual Tracking With Aerial Robots

Pratap Tokekar, Volkan Isler and Antonio Franchi

Abstract— We study the problem of tracking mobile targets
using a team of aerial robots. Each robot carries a camera
to detect targets moving on the ground. The overall goal is to
plan for the trajectories of the robots in order to track the most
number of targets, and accurately estimate the target locations
using the images. The two objectives can conflict since a robot
may fly to a higher altitude and potentially cover a larger
number of targets at the expense of accuracy.

We start by showing that k ≥ 3 robots may not be able
to track all n targets while maintaining a constant factor
approximation of the optimal quality of tracking at all times.
Next, we study the problem of choosing robot trajectories to
maximize either the number of targets tracked or the quality of
tracking. We formulate this problem as the weighted version of
a combinatorial optimization problem known as the Maximum
Group Coverage (MGC) problem. A greedy algorithm yields a
1/2 approximation for the weighted MGC problem. Finally,
we evaluate the algorithm and the sensing model through
simulations and preliminary experiments.

I. INTRODUCTION

We study the problem of tracking multiple moving targets

using aerial robots. We consider the scenario where cameras

that face downwards are mounted on the robots to track

targets moving on the ground plane. A robot can potentially

track more targets by flying to a higher altitude, thus in-

creasing its camera footprint. However, this may reduce the

quality of the view due to the increased distance between

the cameras and the targets. There is a trade-off between

the number of targets tracked and the corresponding quality

of tracking. We investigate this trade-off and present an

approximation algorithm for multi-target tracking.

We start by showing that it may not always be possible

to track all targets while always maintaining the optimal

quality of tracking (or any factor of the optimal quality), even

if the targets’ motion is fully known. Hence, we focus on

the following two variants: maximize the number of targets

tracked subject to a desired tracking quality per target, and

maximize the sum of quality of tracking for all targets.

The two problems can be formulated as the unweighted

and weighted versions of the Maximum Group Coverage

Problem (MGC). A simple greedy approach provides a 1/2

approximation to unweighted MGC [1]. We show that the

approximation guarantee also holds for the weighted case

which allows a practical solution to the trajectory planning
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problem with provable performance guarantees. We evaluate

the algorithm in simulations and preliminary experiments

with an indoor platform using four aerial robots.

The rest of the paper is organized as follows. We begin

with the related work in Section II. The problem setup and a

discussion of the sensing quality are presented in Section III.

The infeasibility of tracking all targets with a constant factor

of the optimal quality is proven in Section IV. The tracking

algorithm is presented in Section V, and evaluated through

simulations and preliminary experiments in Sections VI

and VII respectively. Section VIII concludes the paper.

II. RELATED WORK

Target tracking is an important problem for robotics, and

has been widely studied under different settings. Spletzer

and Taylor [2] considered the problem of tracking multiple

mobile targets with multiple robots. They presented a general

solution based on particle filtering in order to choose robot

locations for the next time step that maximizes the quality

of tracking. Frew [3] studied the problem of designing a

robot trajectory, and not just the next robot location, in order

to maximize the quality of tracking a single moving target.

LaValle et al. [4] studied the problem of maintaining the

visibility of a single target from a robot for the maximum

time. Gans et al. [5] presented a controller that can keep up

to three targets in one robot’s field-of-view.

When the motion of the targets is fully known, the tracking

problem can be formulated as a kinetic facility location

problem. The goal of the stationary version is to place k
facilities (robots) given the location of n sites (targets), so

as to minimize the maximum distance between a facility

and a site. For the kinetic version, Bespamyatnikh et al. [6]

and Durocher [7] presented approximation algorithms to

control respectively one and two mobile facilities, when the

trajectories for the sites are given. Recently, de Berg et

al. [8] presented improved approximation algorithms with

two mobile facilities when only an upper bound on the

velocities of the sites is available. However, the general

problem of kinetic facility location with k facilities is open.

In the extreme case where no prior information of the

targets is available, the multi-robot tracking problem can be

formulated as a coverage problem [9]. Schwager et al. [10]

presented strategies to control the position and orientation

of overhead cameras mounted on aerial robots in order to

achieve equal visual coverage of the ground plane.

