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Abstract. In-silico experiments, also known as simulations, are tradi-
tionally automated through scientific workflows. While those systems
effectively tackle the complexity of underlying technologies, they them-
selves do little to ease and organize sharing and reuse. Indeed, scientific
workflow models blur the line between user goals and techniques and
often mix abstraction levels. We believe that an intentional model, ex-
plicitly differentiating goals from methods to achieve them, is a necessary
step towards the creation of an effective sharing and reuse platform for
in-silico experiments. Our contribution is threefold: (1) we extended the
map model with explicit forks and parameterizable maps, (2) we pro-
posed a map ontology in RDFS that allows computer processing and
reasoning on maps and (3) we applied the map model to in-silico exper-
iments in order to emphasize user intentions.

Keywords: intentional process modeling, scientific workflow, semantic
web, reuse

1 Introduction

In-silico experiments, commonly referred to as simulations, are experiments par-
tially or entirely carried out via computers. In many fields, these experiments
have become a major component of scientific research, allowing scientists to sim-
ulate catastrophic events in seismology and disaster handling, to tackle gigantic
amounts of data in astrophysics and genetics, to predict the effects of a therapy
before trying it on live subjects in medicine and so forth. Many factors contribute
to the necessity of automating such experiments, most notably the volume of
data to analyze and the exploratory nature of the analysis, which leads to fre-
quent reuse and repurposing. For many years, scientists have chained the various
programs that composed their simulations through scripting and often manual
data conversion and transfer. Obviously, this approach is neither accessible nor
robust, but its most serious problem is that it cannot leverage the wealth of re-
sources provided nowadays by grid computing and service-oriented architecture.
The need to automate the use of highly-distributed heterogeneous resources was
answered in the corporate world by the concept of workflow, formally defined in
[1] as the computerized facilitation or automation of a business process, in whole
or part. This notion and the associated frameworks were adapted to scientific
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needs - such as a much greater need for flexibility and a switch in priorities, from
security and integrity to reproducibility and reusability concerns - and it opened
a new research field: scientific workflows.

There are many scientific workflow frameworks - e.g. Taverna, Kepler, Triana,
MOTEUR, Project Trident - and comparatively few surveys [2], [3], [4]. Those
systems tackle the complexity of the underlying technologies, especially those
pertaining to grid computing and distributed algorithms, and efforts are clearly
made to improve accessibility through ease-of-use. Projects like myExperiment’
aim to leverage the social web potential to ease and organize sharing and reuse
of scientific workflows. We believe that while those portals surely help, they are
hindered by the underlying scientific workflow models, too low-level to explicit
the intentions of a workflow’s author and thus burying the elements relevant to
sharing, reuse and repurposing under techniques and technical considerations.

To improve and organize sharing and reuse of in-silico experiments, we need
a process model meeting the following criteria:

1. Flexibility is made critical by the inherently exploratory nature of research:
experiment protocols are constantly adapted to novel ideas, new results and
fresh data.

2. Modularity is unavoidable, since share and reuse are otherwise near im-
possible.

3. Abstraction levels are important to cater to users of various technical
proficiency levels.

There are plenty of options to model business processes [5]. Activity-based
process models, such as BPMN [6], describe processes linearly as sets of prede-
fined activities and relations between them to express data flow. Product-driven
process models emphasize the results of performed activities and focus on the
product’s evolution throughout the process. Approaches like EPC [7] take into
account the temporal and logical dimensions and highlight the control flow of
the process. Decision-based process models regard product transformations as
the consequences of decisions taken in a given execution context. Those mod-
els make the answer to “Why?” as explicit as the answer to “How?”, and thus
guide decision-making as well as reflexion on the process itself [5]. According to
[5], business processes may be seen from three complementary viewpoints: (1)
its objectives, (2) the organization in which it exists and (3) its technological
infrastructure. Each family of business process models focuses on one or more of
those aspects.

Our aim is to assist knowledge sharing between users of various technical
and process modeling proficiency levels. It is therefore critical that we adopt a
model that explicitly represents why and how a process is broken up from the
highest to the lowest level of abstraction. For all the aforementioned reasons, we
base our approach on the map model [8]: an intentional process model that sets
apart goals to achieve (Intentions) from the ways to achieve them (Strategies).

