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Abstract Underwater topography like seamounts causes the breaking of large “internal waves”with associated
turbulent mixing strongly affecting the redistribution of sediment. Here ocean turbulence is characterized and
quantified in the lowest 100m of the water column at three nearby sites above the slope of a deep-ocean
seamount. Moored high-resolution temperature sensors show very different turbulence generation mechanisms
over 3 and 5km horizontal separation distances. At the steepest slope, turbulence was 100 times more energetic
than at the shallowest slope where turbulence was still 10 times more energetic than found in the open ocean,
away from topography. The turbulence on this extensive slope is caused by slope steepness and nonlinear wave
evolution, but not by bottom-friction, “critical” internal tide reflection or lee wave generation.

1. Introduction

The maintenance of the stable vertical density stratification in the ocean [Munk and Wunsch, 1998], the
redistribution of sediment from the seafloor and the replenishment of near-surface nutrients, necessary
for plankton growth, have in common that they depend on mechanical diapycnal turbulent mixing. This
common dependence does not imply that turbulent mixing is evenly distributed through the ocean. As
a function of time and space, vertical turbulent diffusivity can reach up to 106 times the molecular
diffusivity [e.g., Gregg, 1989]. Thus, we are investigating areas and processes that contribute most to ocean
mixing. As the prominent mixing process is suggested to be the breaking of “internal waves” [Orlanski
and Bryan, 1969], we particularly study those areas and processes that cause smooth sinusoidal waves
to steepen and overturn (break). New results of one such search are presented here, using detailed
deep-ocean observations.

Internal gravity waves can freely propagate in three dimensions through the ocean interior when they have
a frequency between inertial f (due to the rotation of the Earth) and buoyancy N (due to the vertical density
stratification). Their wave periods consequently vary between several minutes and 1 day and generally
include semidiurnal tides, a dominant internal wave source. Mixing due to internal wave breaking is
suggested [Eriksen, 1982; Thorpe, 1987] to mainly occur in the vicinity of underwater topography, in addition
to turbulent bottom-friction processes [Armi, 1979; Garrett, 1990]. However, the latter processes create a
near-homogeneous bottom boundary in which the mixing efficiency tends to become low. In contrast,
internal wave breaking re-organizes stratification in thin layers [Thorpe, 1988]. The thin layers are transported
to within a few meters of the seafloor [van Haren, 2005]. Both processes contribute to efficient mixing.

Since “critical” bottom slopes, matching the slope of internal wave beams that depends on wave frequency and
f and N, concentrate the reflected wave energy following linear theory, largest wave breaking was expected at
such slopes [Klymak et al., 2008, 2010]. However, although some sedimentological observations [Cacchione and
Drake, 1986; Dickson and McCave, 1986; van Raaphorst et al., 2001] suggest evidence of enhanced wave breaking
at slopes that match the tidal wave slope, no detailed observations have confirmed such preferential breaking.
Instead, strong internal wave breaking has also been observed at noncritical slopes [van Haren, 2005], at the foot
of a continental slope [Bonnin et al., 2006; Nash et al., 2007], and in areas where the main generation process is
“subinertial,” with frequencies σ< f [Thorpe, 1987; Hosegood et al., 2004]. These observations partially confirm
theoretical suggestions [Thorpe, 1988] that nonlinear interaction occurs between incoming and reflecting internal
waves above subcritical (shallow) slopes. We are thus still in search for conditions causing such large internal
waves to break and which dominate sediment redistribution and ocean mixing on a global scale.