Unlike previous works, we study the trade-off between

quality of tracking, and the number of targets tracked. We

present an algorithm that chooses trajectories for each robot,

instead of choosing just the next best location. This algorithm
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Fig. 1. (a) Backprojection from a pixel yields a pyramid. (b) Uncertainty in
target’s estimate due to uncertain yaw angle of the robot. (c) Map showing
the area of projection for the true target at [x, y, 0] (best viewed in color).
The camera pose is estimated to have position [0, 0, 5]m and roll, pitch and
yaw angles as 0 radians. Maximum image noise is ±5 pixels.

can be applied to the following two versions of the problem:

tracking maximum number of targets, and maximizing the

quality of tracking. We begin by formulating the problem

and describing the sensing model.

III. PRELIMINARIES AND PROBLEM FORMULATION

Let k denote the number of robots, and n denote the total

number of targets in the environment. The position of any

robot or target is specified by their 3D coordinates x, y, z.

The position of the ith robot at time τ is denoted by ri(τ).
Let zmin be the minimum flying altitude. All robots have a

camera that faces downwards. Let φ represent the field-of-

view angle for the cameras. We assume that the robots can

communicate amongst each other at all times.

Let ti(τ) denote the position of the ith target. ti(τ) is

given by the position of a reference point that the robots

can use to uniquely identify any target. For example, the

reference point can be the centroid of a colored patch or a

unique feature point on the object. All targets always move

on the ground plane, i.e., z = 0 for all ti.
The reference point of any target ti in the field-of-view of

a robot projects to some pixel in the image. A pixel can be

backprojected to a ray in the world frame. In general, with no

other information, it is not possible to solve for the target’s

location along this ray with a single camera measurement.

However, since we assume that all targets move on the

ground plane, we can solve for the coordinates of ti.
Ideally, we can exactly estimate ti given an image mea-

surement, the camera pose, and the projection matrix. In

practice, however, the following factors lead to an uncertain

estimate of ti:
(1) The backprojection of camera pixels, which have quan-

tized, integer coordinates, is not longer single ray but a

pyramid (Figure 1(a)).

(2) Pixel measurements may be corrupted by noise. If the

maximum noise is bounded by ∆p pixels, we backproject

the set of pixels ±∆p around the measured pixel. The true

target location is contained within the larger backprojection.

(3) The pose of the camera (or the robot) may not be

accurately known. Typically, using exteroceptive sensors

such as GPS and compass, we can bound the maximum

uncertainty in estimating the robot pose. When the robot pose

is known up to a bounded uncertain set, we can compute the

backprojection for each pose within the set (Figure 1(b)).

In general, the quality of tracking under the three sources

of errors, is a function of the relative distance and angle

between the robot and the target, as seen in Figure 1(c). For

a given true location of the target and an estimate of the robot

pose, Figure 1(c) plots the maximum area of backprojection

over all possible noisy measurements of the target, and all

possible true robot poses.

While tracking, robots only have an estimate of the true

target position. The uncertain estimate can be represented as

a set of possible target locations on the ground plane. Given

a motion model, the robots can propagate the set to obtain

predicted target position, e.g., using particle filtering [11].

The maximum area of backprojection can be computed for

each predicted target position as shown in Figure 1(c).

The quality of tracking for a given target and robot pair can

be defined as some measure of the areas of backprojection

found for a predicted target position. Let qi(rj , τ) denote

the measure for target ti and robot rj at time τ . The quality

of tracking ti at τ , is given by the best quality of tracking

amongst all robots tracking ti, i.e., qi(τ) = maxj qi(rj , τ).
Finally, the total quality of tracking at τ is given by the sum

of quality over all targets Q(τ) =
∑

∀i qi(τ) over all targets.

Alternatively, we may also consider the bottleneck quality

over all targets Q(τ) = mini qi(τ).