! http://www.myexperiment.org
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In Section 2, we briefly present maps then propose our own extensions for the
model. In Section 3, we explain why and illustrate how we apply semantic web
technologies to maps. Section 4 concludes this paper with research perspectives.

2 Map model extension

We propose two major extensions to the map model [8], [9]: on the one hand, we
make the distinction clear and mandatory between AND, OR and XOR forks
to allow automatic handling, on the other hand, we introduce the notion of
parameterizable maps to ease and enhance reuse. Before we delve into those
extensions, let us recall the basics of the original map model as well as justify
some minor modifications we made to reflect the switch from control-driven to
data-centered processes.

A Map is a directed graph whose vertices are Intentions - goals the user wants
to achieve - and whose edges are Strategies - ways to achieve target intentions.
Every Map has two special Intentions called Start and Stop and representing
respectively the beginning and the end of the process. Triples made of a Strategy
and its source and target Intentions are called Sections. A Section may be refined
by a sub-Map. Through refinement, a Map author can separate abstraction levels
or encapsulate sub-processes into larger processes while preserving the global
Map’s understandability. Guidelines are provided in natural language to help
the enactor:

— To every Section is associated an TAG (Intention Achievement Guideline)
that guides the practical enactment of the Section.

— To every Intention is associated an ISG (Intention Selection Guideline) that
directs the choice of the next target Intention.

— To every pair of source Intention and target Intention, i.e. linked by at least
one Strategy, is associated a SSG (Strategy Selection Guideline) that directs
the choice of the Strategy to employ to reach the target Intention.

Fig.1 illustrates all the aforementioned elements. Refer to [8] and [9] for more
details about the map model itself.

Intentions and Strategies were originally expressed following a linguistic ap-
proach as such: 1 Intention +1 Strategy = 1 Verb +1 Object +n Parameters.
This approach emphasizes the Verb and thus suits control-driven processes very
well. In-silico experiments are most often data-centered: the Subject on which the
Action is performed is generally much more important than the Action itself.
Parameters previously only characterized Strategies, but with in-silico experi-
ments, Subjects often also need to be characterized, e.g. a PNG image vs. a JPG
image: the image format is a Feature of the image Subject. Therefore, we divided
Parameters in two distinct groups: Features characterize Subjects, whereas At-
tributes characterize Strategies. There is also often the need to perform a given
Action on many Subjects at once, for instance if we need to compare two differ-
ent types of data. In practice, we express things thusly: 1 Intention = 1 Action
+n(Subject [n Feature]) and 1 Strategy = n Attributes.
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Fig. 1. Illustration of the original map model.

2.1 Explicit forks

Every time two or more Sections share the same source Intention, we call it a
fork since it presents the user with a choice between multiple paths. There are
three types of forks:

1. XOR forks are the mutually exclusive choices, e.g. you check the system, if
something is wrong you stop everything and raise the alarm, else you proceed
normally.

2. OR forks present alternatives that could be tried simultaneously, e.g. two
distinct servers provide you with the service you need, you might want to
use them both to compare them.

3. AND forks are related to task independence: more than one subtasks have to
be done to achieve the global goal, but there is no order between the subtasks
and you might as well perform them in parallel, if available resources are
enough.

In maps as presented in [8], every fork is ambiguous in the sense that it is
up to the user, to whom selection guidelines expressed in natural language are
provided, to choose whether to reach more than one intention and/or employ
more than one strategy at a given time. Similarly, it is up to the map author to
specify the nature of a fork (i.e. AND, OR or XOR) in the associated guidelines.
The notion of bundle was introduced in [9] and allows the representation of a
specifically XOR fork. The complementary notion of thread is meant for OR
forks. Obviously, the map author might specify in guidelines that a given fork
is supposed to be an AND fork, but it is not mandatory in any way and is
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certainly not apparent on the graphical representation. Such leniency in fork
definition makes sense in the context of [8]: a human being can take advantage
of such variability and dynamically adapt a given map to the situation at hand.