In this paper, we present estimates of turbulence intensities with large variations over short horizontal
distances (in oceanographic context) of 3 and 5 km. Turbulence is studied here over ranges between
1 and 104 s in time and between 1 and 100m in the vertical. The estimates are made using high-resolution

VAN HAREN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 2351

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2015GL063329

Key Points:
• Large turbulence variability is
observed over a short slope range

• Different turbulence structures are
demonstrated in detail

• Large internal wave breaking and
small-scale layering are key features

Correspondence to:
H. van Haren,
hans.van.haren@nioz.nl

Citation:
van Haren, H., A. Cimatoribus, and
L. Gostiaux (2015), Where large
deep-ocean waves break, Geophys. Res.
Lett., 42, 2351–2357, doi:10.1002/
2015GL063329.

Received 31 JAN 2015
Accepted 5 MAR 2015
Accepted article online 27 MAR 2015
Published online 3 APR 2015

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2015GL063329
http://dx.doi.org/10.1002/2015GL063329


observations from self-contained
temperature sensors; details of the
data handling are given in the
appendix. These sensors are moored
3 times for several months at different
sites on the northeasternmost slopes
(Figure 1) of underwater seamount
Monte Josephine in the NE Atlantic
Ocean, 450 km southwest of Lisbon,
Portugal. This volcano complex,
probably the epicenter of the 1755
Lisbon earthquake and tsunami, rises
from the 5000m deep ocean floor to
just under 250m from the surface,
with a diameter of roughly 100 km.

2. Observations

Monte Josephine consists of several
subsummits. The subsummit with
mooring sites extends up to 800m
below the surface. The sites’ bottom
slope varies by a factor of 3 and from
supercritical to subcritical for the
dominant semidiurnal tide (Figure 1a).
The sites are well below (1400, 1700,
and 2100m) and more than 10 km
horizontally from the subsummit, to
avoid the measuring of nonlinear,
potentially breaking internal waves
caused by hydraulic jumps associated
with arrested lee waves by the flow
over sharp topography [Klymak et al.,
2010]. As the main local internal tide
generation is near the (sub)summit,
the sites are all below the main tidal
beam [Gonella and Michon, 1988],
which appears to be patchy in spatial

energy distribution [van Haren et al., 2010]. The sites are also deeper than 1500m, below the Mediterranean
outflow in the Atlantic to avoid any influence of salinity-compensated temperature inversions, as salinity is
not measured.

Mooring sites (named “A, B, and C”) configuration, duration, and slope are in Table 1. The local bottom
slope γ was computed from |dz/dx,dz/dy| using original 30 × 60m horizontal resolution Multibeam data
smoothed onto a 250 × 250m grid. At 2530m (“B”), γ= 5.7° and was critical for the internal tide as its beam
slope β = sin�1((σ2� f 2)1/2/(N2� f 2)1/2) = 5.7 ± 1° for σ =M2 the semidiurnal lunar tidal frequency and N
computed from observations at 2500m. At 2210m (“A”), γ is supercritical β ≈ 0.4γ. At 2937m (“C”), γ is
subcritical β ≈ 2.3γ.

From Table 1 we see that 4 days and 100mmean turbulence dissipation rates [<ε>] do not vary by a factor of
more than 4 for any site (in the appendix details are given how turbulence estimates were made). This is an
indication that turbulence is only weakly modulated by time-dependent processes like mesoscale eddies.
A small error in the estimates is obtained (Figure 2, green circles that include the error bars) thanks to the low
noise level and high sampling rate of the temperature sensors. Between the sites, however, the mean values
vary strongly and significantly: [<ε>] =O(10�7), via O(10�8) to O(10�9) Wkg�1 (Table 1), as a function of