IV. INFEASIBILITY OF TRACKING ALL TARGETS

In this section, we show the infeasibility of tracking all

targets while maintaining any constant factor approximation

of the optimal quality of tracking. We prove this by construct-

ing an instance where the two goals, track all targets and

maximize quality of tracking, conflict each other. We create

a simple instance on a line where the quality of tracking

is inversely proportional to the distance between the robot

and the target: qi(rj , τ) = 1/d(ti(τ), rj(τ)) if ti is in the

field-of-view of rj , and qi(rj , τ) = 0 otherwise. The overall

quality of tracking will be given by the bottleneck quality

Q(τ) = mini qi(τ).
We use the instantaneous optimal quality of tracking,

Q∗(τ), as the baseline for comparison. Q∗(τ) is the quality

of tracking at τ , if one were to optimally place all the

cameras at any location for any τ , regardless of their loca-

tions before τ . The placement of k cameras achieving Q∗(τ)
may be significantly different from the placement achieving

Q∗(τ − ǫ). There may or may not exist k continuous

robot trajectories achieving Q∗(τ). Nevertheless, Q∗(τ) is

an upper bound on the quality of tracking. This raises the

question of whether we can at least maintain a constant-

factor approximation of Q∗(τ) while tracking all targets. The

theorem given next shows this is not possible, even when the

motion of the targets is fully known.

Theorem 1 Let Q∗(τ) be the instantaneous optimal quality

of tracking at time τ . Let the maximum speed of all targets

be v. For any 0 < α ≤ 1 and β > 0, no algorithm can track

all n > k targets with at least αQ∗(τ) quality for all τ with

k ≥ 3 robots having a maximum speed of βv.

Preprint version, final version at http://ieeexplore.ieee.org/ 2 2014 IEEE IROS



Proof: Consider Figure 2. We have k = 3 robots and

n = 4 targets on a line. The distance between t3 and t4
is 0 at time 0. Targets t1, t2 and t3 remain stationary at all

times, and t4 moves with v = 1 to the right on the line.

zmin = 1 and φ = π/4 denote the minimum flying altitude

and field-of-view angles (Section III).

Fig. 2. At τ = 0, t3 and t4 are covered by the same robot to achieve
Q∗(0), where as for τ > d12 , t3 and t4 are covered by separate robots.

If we have 4 targets and 3 robots, then there must exist

a robot covering at least two targets at any given time. At

τ = 0, we can verify that the optimal algorithm uses separate

robots to cover t1 and t2, and one robot to cover t3 and

t4 (Figure 2). That is, Q∗(0) = 1. Similarly, for any time

τ > d12, optimal uses separate robots to cover t3 and t4,

and same the robot to cover t1 and t2 making Q∗(τ) =
√
2

d12

.

Thus, in any optimal algorithm, of the two robots cov-

ering t1 and t2, one will switch to cover either t3 or t4,

after τ = d12. An approximation algorithm, on the other

hand, does not necessarily have to make the same switch.

Nevertheless, by setting d12 appropriately, we will show that

any approximation algorithm will be required to make the

same switch at some time. By making d23 sufficiently large,

we will show that such a switch is infeasible with bounded

velocity robots. The rest of the proof shows the existence of

appropriate d12 and d23 values. This construction is similar to

the one used by Durocher [7] to prove the inapproximability

of the kinetic k–center problem. For the case of aerial robots,

however we show how to additionally take into account non-

zero zmin and φ values.

Let ALG be any algorithm that maintains a quality Q(τ) ≥
αQ∗(τ). If we set d12 >

√
2

α
, then ALG cannot use the same

robot to cover t1 and t2 at time τ = 0. Else, Q(0) < α =
αQ∗(0) which violates the approximation guarantee. Hence,

ALG uses separate robots to cover t1 and t2 at time 0.

Similarly, we can show that for any time τ > d12

α
, ALG

must use separate robots to cover t3 and t4. Else Q(τ) <√
2

τ
< αQ∗(τ) violating the approximation guarantee.

