Laboratoire

Nadia Cerezo
email: nadia.cerezo@unice.fr

Pierre Crescenzo
email: pierre.crescenzo@unice.fr

Isabelle Mirbel
email: isabelle.mirbel@unice.fr

Equipe Modalis

INTENTIONAL PROCESS MODELING TO SHARE AND REUSE IN-SILICO EXPERIMENTS

Keywords: intentional process modeling, scientific workflow, semantic web, reuse Intentional Process Modeling to Share and Reuse In-silico Experiments intentional process modeling, scientific workflow, semantic web, reuse

In-silico experiments, also known as simulations, are traditionally automated through scientific workflows. While those systems effectively tackle the complexity of underlying technologies, they themselves do little to ease and organize sharing and reuse. Indeed, scientific workflow models blur the line between user goals and techniques and often mix abstraction levels. We believe that an intentional model, explicitly differentiating goals from methods to achieve them, is a necessary step towards the creation of an effective sharing and reuse platform for in-silico experiments. Our contribution is threefold: (1) we extended the map model with explicit forks and parameterizable maps, (2) we proposed a map ontology in RDFS that allows computer processing and reasoning on maps and (3) we applied the map model to in-silico experiments in order to emphasize user intentions.

Introduction

In-silico experiments, commonly referred to as simulations, are experiments partially or entirely carried out via computers. In many fields, these experiments have become a major component of scientific research, allowing scientists to simulate catastrophic events in seismology and disaster handling, to tackle gigantic amounts of data in astrophysics and genetics, to predict the effects of a therapy before trying it on live subjects in medicine and so forth. Many factors contribute to the necessity of automating such experiments, most notably the volume of data to analyze and the exploratory nature of the analysis, which leads to frequent reuse and repurposing. For many years, scientists have chained the various programs that composed their simulations through scripting and often manual data conversion and transfer. Obviously, this approach is neither accessible nor robust, but its most serious problem is that it cannot leverage the wealth of resources provided nowadays by grid computing and service-oriented architecture. The need to automate the use of highly-distributed heterogeneous resources was answered in the corporate world by the concept of workflow, formally defined in [START_REF] Hollingsworth | The workflow reference model[END_REF] as the computerized facilitation or automation of a business process, in whole or part. This notion and the associated frameworks were adapted to scientific needs -such as a much greater need for flexibility and a switch in priorities, from security and integrity to reproducibility and reusability concerns -and it opened a new research field: scientific workflows.

There are many scientific workflow frameworks -e.g. Taverna, Kepler, Triana, MOTEUR, Project Trident -and comparatively few surveys [START_REF] Yu | A taxonomy of scientific workflow systems for grid computing[END_REF], [START_REF] Taylor | Workflows for e-Science: Scientific Workflows for Grids[END_REF], [START_REF] Barker | Scientific workflow: A survey and research directions[END_REF]. Those systems tackle the complexity of the underlying technologies, especially those pertaining to grid computing and distributed algorithms, and efforts are clearly made to improve accessibility through ease-of-use. Projects like myExperiment1 aim to leverage the social web potential to ease and organize sharing and reuse of scientific workflows. We believe that while those portals surely help, they are hindered by the underlying scientific workflow models, too low-level to explicit the intentions of a workflow's author and thus burying the elements relevant to sharing, reuse and repurposing under techniques and technical considerations.

To improve and organize sharing and reuse of in-silico experiments, we need a process model meeting the following criteria:

1. Flexibility is made critical by the inherently exploratory nature of research: experiment protocols are constantly adapted to novel ideas, new results and fresh data. 2. Modularity is unavoidable, since share and reuse are otherwise near impossible.

Abstraction levels are important to cater to users of various technical

proficiency levels.

There are plenty of options to model business processes [START_REF] Nurcan | Intention-driven modeling for flexible workflow applications[END_REF]. Activity-based process models, such as BPMN [START_REF]Business Process Modeling Notation (BPMN) v.2.0 Specification[END_REF], describe processes linearly as sets of predefined activities and relations between them to express data flow. Product-driven process models emphasize the results of performed activities and focus on the product's evolution throughout the process. Approaches like EPC [START_REF] Van Der Aalst | Formalization and verification of event-driven process chains[END_REF] take into account the temporal and logical dimensions and highlight the control flow of the process. Decision-based process models regard product transformations as the consequences of decisions taken in a given execution context. Those models make the answer to "Why?" as explicit as the answer to "How?", and thus guide decision-making as well as reflexion on the process itself [START_REF] Nurcan | Intention-driven modeling for flexible workflow applications[END_REF]. According to [START_REF] Nurcan | Intention-driven modeling for flexible workflow applications[END_REF], business processes may be seen from three complementary viewpoints: (1) its objectives, (2) the organization in which it exists and (3) its technological infrastructure. Each family of business process models focuses on one or more of those aspects.