Problems arise when trying to process maps automatically. Obviously, with
guidelines expressed in natural language that may or may not clearly state the
nature of a fork, the enactor cannot determine what to do. Synchronization is a
less obvious issue that cannot be solved simply with restrictive guideline speci-
fications: if many paths can be taken simultaneously in a given map, how does
the enactor track map completion? In other words, when the Stop intention
is reached, is the map truly completed or should the enactor wait for possible
other threads? To clear the synchronization concern and to make the distinc-
tion between the three types of forks both explicit and mandatory, we decided
to confine both alternatives (OR) and independent tasks (AND) to submaps,
through the refinement mechanism, thus restricting all forks in a given map to
mutually exclusive choices (XOR).

"‘
~
~
~
~

composed of ~
~
~
~ ( entails

2.%

1 .
| Intention [ Section forLzedy =1 1AG
o 2.4 M R
\

|
1 NN
1 \ \hasSSG
| AN 1
1 AT
(NN Strategy
NN
\ \ 2.*
(URERN 1
SN 1
N . \ \ ! selectsStrategyFrom

selectsIntentionFrom

Fig. 2. Map meta-model: map-guidelines relationships. Names and cardinalities we
modified are in bold and italic. Relationships we introduced are dashed.

To accommodate the uses we wanted to make of the refinement mechanism,
for AND and OR forks in particular, we modified the original map meta-model
(see Fig.2), of which we provide a graphical representation in Appendix (Fig.9):
Sections are no longer refined by one Map, instead they are refined by any number
of TAGs, each of which entails from one or more Maps.
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ISG2: if (OK) then Get(LifeSignals)

Check(LifeSignals) else Raise(AIarm)

@Alarm)
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Y

Fig. 3. A map (A) with mutually exclusive options (i.e. a XOR fork) and the corre-
sponding ISG. It represents the process of monitoring the life signals of a patient.
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Fig. 4. A map (B) with alternative submaps (i.e. an OR fork) and the corresponding
submaps (C and D). They represent the choice between synthetic and live data to feed
a prototype algorithm.
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By Userinput

Get(GeneDescription,
PathwayDescription)

Get(Geneld
[Merged,
NoNull,
NoDuplicate])

Get(Pathwayld
[Merged,
NoNull,
NoDuplicate])

Get(PathwayDescription)

Fig.5. A map (F) with independent submaps (i.e. an AND fork) that are themselves
(G and H) refined to a lower level of abstraction (resp. I and J). This example was
inspired by a Taverna scientific workflow found on myExperiment.org at the following
URL: http://www.myexperiment.org/workflows/611.html.

— XOR forks are represented the way all types of forks were in the original
model: by multiple Strategies sharing the same source Intention, as illus-
trated by Fig.3.

— OR forks are represented by multiple IAGs refining a given Section, as il-
lustrated by Fig.4.

— AND forks are represented by multiple Maps entailed by a given IAG, as
illustrated by Fig.5.

Our modifications make the map model more restrictive but no less expres-
sive: the same scenarios can be modeled with both models. We merely transferred
fork specification (and with it, part of the cognitive workload) from the enactor
to the modeler, a critical step towards automatic processing.

2.2 Parameterizable maps

The other extension we propose addresses an issue that is not exclusive to maps
but rather stems from the desire to share and reuse processes. Every now and
then, a modeler finds a subprocess that almost suits the situation at hand or
wants to use the same subprocess over and over in the same global process, but
with different objectives, techniques or types of data. With a model that allows
no genericity at all, modelers have to repurpose subprocesses by creating as many
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different instances. On the one hand, it creates many more subprocesses than are
meaningfully needed, on the other hand, the link between those subprocesses is
inexistent, even though they are actually specific instances of a generic process.

Intention [
p <<Abstract>> [T Grzer Strategy

Userlntention

1t

| Feature |°—<>| Subject |

Atribute

PAttribute

Z
I PFeature I | PSubject | | PAction |

N
<<Abstract>>
Fig. 6. Map meta-model: parameterizable maps.