One of the two separate robots, say r, covering t1 and

t2 initially, must cover either t3 and t4 at time τ > d12

α
. In

time τ , r must travel at least d23− 1

α
− d12√

2α
distance. Here,

1

α
and d12√

2α
come from the condition that Q(0) ≥ α and

Q(τ) ≥ α
√
2

d12

.

Consider a time τ = 2d12

α
. At this time, r covers a maxi-

mum distance of βτ = β 2d12

α
. Set d23 > β 2d12

α
+ 1

α
+ d12√

2α
. r

cannot simultaneously cover at least one of t1 or t2 at time 0,

and at least one of t3 or t4 at time τ , which is a contradiction.

Hence, ALG cannot maintain an α approximation of Q∗ for

all times.

The instance created in the proof above uses minimum

flying altitude zmin = 1 and camera field-of-view angle

φ = π/4. We can create corresponding instances for any

other values of these parameters. In light of Theorem 1, we

drop the requirement that all targets must always be tracked.

Instead we focus on the case when the robots are allowed to

track a fraction of all targets.

V. 1/2 APPROXIMATION ALGORITHM

In this section, we present the main algorithm to maximize

the number of targets tracked, or maximize the quality of

tracking. We divide the time into rounds of fixed duration.

We consider the scenario where using measurements from

previous rounds, the robots are able to predict the motion

of the targets for the current round. For each robot, we

create a set of m candidate trajectories that can be followed

for the current round. For example, these trajectories can

be generated using existing grid-based or sampling-based

methods [12]. Our goal is to choose a trajectory for each

of the robots for the current round.

Figure 3 shows a simple instance with two robots, and

three candidate trajectories each robot can follow. The cam-

era footprint along two such trajectories as well as the set

of targets covered by these trajectories are shown. Note that

the trajectories need neither be restricted to any discretized

grid, nor have uniform length or uniform speed.

Let Rj(x) denote the set of targets predicted to be covered

by xth trajectory followed by jth robot. We create a set

system (X,R) where X is the set of all targets and R is

a collection of all Rj(x) sets. We group sets in R into k
collections, one per robot. Each group contains m sets each.

That is,

R = { R1(1), . . . , R1(m)
︸ ︷︷ ︸

candidate trajectories for r1

, . . . , Rk(1), . . . , Rk(m)
︸ ︷︷ ︸

candidate trajectories for rk

} (1)

A valid assignment of trajectories can be represented by a

map, σ : [1, . . . , k] → [1, . . . ,m], indicating trajectory σ(j)
(i.e., the set Rj(σ(j))) is chosen for the jth robot. We can

remove a target from the set Rj(x) if it does not satisfy a

given minimum quality of tracking requirement.

A. Maximizing Number of Targets

First consider the case of maximizing the number of

targets tracked by k robots. This problem is a generalization

of the maximum coverage problem [13] stated as: choose k
subsets to maximize the cardinality of the union of all subsets.

In our case, we cannot arbitrarily pick k subsets since they

must belong to distinct groups (i.e., the same robot cannot

be assigned to two trajectories).

The maximum coverage problem, under group constraints,

can be stated as: choose k subsets of R given by a map,

Preprint version, final version at http://ieeexplore.ieee.org/ 3 2014 IEEE IROS



Fig. 3. At the start of each round, we have a set of m candidate trajectories
per robot. The trajectories may be non-uniform and of varying speeds. Using
the predicted motion of the targets, we can determine which targets will be
covered for a given trajectory and the corresponding quality of tracking.

σ : [1, . . . , k]→ [1, . . . ,m] such that the union of all subsets

is maximized. The constraint that the same robot cannot

be assigned to two trajectories is enforced by requiring the

output be a map σ. This problem is known as the Maximum

Group Coverage (MGC) problem. Chekuri and Kumar [1]

proved that the greedy algorithm yields a 1/2 approximation

for MGC. Their algorithm can directly be applied to track

half the number of targets as an optimal algorithm. Our

contribution is to extend the analysis to the weighted case.