Our aim is to assist knowledge sharing between users of various technical and process modeling proficiency levels. It is therefore critical that we adopt a model that explicitly represents why and how a process is broken up from the highest to the lowest level of abstraction. For all the aforementioned reasons, we base our approach on the map model [START_REF] Rolland | A multi-model view of process modelling[END_REF]: an intentional process model that sets apart goals to achieve (Intentions) from the ways to achieve them (Strategies).

In Section 2, we briefly present maps then propose our own extensions for the model. In Section 3, we explain why and illustrate how we apply semantic web technologies to maps. Section 4 concludes this paper with research perspectives.

Map model extension

We propose two major extensions to the map model [START_REF] Rolland | A multi-model view of process modelling[END_REF], [START_REF] Rolland | Capturing system intentionality with maps[END_REF]: on the one hand, we make the distinction clear and mandatory between AND, OR and XOR forks to allow automatic handling, on the other hand, we introduce the notion of parameterizable maps to ease and enhance reuse. Before we delve into those extensions, let us recall the basics of the original map model as well as justify some minor modifications we made to reflect the switch from control-driven to data-centered processes.

A Map is a directed graph whose vertices are Intentions -goals the user wants to achieve -and whose edges are Strategies -ways to achieve target intentions. Every Map has two special Intentions called Start and Stop and representing respectively the beginning and the end of the process. Triples made of a Strategy and its source and target Intentions are called Sections. A Section may be refined by a sub-Map. Through refinement, a Map author can separate abstraction levels or encapsulate sub-processes into larger processes while preserving the global Map's understandability. Guidelines are provided in natural language to help the enactor:

-To every Section is associated an IAG (Intention Achievement Guideline) that guides the practical enactment of the Section. -To every Intention is associated an ISG (Intention Selection Guideline) that directs the choice of the next target Intention. -To every pair of source Intention and target Intention, i.e. linked by at least one Strategy, is associated a SSG (Strategy Selection Guideline) that directs the choice of the Strategy to employ to reach the target Intention.

Fig. 1 illustrates all the aforementioned elements. Refer to [START_REF] Rolland | A multi-model view of process modelling[END_REF] and [START_REF] Rolland | Capturing system intentionality with maps[END_REF] for more details about the map model itself.

Intentions and Strategies were originally expressed following a linguistic approach as such: 1 Intention +1 Strategy = 1 Verb +1 Object +n Parameters. This approach emphasizes the Verb and thus suits control-driven processes very well. In-silico experiments are most often data-centered: the Subject on which the Action is performed is generally much more important than the Action itself. Parameters previously only characterized Strategies, but with in-silico experiments, Subjects often also need to be characterized, e.g. a PNG image vs. a JPG image: the image format is a Feature of the image Subject. Therefore, we divided Parameters in two distinct groups: Features characterize Subjects, whereas Attributes characterize Strategies. There is also often the need to perform a given Action on many Subjects at once, for instance if we need to compare two different types of data. In practice, we express things thusly: 1 Intention = 1 Action +n(Subject [n Feature]) and 1 Strategy = n Attributes.

Explicit forks

Every time two or more Sections share the same source Intention, we call it a fork since it presents the user with a choice between multiple paths. There are three types of forks:

1. XOR forks are the mutually exclusive choices, e.g. you check the system, if something is wrong you stop everything and raise the alarm, else you proceed normally. 2. OR forks present alternatives that could be tried simultaneously, e.g. two distinct servers provide you with the service you need, you might want to use them both to compare them. 3. AND forks are related to task independence: more than one subtasks have to be done to achieve the global goal, but there is no order between the subtasks and you might as well perform them in parallel, if available resources are enough.

In maps as presented in [START_REF] Rolland | A multi-model view of process modelling[END_REF], every fork is ambiguous in the sense that it is up to the user, to whom selection guidelines expressed in natural language are provided, to choose whether to reach more than one intention and/or employ more than one strategy at a given time. Similarly, it is up to the map author to specify the nature of a fork (i.e. AND, OR or XOR) in the associated guidelines. The notion of bundle was introduced in [START_REF] Rolland | Capturing system intentionality with maps[END_REF] and allows the representation of a specifically XOR fork. The complementary notion of thread is meant for OR forks. Obviously, the map author might specify in guidelines that a given fork is supposed to be an AND fork, but it is not mandatory in any way and is certainly not apparent on the graphical representation. Such leniency in fork definition makes sense in the context of [START_REF] Rolland | A multi-model view of process modelling[END_REF]: a human being can take advantage of such variability and dynamically adapt a given map to the situation at hand.

