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1 Modélisation du problème L'automatisation et l'aide à la décision en contrôle aérien sont des enjeux majeurs pour les années à venir. L'augmentation du trafic étant inéluctable, les problèmes d'optimisation et de satisfaction de contraintes qui en découlent sont étudiés depuis plusieurs années par la communauté scientifique. Néanmoins, la difficulté de ces problèmes est encore présente, notamment par le caractère temporel de certaines contraintes. En effet, pour qu'une trajectoire soit valide, il faut pouvoir certifier que tout au long du vol la distance entre deux avions est toujours supérieure à 5 nautique. Dans cet article, nous présenterons une approche basée sur la programmation par contracteurs pour résoudre le problème d'élimination des conflits aériens par variation de la vitesse des avions.

Notre approche s'inspire de la modélisation développée par Cafieri et Durand dans [START_REF] Cafieri | Aircraft deconfliction with speed regulation : new models from mixed-integer optimization[END_REF]. Pour simplifier la modélisation, nous allons supposer que chaque avion a le droit de changer sa vitesse uniquement pendant un intervalle de temps continu. La trajectoire de chaque avion est rectiligne et une fois le conflit aérien évité, chaque avion reprend à sa vitesse initiale. Pour faciliter la représentation graphique, nous nous limiterons au cas planaire, mais l'étude suivante peut très bien être étendue au cas à trois dimensions.

Pour un avion i, notons x i (t) sa trajectoire pour tout t ∈ [0, t end ], p i ∈ R 2 la position initiale de l'avion à t = 0, v i ∈ R 2 la vitesse initiale de l'avion, t m i le temps auquel l'avion modifie sa vitesse (que l'on suppose instantanée), q i la variation de vitesse et δ i la durée du changement de vitesse. L'équation de la trajectoire d'un avion s'écrit :

∀t ∈ [0, t end ], x i (t) =    p i + v i t, ∀t ∈ [0, t m i ] p i + v i t i + q i v i (t -t m i ), ∀t ∈ [t m i , t m i + δ i ], p i + v i t i + q i v i δ i + v i (t -t m i -δ i ), ∀t ∈ [t m i + δ i , t end ].
La contrainte imposée pour éviter les conflits entre deux avions i et j devient donc :

∀t ∈ [0, t end ], ||x i (t) -x j (t)|| 2 > 5.
Ainsi, en considérant N avions, le contrôleur aérien doit déterminer les variables q = (q 1 , . . . , q N ), t m = (t m 1 , . . . , t m N ) et δ = (δ 1 , . . . , δ N ) appartenant à l'espace K in suivant :

K in = (q, t m , δ) | ∀t ∈ [0, t end ], ∀(i, j) ∈ {1, . . . , N } 2 , ||x i (t) -x j (t)|| 2 > 5 .
Une situation de conflit se produira si la solution appartient au complémentaire, noté K out :

K out = (q, t m , δ) | ∃t ∈ [0, t end ], ∃(i, j) ∈ {1, . . . , N } 2 , ||x i (t) -x j (t)|| 2 ≥ 5 .
Dans un souci de confort des passagers et de minimisation des coûts de carburant, nous nous efforcerons de trouver une solution minimisant la fonction suivante : f (q, t m , δ)

= N k=1 q k δ k .
L'approche, que nous allons utiliser, nécessite avant tout de construire un contracteur pour l'ensemble K in et un contracteur pour K out . Soit X ⊆ R n un ensemble. D'après [START_REF] Chabert | Contractor programming[END_REF], L'opérateur C X : IR n → IR n est un contracteur pour X si :

∀x ∈ IR n , C X (x) ⊆ x, (contraction) C X (x) ∩ X ⊇ x ∩ X. (completeness)
La notion de contracteur est très générale et permet d'inclure la plupart des algorithmes basés sur l'arithmétique d'intervalles. Définissons quelques opérateurs sur les contracteurs. Soit X et Y ⊆ R n deux ensembles et x ∈ IR n un intervalle de R n :

Intersection : (C X∩Y )(x) = C X (x) ∩ C Y ([x]), Union : (C X∪Y )(x) = C X (x) ∪ C Y ([x]), Proj-Inter : (C X×Y ) ∩Y = C {x | ∀y∈Y, (x,y)∈X×Y} , Proj-Union : (C X×Y ) ∪Y = C {x | ∃y∈Y, (x,y)∈X×Y} .
(1) L'approche basée sur les contracteurs repose sur l'arithmétique d'intervalles. Il est donc nécessaire de construire l'extension naturelle de la fonction x i (t) aux intervalles. Pour cela, nous utilisons la fonction χ introduite par Kearfott dans [START_REF] Kearfott | Interval extensions of non-smooth functions for global optimization and nonlinear systems solvers[END_REF] qui permet de calculer l'extension naturelle d'une fonction non-lisse comportant une conditionnelle. L'extension naturelle de x i (t) devient donc :

x i (t) = χ (t m i -t, p i + v i t, χ (t m i + δ i -t, p i + v i t i + q i v i (t -t m i ), p i + v i t i + q i v i δ i + v i (t -t m i -δ i )))
Grâce à l'expression analytique x i (t), il est possible de créer un contracteur C Xij pour l'ensemble

X ij = {(q, t m , δ, t) | ||x i (t) -x j (t)|| 2 ≥ 5}, ainsi qu'un contracteur C Xij pour X ij = {(q, t m , δ, t) | ||x i (t) -x j (t)|| 2 < 5}.
Ces contracteurs sont basés sur l'algorithme de Forward-Backward (aussi appelé HC4) [START_REF] Benhamou | Revising Hull and Box Consistency[END_REF]. Ainsi, en utilisant les définitions (et les algorithmes associés) des équations (1), on peut créer un contracteur pour K in et K out :

C Kin =   i =j C Xij   ∩[0,t end ] , C Kout =   i =j C Xij   ∪[0,t end ]
.

Les contracteurs seront générés grâce à la librairie IBEX (http ://www.ibex-lib.org). Cette librairie contient des algorithmes implémentant les contracteurs de base définis par les équations [START_REF] Benhamou | Revising Hull and Box Consistency[END_REF]. Le problème de minimisation du critère sera résolu en utilisant l'algorithme OptiCtc combinant un algorithme de SIVIA et un algorithme de Branch&Bound. Des résultats numériques seront exposés lors de la présentation.