We propose to alleviate those issues by enriching the map model with the
notion of parameterizable maps (see Fig.6). Parameters may be used in four
distinct places in a map: Attributes, Actions, Subjects and Features. Instantiation
of a parameterized map is done through the refinement mechanism as in Fig.7.
Whenever modelers feel the need to adjust a given map before including it as a
submap in their approach, they may instead discover and formalize which parts
of the process are actually generic. Once that modeling step is taken, repurposing
becomes a simple matter of instantiation.

3 Automatic handling of maps

Our aim is to provide scientists with a platform dedicated to sharing and reuse
of in-silico experiments. To actually ease and enhance sharing and reuse, we
must provide our end users with features such as advanced searching, alternative
suggestions and service discovery. To do so, we need to reason on maps and the
processes they represent and we obviously need to transcribe our model in a
computer-legible fashion. In a sense, we face the same problem that lead to the
definition of the Semantic Web by Tim Berners-Lee et al. [10], albeit on a very
different scale: we want to automatically integrate and combine data that are
primarily designed for human use. It thus seems logical to turn to semantic web
technologies such as RDF (Resource Description Framework) [11] and SPARQL
(SPARQL Protocol and RDF Query Language) [12] to address our problem.
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Get(PathwayDescription)

Get(?X [Merged, NoNull,
NoDuplicate])

Fig. 7. A parameterized map (H) and two maps (F’ and G’) instantiating it with
different parameters. Maps F’ and G’ are slightly modified version of maps F' and G
in Fig.5.

3.1 Intentional process ontology

To transcribe our meta-model in RDF, so as to reason on the model itself, we
had to use an ontology language. We opted for RDFS (RDF Schema) [13].

Changes we made to the ontology since its last publication in [14] mostly re-
flect the changes we made to the meta-model, as detailed in section 2. The latest
version, as of writing, is published online?. We provide a graphical representation
in Appendix (Fig.10).

Modeling in-silico experiments implies handling concepts from three different
worlds:

— process modeling (in this case map, e.g. section, intention, strategy)
— scientific domain (e.g. gene, MRI, epicenter)
— technical level (e.g. list, PNG format, upload)

Note that while the distinction between process modeling and the rest is pretty
clear, the frontier between what is technical and what is not is highly subjective.
We rely on existing domain ontologies. For instance, bioinformaticians might
want to use the TAMBIS [15] or the GO (Gene Ontology) [16] ontologies, to
model their in-silico experiments.

Let us examine how we describe various components of a map in RDF, in
accordance with the following ontologies and with the corresponding namespaces:

2 http://www.i3s.unice.fr/~cerezo/map,/2010/10/20/map.rdf
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— map: <http://.../map.rdf#> refers to the map ontology

— bio: <http://.../bio.rdf#> refers to an ad hoc bioinformatics ontology
we created for the sake of our examples (upper part of Fig.11 in Appendix)

— tech: <http://.../tech.rdf#> refers to an ad hoc technical ontology we
created for the sake of our examples (lower part of Fig.11 in Appendix)

Linking to domain and technical ontologies is done through instantiation, e.g. to
handle KEGG gene ids, we declare an instance of both classes map:Subject and
bio:KEGGGeneId. To create an AND fork, we declare an instance of map:IAG
that map:entails more than one instance of map:Map. Both mechanisms are
shown in the following RDF Sample, which is an excerpt of Map E from Fig.5:

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
D S
<map:Map rdf:about="MapE">
<map: composed0f>
<map:Section>
<map:hasTarget>
<map:UserIntention>
<map:hasSubject>
<map:Subject>
<rdf:type rdf:resource="bio:GeneDescription" />
</map:Subject>
<map:Subject>
<rdf:type rdf:resource="bio:PathwayDescription" />
</map:Subject>
</map:hasSubject>
<map:hasAction>
<map:Action>
<rdf:type rdf:resource="tech:Get" />
</map:Action>
</map:hasAction>
</map:UserIntention>
</map:hasTarget>
<map:hasStrategy>
<map:Strategy>
<map:hasAttribute>
<map:Attribute>
<rdf:type rdf:resource="bio:KEGGService" />
</map:Attribute>
</map:hasAttribute>
</map:Strategy>
</map:hasStrategy>
<map:refinedBy>
<map:IAG>
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<map:entails
rdf :resource="http://.../example.rdf#MapF" />
<map:entails
rdf :resource="http://.../example.rdf#MapG" />
</map:IAG>
</map:refinedBy>