Problems arise when trying to process maps automatically. Obviously, with guidelines expressed in natural language that may or may not clearly state the nature of a fork, the enactor cannot determine what to do. Synchronization is a less obvious issue that cannot be solved simply with restrictive guideline specifications: if many paths can be taken simultaneously in a given map, how does the enactor track map completion? In other words, when the Stop intention is reached, is the map truly completed or should the enactor wait for possible other threads? To clear the synchronization concern and to make the distinction between the three types of forks both explicit and mandatory, we decided to confine both alternatives (OR) and independent tasks (AND) to submaps, through the refinement mechanism, thus restricting all forks in a given map to mutually exclusive choices (XOR). To accommodate the uses we wanted to make of the refinement mechanism, for AND and OR forks in particular, we modified the original map meta-model (see Fig. 2), of which we provide a graphical representation in Appendix (Fig. 9): Sections are no longer refined by one Map, instead they are refined by any number of IAGs, each of which entails from one or more Maps. Our modifications make the map model more restrictive but no less expressive: the same scenarios can be modeled with both models. We merely transferred fork specification (and with it, part of the cognitive workload) from the enactor to the modeler, a critical step towards automatic processing.

Parameterizable maps

The other extension we propose addresses an issue that is not exclusive to maps but rather stems from the desire to share and reuse processes. Every now and then, a modeler finds a subprocess that almost suits the situation at hand or wants to use the same subprocess over and over in the same global process, but with different objectives, techniques or types of data. With a model that allows no genericity at all, modelers have to repurpose subprocesses by creating as many different instances. On the one hand, it creates many more subprocesses than are meaningfully needed, on the other hand, the link between those subprocesses is inexistent, even though they are actually specific instances of a generic process. We propose to alleviate those issues by enriching the map model with the notion of parameterizable maps (see Fig. 6). Parameters may be used in four distinct places in a map: Attributes, Actions, Subjects and Features. Instantiation of a parameterized map is done through the refinement mechanism as in Fig. 7. Whenever modelers feel the need to adjust a given map before including it as a submap in their approach, they may instead discover and formalize which parts of the process are actually generic. Once that modeling step is taken, repurposing becomes a simple matter of instantiation.

Automatic handling of maps

Our aim is to provide scientists with a platform dedicated to sharing and reuse of in-silico experiments. To actually ease and enhance sharing and reuse, we must provide our end users with features such as advanced searching, alternative suggestions and service discovery. To do so, we need to reason on maps and the processes they represent and we obviously need to transcribe our model in a computer-legible fashion. In a sense, we face the same problem that lead to the definition of the Semantic Web by Tim Berners-Lee et al. [START_REF] Lee | The semantic web[END_REF], albeit on a very different scale: we want to automatically integrate and combine data that are primarily designed for human use. It thus seems logical to turn to semantic web technologies such as RDF (Resource Description Framework) [START_REF]Resource Description Framework (RDF) Primer[END_REF] and SPARQL (SPARQL Protocol and RDF Query Language) [12] to address our problem.

Intentional process ontology

To transcribe our meta-model in RDF, so as to reason on the model itself, we had to use an ontology language. We opted for RDFS (RDF Schema) [13].

Changes we made to the ontology since its last publication in [START_REF] Corby | Démarches sémantiques de recherche d'information sur le Web[END_REF] mostly reflect the changes we made to the meta-model, as detailed in section 2. The latest version, as of writing, is published online2 . We provide a graphical representation in Appendix (Fig. 10).

Modeling in-silico experiments implies handling concepts from three different worlds:

process modeling (in this case map, e.g. section, intention, strategy) scientific domain (e.g. gene, MRI, epicenter) technical level (e.g. list, PNG format, upload) Note that while the distinction between process modeling and the rest is pretty clear, the frontier between what is technical and what is not is highly subjective. We rely on existing domain ontologies. For instance, bioinformaticians might want to use the TAMBIS [START_REF] Baker | An ontology for bioinformatics applications[END_REF] or the GO (Gene Ontology) [START_REF] Ashburner | Gene ontology: tool for the unification of biology[END_REF] ontologies, to model their in-silico experiments.

Let us examine how we describe various components of a map in RDF, in accordance with the following ontologies and with the corresponding namespaces:

map: <http://.../map.rdf#> refers to the map ontology bio: <http://.../bio.rdf#> refers to an ad hoc bioinformatics ontology we created for the sake of our examples (upper part of Fig. 11 in Appendix) tech: <http://.../tech.rdf#> refers to an ad hoc technical ontology we created for the sake of our examples (lower part of Fig. 11 in Appendix)

Linking to domain and technical ontologies is done through instantiation, e.g. to handle KEGG gene ids, we declare an instance of both classes map:Subject and bio:KEGGGeneId. To create an AND fork, we declare an instance of map:IAG that map:entails more than one instance of map:Map. Both mechanisms are shown in the following RDF Sample, which is an excerpt of Map E from Fig. 5: On most online sharing platforms, content sharing is done in three distinct ways:

<rdf
1. automated content discovery through recommender systems, 2. direct recommendations from a user to another and 3. active content discovery a.k.a. searching

The first two types of content sharing are fairly low-level concerns. We intend to implement those features in our platform in due time. As for searching, we believe that to truly assist sharing and reuse, we have to provide not only keyword-based searching, but also much more advanced searching features. To illustrate such features, let us consider the maps represented in Fig. 5, Fig. 7 and Fig. 8.