B. Maximizing Quality of Tracking

For the case of maximizing the overall quality of tracking,

we formulate a weighted version of MGC. Let qi(Rj(x)) be

the quality of tracking target ti with robot rj following the

xth trajectory. qi(Rj(x)) can represent the expected quality

of tracking as described in Section III. The weight of any

set Rj(x) ∈ R is given by the sum of qualities of all targets

tracked by Rj(x). The objective is to maximize the sum of

quality of tracking for all targets1.

The greedy algorithm for the unweighted MGC can be

modified for the weighted setting (Algorithm 1). In each

iteration, we choose a set Rj(x) greedily that maximizes

the total weight. We add Rj(x) to the solution, and discard

all other sets belonging to the same group, i.e., all other

candidate trajectories for the same robot rj . This proceeds

until we have chosen a trajectory for all robots.

Algorithm 1: Greedy Weighted MGC Algorithm

1 C ← ∅, I ← ∅
2 for p = 1 to k do

3 Find Ri(x) such that Q(Ri(x) ∪ C) is greatest, and

i 6∈ I
4 σ(i)← x
5 C ← C ∪Ri(x)
6 I ← I ∪ {i}
7 end

8 Return σ

Theorem 2 Algorithm 1 gives a (1/2 − ǫ) approximation

for the weighted MGC problem for any ǫ > 0 in polynomial

time.

1The bottleneck version of maximizing the minimum quality of tracking
over all targets cannot be applied since not all targets are tracked.

The analysis by Chekuri and Kumar [1] for the unweighted

case can be modified for this weighted case. We present

our full proof in the accompanying technical report [14],

for completeness.

We now evaluate the greedy algorithm through simulations

and preliminary experiments.

VI. SIMULATIONS

In this section, we describe our implementation of the

algorithm, and evaluate its performance through simulations.

We carried out the simulations using the SwarmSimX sim-

ulation environment [15]. SwarmSimX is a real-time multi-

robot simulator designed for modeling rigid-body dynamics

in 3D environments. Models of the MikroKopter Quadrotor2

were used to simulate the motion of the robots.

For simulating the targets, we generated random trajecto-

ries as follows. Each target randomly chooses a speed and

direction and moves along this direction for a random interval

of time, drawn from a normal distribution. This class of

trajectories is motivated by wildlife monitoring applications,

where foraging animals have been found to follow such

mobility models [16]. The mean and standard deviation of

the normal distribution were set to 10 s and 1 s, respectively

in the simulations.

The target trajectories were restricted to 20× 20m square

on the ground plane. The initial locations of all targets were

chosen uniformly at random near the robot locations. A

moving average filter of window length 5 running at 10Hz

was used to estimate the position and velocity of the observed

targets for the next planning round. A measurement for a

target was obtained only if it was contained within the field-

of-view of some robot.

For each robot, we created the following set of candidate

trajectories: (a) stay in place, and (b) radially symmetric

along 8 horizontal directions with a speed of 0.5m/s. Thus,

each robot could choose from a set of 9 trajectories in a

round. Each round was set to a duration of 2 s. A trial

consisted of 50 rounds.

Figures 4(a) and 4(b) show the effect of the number of

robots and the maximum speed of the targets. As expected,

the number of tracks and quality of tracking increases as

the number of robots increase. Increase in the maximum

speeds of the targets has the effect of spreading them further

apart, which further reduces the number of targets that can

be tracked. For these trials, the height of the robots was

fixed to 3.5m (i.e., the size of the camera footprint was

fixed). Figure 5 shows the total number of targets tracked

in one representative trial as a function of the time. Once

the robots have lost track of a particular target, they do no

receive any position information about that target. Thus, they

cannot predict the future locations for a lost target, unless it

appears again in the field-of-view of some robot.

For the simulations, we did not incorporate the uncer-

tainty due to sensing. In the next section, we validate the

uncertainty model and present results from a preliminary

experiment using 4 aerial robots.

2http://mikrokopter.de
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Fig. 4. (a) Number of targets covered out of 50 targets in the environment.
(b) The average quality of tracking. The weight qi(Rj(x) is computed as
the inverse of the minimum distance between the target and the robot along
Rj(x).