Figure 1. Monte Josephine topography. (a) Smoothed 250 × 250 m
grid Multibeam data. Mooring sites A–C are indicated by green circles,
conductivity-temperature-depth (CTD) stations by triangles. Solid black
contours indicate water depth every 500 m, red indicates semidiurnal
lunar tidal supercritical bottom slopes (γ> 5.7°), and grey subcritical
(γ< 5.7°). (b) Backscatter strength (high values = light shading: coarse
grain sizes and/or compacted sediment; low = dark: fine grain sizes
and/or water-rich sediment).
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decreasing slope from semidiurnal tidally supercritical (A), via critical (B), to subcritical (C). Such high significance
cannot be obtained in estimates from CTD profiles along 37°01′N, averaged over the lower 400m (Figure 2,
triangles). In spite of the large error, these turbulence parameter estimates roughly confirm the detailed
mooring observations, see especially site C where a CTDwas taken close to themooring. The observed variation
in mean dissipation rate follows the order from light to dark representing decreasing sediment size and surface
reflectance in Multibeam data (Figure 1b). This indicates sediment size and compacting increase as turbulence
and currents increase, suggesting all the fine sediment is resuspended and flushed away.

The observed variation by 2 orders of magnitude in mean turbulence over a modest change in cross-slope
distance and depth was not foreseen after first viewing the original temperature data. Taking from each
mooring four sample days, Figures 3a–5a for sites A–C, we observe the semidiurnal tidal periodicity in all.
With increasing depth, the temperature range varies from 1.0, via 0.4 to 0.15°C, but tidal current amplitude
and mean buoyancy frequency vary only by a factor of 2.3 in total, while the internal tidal amplitude is about
the same: 100m (trough-crest).

The large variation between the sites is in the observed turbulent displacements of water parcels from their
statically stable positions (for definitions, see the Appendix), Figures 3b–5b. At site A, the displacements exceed
90m, at least once a tidal cycle from the lowest sensor at 5m above the bottom, and occur much more often
than at deeper sites. The few tens of meters high displacements at site B seldom reach the lowest sensor. The
even smaller displacements at site C never do so. Locally, time series of 100m vertical averages of turbulence

Figure 2. Cross-slope transect of average turbulence parameters along 37°01′N. (a) Turbulence dissipation rate. (b) Turbulent
diffusivity. (c) Buoyancy frequency. 4 day/100 mab (m above the bottom) mean estimates from moored temperature data
(green circles) are compared with 30–400m above the bottom average estimates from single CTD profile data (triangles), all
>2000mwater depth, except for the leftmost one (1100m). Note that themoored data error bars (vertical lines) are thus small
that they fall entirely within the green circles.

Table 1. Turbulence Parameter Estimates Averaged Over Entire Time Series (Except for 2530m Data) and Over Arbitrary
4 days of Temperature Observations Computed for the Three Consecutively Occupied Mooring Sites, and Averaged Over
the Lower 100ma

Latitude Longitude
Water Depth
(m)/Slope γ (°)

#Sensors/Interval
(m)/First (mab)

Averaging
Period (yd)

[<ε>]
(W kg�1)

[<Kz>]
(m2 s�1)

[<N>]
(s�1)

A: 36°59′N 13°45′W 2210/9.4 144/0.7/5 103–224 2.4 × 10�7 2.4 × 10�2 1.4 × 10�3

198–202 8.6 × 10�8 1.2 × 10�2 1.4 × 10�3

205–209 3.3 × 10�7 2.5 × 10�2 1.7 × 10�3

B: 37°00′N 13°43′W 2530/5.7 140/0.6,1.0/7 306(–365)�103 – – –
307–310 2.4 × 10�8 7.8 × 10�3 1.1 × 10�3

310–314 2.4 × 10�8 6.0 × 10�3 1.0 × 10�3

C: 37°01′N 13°39′W 2937/3.2 140/1.0/5 224–290 2.8 × 10�9 2.4 × 10�3 6.9 × 10�4

234–238 3.3 × 10�9 3.1 × 10�3 6.4 × 10�4

238–242 1.9 × 10�9 1.8 × 10�3 7.0 × 10�4

a(mab =meters above bottom; yd = yearday 2013).
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parameters show variations of 2–3 orders of magnitude over periods smaller than 2π/N= TN≈1.3–3h (A–C),
Figures 3c–5c. A clear variation with tidal phase is not observed, but at site A the largest peak occurs at the
transition between downslope and upslope phase, while at site B a distinct fourth diurnal periodicity is observed.