If we want to look for "all the processes where a gene description is obtained from a gene identifier", using keywords, we might well get false positives (e.g. processes where gene descriptions and gene ids are both inputs) and false negatives (e.g. processes where gene description is not mentioned in either keywords or tags). It is comparatively powerful and easy to express our query in SPARQL: Given this query and the maps shown in this paper, a SPARQL engine would correctly retrieve the maps E, F and F'.

A benefit of linking to ontologies is that we can use the powerful reasoning mechanism of inference. For instance, our dummy technical ontology states that tech:Split, tech:Merged, tech:NoNull and tech:NoDuplicate are all subclasses of tech:ListFeature. In practice, it means that whenever a resource is declared to be of type tech:Split or another of those subclasses, the system can infer that it is also of type tech:ListFeature. Now, we want to find "all processes where we manipulate lists of gene identifiers", taking a look at our dummy technical ontology, we choose to use ListFeature to detect list manipulation. The query is again easy to express in SPARQL: Given this query and the maps shown in this paper, a SPARQL engine would correctly retrieve the maps A, I, J and K.

Advanced search is but a small part of what we could do with semantically annotated maps and yet it already dwarfs keyword-based search in expressivity.

Conclusion and Future Work

In this paper, we presented an intentional approach to enhance sharing and reuse of in-silico experiments.

We extended the Map model in two ways: (1) we made fork specification both explicit and mandatory so as to allow automatic handling of maps and (2) we introduced the notion of parameterized maps to further ease and enhance reuse and repurposing. Both extensions could be useful outside the domain of in-silico experiments. We proposed a translation of the Map model into RDFS, in order to reason on maps, which would not be possible with graphical representations and is much more powerful than keyword-based comparison and lookup. We validated our version of the Map model by applying it to many in-silico experiments represented by scientific workflows on myExperiment.org.

We will delve into other faces of reasoning on maps, such as map comparison and combination, and work on a user interface to our SPARQL-based advanced search feature. Tasks of in-silico experiments are often operationalized by web services such as those provided by KEGG3 and Entrez4 . We aim to provide users with alternative suggestions and service discovery, thus we will investigate static and dynamic linking between maps and services.

Fig. 1 .

 1 Fig. 1. Illustration of the original map model.

Fig. 2 .

 2 Fig. 2. Map meta-model: map-guidelines relationships. Names and cardinalities we modified are in bold and italic. Relationships we introduced are dashed.

Fig. 3 .

 3 Fig. 3. A map (A) with mutually exclusive options (i.e. a XOR fork) and the corresponding ISG. It represents the process of monitoring the life signals of a patient.

Fig. 4 .

 4 Fig. 4. A map (B) with alternative submaps (i.e. an OR fork) and the corresponding submaps (C and D). They represent the choice between synthetic and live data to feed a prototype algorithm.

Fig. 5 .

 5 Fig.5. A map (F) with independent submaps (i.e. an AND fork) that are themselves (G and H) refined to a lower level of abstraction (resp. I and J). This example was inspired by a Taverna scientific workflow found on myExperiment.org at the following URL: http://www.myexperiment.org/workflows/611.html.

Fig. 6 .

 6 Fig. 6. Map meta-model: parameterizable maps.

Fig. 7 .

 7 Fig. 7. A parameterized map (H) and two maps (F' and G') instantiating it with different parameters. Maps F' and G' are slightly modified version of maps F and G in Fig.5.

Fig. 8 .

 8 Fig. 8. A map example to illustrate advance searching. This example was inspired by a Taverna scientific workflow found on myExperiment.org at the following URL: http://www.myexperiment.org/workflows/15.html.

Fig. 10 .

 10 Fig. 10. Graphical representation of our current map ontology.

Fig. 11 .

 11 Fig. 11. Graphical representation of our ad hoc ontologies.

http://www.myexperiment.org

http://www.i3s.unice.fr/˜cerezo/map/2010/10/20/map.rdf

http://www.genome.jp/kegg/soap/

http://www.ncbi.nlm.nih.gov/entrez/query/static/esoap_help.html

Appendix

Fig. 9. A graphical representation of the original map meta-model, cf. [START_REF] Rolland | A multi-model view of process modelling[END_REF] and [START_REF] Rolland | Capturing system intentionality with maps[END_REF] for more details.