</map:Section>
</map: composed0f>

</map :Map>
</rdf :RDF>

3.2 Reasoning on processes

By Userlnput

Get(EntrezGeneld)

Get (EntrezGeneld
[WithPrefix])

By KEGG

Get(KEGGGeneld)

Get(KEGGGeneld
[Split])

By KEGG

Get(Pathwayld)

Fig. 8. A map example to illustrate advance searching. This example was inspired
by a Taverna scientific workflow found on myExperiment.org at the following URL:
http://www.myexperiment.org/workflows/15.html.

On most online sharing platforms, content sharing is done in three distinct
ways:

1. automated content discovery through recommender systems,
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2. direct recommendations from a user to another and
3. active content discovery a.k.a. searching

The first two types of content sharing are fairly low-level concerns. We intend to
implement those features in our platform in due time. As for searching, we believe
that to truly assist sharing and reuse, we have to provide not only keyword-based
searching, but also much more advanced searching features. To illustrate such
features, let us consider the maps represented in Fig.5, Fig.7 and Fig.8.

If we want to look for “all the processes where a gene description is obtained
from a gene identifier”, using keywords, we might well get false positives (e.g.
processes where gene descriptions and gene ids are both inputs) and false nega-
tives (e.g. processes where gene description is not mentioned in either keywords
or tags). It is comparatively powerful and easy to express our query in SPARQL:

SELECT DISTINCT 7map WHERE

{
?map map:composed0f 7section
7section map:hasSource 7intentionl
7intentionl map:hasSubject 7subjectl
?subjectl rdf :type bio:Geneld
?section map:hasTarget ?intention2
?intention2 map:hasSubject 7subject2 .
?subject2 rdf:type bio:GeneDescription .
X

Given this query and the maps shown in this paper, a SPARQL engine would
correctly retrieve the maps F, F' and F".

A benefit of linking to ontologies is that we can use the powerful reasoning
mechanism of inference. For instance, our dummy technical ontology states that
tech:Split, tech:Merged, tech:NoNull and tech:NoDuplicate are all subclasses of
tech:ListFeature. In practice, it means that whenever a resource is declared to
be of type tech:Split or another of those subclasses, the system can infer that
it is also of type tech:ListFeature. Now, we want to find “all processes where
we manipulate lists of gene identifiers”, taking a look at our dummy technical
ontology, we choose to use ListFeature to detect list manipulation. The query is
again easy to express in SPARQL:

SELECT DISTINCT 7map WHERE

{
?map map:composed0f 7section
7?section map:hasSource 7intention
7intention map:hasSubject 7subject
?subject rdf :type bio:Geneld
?subject map:hasFeature 7feature
?feature rdf:type tech:ListFeature
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Given this query and the maps shown in this paper, a SPARQL engine would
correctly retrieve the maps A, I, J and K.

Advanced search is but a small part of what we could do with semantically
annotated maps and yet it already dwarfs keyword-based search in expressivity.

4 Conclusion and Future Work

In this paper, we presented an intentional approach to enhance sharing and reuse
of in-silico experiments.

We extended the Map model in two ways: (1) we made fork specification both
explicit and mandatory so as to allow automatic handling of maps and (2) we
introduced the notion of parameterized maps to further ease and enhance reuse
and repurposing. Both extensions could be useful outside the domain of in-silico
experiments. We proposed a translation of the Map model into RDFS, in order
to reason on maps, which would not be possible with graphical representations
and is much more powerful than keyword-based comparison and lookup. We val-
idated our version of the Map model by applying it to many in-silico experiments
represented by scientific workflows on myExperiment.org.

We will delve into other faces of reasoning on maps, such as map comparison
and combination, and work on a user interface to our SPARQL-based advanced
search feature. Tasks of in-silico experiments are often operationalized by web
services such as those provided by KEGG? and Entrez*. We aim to provide users
with alternative suggestions and service discovery, thus we will investigate static
and dynamic linking between maps and services.
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Fig. 10. Graphical representation of our current map ontology.
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Fig. 11. Graphical representation of our ad hoc ontologies.