The associated turbulence processes are characterized in Figures 3d–5d on a time range of about one
buoyancy period TN long so that all motions varying as a function of time represent turbulent motions, which
have periods smaller than TN, and not freely propagating waves, which have periods larger than TN. At site A,
intense turbulence occurs in brief periods at the end of the downslope phase when relatively cold water
starts moving upslope, as in a frontal bore, Figure 3d: the arrival of a highly nonlinear internal wave breaking.
Only such wave breaking is capable of resuspending sediment and distributing it tens of meters away from
the seafloor within minutes [Hosegood et al., 2004]. At site B, large overturns are more often observed during

Figure 4. As Figure 3, but for site B. (a) Missing sensor data are indicated by horizontal bands. These are linearly interpolated
for further analysis. (d) Dashed black contours are drawn every 0.05°C, solid white every 0.025°C. Note change in color scales
for Figures 4a and 4d.

Figure 3. Four days of internal wave motions and turbulence observed at site A. (a) Depth-time series of conservative
temperature. The black dashed line indicates the period in Figure 3d. (b) Turbulent displacements computed after
sorting data in Figure 3a to stable profiles every time step. (c) Time series of logarithm of vertically averaged dissipation
rate and diffusivity. Purple bars indicate semidiurnal tidal “TM2” and inertial “Tf” periods. (d) One-and-a-half-hour sample
detail of Figure 3a, with solid black contours every 0.1°C.
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the warming downslope phase of the tide, Figure 4d. During this phase, showing a portion of the downslope
moving internal wave, the vertical current difference (shear) across the vertical temperature gradient is
generated by a downslope motion in the upper, warm layer and upslope motion in the lower, cold layer. A
secondary, convectively driven turbulence peak occurs around maximum cool period (Figures 4a and 4b). At
site C, interfaces are even more horizontal, Figure 5d. Quasi-permanent small-scale turbulence is found in
weak stratification, “concentrated” between thin layering that is mainly horizontal.

3. Discussion

Evidence for the coexistence of different turbulence generation mechanisms (convection and shear) at sites
separated by short distances is provided by moored high-resolution temperature observations. A strong
decrease is found in turbulence dissipation rate down a deep concave slope varying from steep to shallow over
a relatively short vertical (<700m) and horizontal (<10 km) distance. Comparable variations in turbulence
intensity have been reported [Nikurashin and Legg, 2011; Iwamae and Hibiya, 2012] for 2-D computer model
results simulating a confined flow in a deep channel. Other numerical simulations over 100m topography
scales [Legg and Adcroft, 2003] suggest that mixing occurs over the lower (subcritical) part of a concave slope
mainly. We argue that the present precise ocean observations are relevant for themore general case of internal
wave breaking over sloping topography in a full 3-D context.

At the distinct site of critical semidiurnal tidal slope around 2500m, no obvious enhanced turbulence process is
found. We speculate a cause by nonuniform stratification. Instead, at steeper, supercritical slopes highly nonlinear
upslope moving bores and vigorous turbulence are found. Apparently there, the dominant wave phase speed
matches the particle velocity so that waves steepen and break. Above Monte Josephine, such turbulence
processes cannot be associated with bottom friction as the [0.05–0.12]m s�1 weak currents cause an
(Ekman) boundary layer of less than 5m [Ekman, 1905] confirming theoretical considerations on the effects
of nonlinear internal wave breaking [Thorpe, 1988]. The observed turbulence cannot also be associated
with an internal hydraulic jump or an arrested lee wave, which extend at most several 100m [Klymak et al.,
2010] but not 1400m vertically below the subsummit. The turbulence diffusivity Kb = 2 × 10�2m2 s�1, the
Kz value over the “bottom boundary” height h, in this case the measured portion of the water column, is
1000 times larger than open-ocean values and 200 times the interior mean Kz value Kreq = 10�4m2 s�1

required to maintain the deep-ocean stratification [Munk, 1966; Munk and Wunsch, 1998]. As a result, in terms
of Kreq = Kb · Sb(z,h)/S(z), where S(z) denotes the horizontal surface area at depth z and Sb(z,h) the part of S(z)
that would be lying within a boundary layer of thickness h, a relatively narrow range of about 450m in depth
interval, about one seventh of the depth range, would generate sufficient mixing for the entire deep ocean