VII. EXPERIMENTS

In order to validate our sensing model and the algorithm,

we performed trials on an indoor setup (Figure 6). The setup

consisted of four quadrotors controlled using the TeleKyb

framework [17]. All robots communicated directly with a

central computer via a wireless XBee link. Each robot was

fitted with a downward facing camera. The cameras streamed

the live images wirelessly directly to the central computer.

An indoor motion capture system was used for position

feedback, while orientation is stabilized onboard.

A. Validating the Sensing Model

We first conducted trials to validate the sensing model

presented in Section III. A robot was programmed to fly

along a given trajectory at heights of 1m and 1.5m. The

motion of the robot was smoothed, so as to ensure that the

roll and pitch angles remained close to zero. Colored balls

were placed on the ground (Figure 6). The pink and the

yellow colored balls were fixed to motion capture markers

to record their ground truth locations. All cameras were

calibrated to obtain they camera parameters.

Figure 7 shows an image obtained using the on-board

camera, along with the estimated and true locations of the

balls. The backprojection area was computed considering ±5
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Fig. 5. The number of targets tracked in one trial. As the targets spread the
total number of targets that can be tracked decreases. Once a target moves
out of the field-of-view, the robots cannot predict their future locations.

Fig. 6. Experimental setup. Each robot is fitted with a downward facing
wireless camera. All robots directly communicate with a central computer.

maximum measurement error in pixels, ±5 cm maximum

error in robot position, ±π/18 radians maximum error in

the yaw angle, and ±π/48 radians maximum error in the

roll and pitch angles. The average area of backprojection

(for 50 images which contained either the yellow or pink

balls) was 0.46m2. The average error between the centroid

of the projected area and the true location was 0.28m, with

a standard deviation of 0.3m.

B. Tracking Experiment

We implemented the greedy algorithm on the four robots.

The controller on-board the robot was set to operate the

robots smoothly in near-hovering mode at an average speed

0.5m/s. Each round lasted for 3 seconds. The pink and

yellow balls were moved manually (Figure 6). For this trial,

(a)
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Fig. 7. Validating the sensing model. (a) On-board camera image. (b) The
true target location (colored circles) in the global frame, and the estimated
locations using the method described in Section III.
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Fig. 8. Start (left figures) and end (right figures) of two rounds. Dashed
trail shows the locations of the robots and targets in the preceding 5 secs.

the locations of the targets were obtained from the motion

capture system. The robots used a moving average filter

to predict the locations of the targets, based on previous

measurements. A radius of
√
2m was found empirically to

correspond to the camera footprint when the robots operated

at a height of 2.5m. The robots had one of the four grid

neighbors in the z = 2.5m plane as candidate trajectories.

Figure 8 shows the locations of the robots and the targets

before and after two key rounds: at times 110 s and 119 s.

The two rounds show events when the robots predicted that

the target would move out of the coverage area in the next

round. Hence, as an outcome of the greedy algorithm, the

robots chose corresponding trajectories in order to continue

to track the targets.

The sensing validation and tracking trials presented here

demonstrate a proof-of-concept implementation of the com-

ponents of our system. Our ongoing efforts are directed to-

wards performing large scale experiments with this system.

VIII. CONCLUSION

In this paper, we studied a visual tracking problem in

which a team of robots equipped with cameras are charged

with tracking the locations of targets moving on the ground.

We discussed the sources of uncertainty that affect the quality

of estimating the locations of ground targets using overhead

images. We showed the infeasibility of tracking all targets

while maintaining the optimal quality of tracking, or any

factor of the optimal quality, at all times. We then formulated

the target tracking problem where the goal is to assign

trajectories for each robot in order to maximize the quality

of tracking. When we are given a set of candidate robot

trajectories, we showed how the problem can be posed as a

combinatorial optimization problem. A simple and easy-to-

implement greedy algorithm applied to this problem yields

a 1/2 approximation. Finally, we presented results from sim-

ulations and preliminary experiments validating the sensing

model and demonstrating the feasibility of implementing the

algorithm. Future work includes investigating the problem

under inter-robot communication constraints, and conducting

larger scale experimental validation.
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