Figure 5. As Figure 4, but for site C. (d) Dashed black contours are drawn every 0.05°C, dashed white every 0.01°C. Note
change in color scales for Figures 5a and 5d.
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[Armi, 1979; Garrett, 1990], assuming ubiquitous internal waves, a 3000m average ocean depth, a h = 100m
thick turbulent layer [Eriksen, 1982] (present observations), so that S/Sb = 30 ≈ 1/7 · Kb/Kreq as observed.

Appendix A: Data and Methods

The taut-wire moorings contained at least 100 “NIOZ4” temperature sensors. NIOZ4 is an upgrade of “NIOZ3”
[van Haren et al., 2009], with similar characteristics (precision <5× 10�4°C and a noise level of 6 × 10�5°C).
A single elliptic buoy provided 3000N net buoyancy, ensuring small mooring motions of <0.1m in the
vertical and<5m in the horizontal as verified using tilt and pressure sensor data. Sampling rate was 1Hz. All
temperature sensors were synchronized via induction every 4 h, so that timing mismatch was <0.02 s. Some
showed battery problems and 15 sensors were lost during one unfortunate recovery. Large-scale currents
were sampled acoustically, once every 15min.

The moored observations are supported by shipborne observations during deployment/recovery cruises. A
Kongsberg EM302 30 kHz Multibeam was used for extensive high-resolution bathymetry mapping. From its
backscatter strength data, relative variations in grain size and sediment compacting are estimated. SeaBird
911-plus conductivity-temperature-depth (CTD) profiles were made for larger-scale hydrographic survey
and calibration purposes including turbulence parameter estimates and the establishment of the
local temperature-density relationship to be able to compute such estimates from the moored
temperature observations.

Moored temperature observations are transferred to conservative temperature Θ [McDougall et al., 2009],
before they are used as a proxy for potential density anomalies referenced to 3000dbar (δσ3000): δσ3000= αδΘ,
where α=�0.06± 0.005 kgm�3°C�1 and α=�0.07± 0.005 kgm�3°C�1 are the apparent thermal expansion
coefficients under local conditions, for 2500–3000 and 2200m, respectively. These relationships are the mean
for the lower 400m above the bottom of the CTD profiles. Turbulent kinetic energy dissipation rate ε (and
vertical eddy diffusivity Kz) is estimated via a classic oceanographic method [Thorpe, 1977, 1987], calculating
“overturn displacements” d after sorting every 1Hz potential density profile, which may contain unstable
inversions, into a stable monotonic profile without inversions. A threshold of 3× 10�6 kgm�3 is applied to
disregard apparent displacements associated with remaining temperature shifts after calibration [van Haren
et al., 2009]. This threshold is the same for all data sets. After comparing dwith the Ozmidov scale [Dillon, 1982],
ε=0.64d2N3. In weak stratification (N≈ f ), the threshold limits resolution of ε to O(10�12)Wkg�1. Similarly,
Kz=ΓεN

�2 using a mixing efficiency for the conversion of kinetic into potential energy of Γ=0.2 and which is
typical for shear-induced turbulence [Osborn, 1980; Oakey, 1982]. We note that constant Γ is for high Reynolds
number (104–106) flows as is typical for both estuarine conditions [Geyer et al., 2010] and above deep-ocean
topography [van Haren and Gostiaux, 2012] where rapid restratification is observed.
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