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Holomorphic curves into algebraic varieties
intersecting moving hypersurface targets

Gerd Dethloff and Tran Van Tan

Abstract

In [Ann. of Math.169 (2009)], Min Ru proved a second main the-
orem for algebraically nondegenerate holomorphic curves in complex
projective varieties intersecting fixed hypersurface targets. In this pa-
per, by introducing a new proof method for the case of projective
varieties, we generalize this result to moving hypersurface targets.

2010 Mathematics Subject Classification. 32H30, 11J87.
Key words. Nevanlinna theory, Vojta’s dictionary, Diophantine ap-
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1 Introduction

During the last century, several Second Main Theorems have been established
for linearly nondegenerate holomorphic curves in complex projective spaces
intersecting (fixed or moving) hyperplanes, and we now have a satisfactory
knowledge about it. Motivated by a paper of Corvaja-Zannier [6] in Diophan-
tine approximation, in 2004 Ru [20] proved a Second Main Theorem for alge-
braically nondegenerate holomorphic curves in the complex projective space
CPn intersecting (fixed) hypersurface targets, which settled a long-standing
conjecture of Shiffman [22]. In 2011, Dethloff-Tan [7] generalized this result
of Ru to moving hypersurface targets (this means where the coefficients of
the hypersurfaces are meromorphic functions) in CPn. The counterpart of
the Second Main Theorem of Dethloff-Tan in Diophantine approximation
was independently given by Chen-Ru-Yan [5] and Le [14] in 2015.
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In order to reduce the case of hypersurfaces to the case of hyperplanes
by an approximation, the above authors construct a filtered vector space.
The key point in their proof is the following property: If homogeneous poly-
nomials Q0, . . . , Qn in C[x0, . . . , xn] have no non-trivial common solutions,
then {Q0, . . . , Qn} is a regular sequence. Thanks to this property, they can
construct linear isomorphisms showing that the dimension of all factor vec-
tor spaces in the filtration is exactly equal to the corresponding value of the
Hilbert polynomial of a common algebraic variety, and then can be calcu-
lated. However, this regular sequence property is not true any more for the
general case of varieties V ⊂ CPM , and is related to whether or not the
homogenous coordinate ring of V is Cohen-Macauley, moreover, there are
examples to show that their linear isomorphisms can not be extended to the
general case of varieties. So by dropping this restriction on the variety V
and thereby losing regular sequences, we can no longer exactly calculate the
dimensions of the various factor vector spaces of the filtration by using this
method.

The result of Corvaja-Zennier [6] was actually reproved and general-
ized to the case of projective varieties by Evertse-Ferretti [11] using some-
what different ideas. Their approach also admitted extensions in Nevan-
linna theory which were developped again by Ru [21] in 2009, obtaining
a Second Main Theorem for entire curves in arbitrary projective varieties
V, with respect to hypersurfaces of the ambient space. To prove the Sec-
ond Main Theorem, in [21], Ru uses the finite morphism φ : V → CPq−1,
φ(x) := [Q1(x) : · · · : Qq(x)], where the Qj’s are homogeneous polynomi-
als (with common degree) defining the given hypersurfaces. Thanks to this
finite morphism, he can use a generalization of Mumford’s identity (the ver-
sion with explicit estimates obtained by Evertse and Ferretti [10, 11]) for the
variety Imφ ⊂ CPq−1. However, for the case of moving hypersurfaces, we do
not have such a morphism.

The purpose of this article is twofold, giving a Second Main Theorem for
entire curves in projective varieties intersecting moving hypersurfaces and
introducing a new approach for the case of projective varieties. Firstly, we
show that by specializing the coefficients of the polynomials corresponding
to the moving hypersufaces in generic points, the dimensions of the given
vector spaces do not change. Secondly, we construct a filtration of the vector
space corresponding to the coordinate ring of the variety. After that, by
observing the Hilbert sequence asymptotics, we calculate the sum of the
dimensions of all the factors of the vector spaces in the filtration and by using
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the algebraic properties of our filtration, properties of its Hilbert function
and also techniques in combinatorics, we prove that almost all of these factor
vector spaces have the same dimension. Finally, we prove that we can neglect
the other factors vector spaces of the filtration where the dimension is not
as expected. Another difficulty in the case of moving hypersurface targets
is that they are in general position only for generic points. In order to
overcome this difficulty, we use an element of the ideal of the inertia forms
of the system of polynomials defining the moving hypersurfaces in order to
control the locus where the divisors are not in general position. In fact, the
ideal of the inertia forms of such a system of polynomials is not a principal
ideal in general (unless V is a complete intersection variety). But we will
show that there exists an element of this ideal with properties which are
enough for our purpose.

Our method was used again by Ji-Yan-Yu [13], Yan-Yu [26], Son-Tan-
Thin [23] to prove their Second Main Theorems and Schmidt’s Subspace
Theorems.

Let f be a holomorphic mapping of C into CPM , with a reduced represen-
tation f := (f0 : · · · : fM). The characteristic function Tf (r) of f is defined
by

Tf (r) :=
1

2π

2π∫
0

log ‖f(reiθ)‖dθ, r > 1,

where ‖f‖ := max{|f0|, . . . , |fM |}.
Let ν be a divisor on C. The counting function of ν is defined by

Nν(r) :=

r∫
1

log

∑
|z|<t ν(z)

t
dt, r > 1.

For a non-zero meromorphic function ϕ, denote by νϕ the zero divisor of
ϕ, and set Nϕ(r) := Nνϕ(r). Let Q be a homogeneous polynomial in the
variables x0, . . . , xM with coefficients which are meromorphic functions. If
Q(f) := Q(f0, . . . , fM) 6≡ 0, we define Nf (r,Q) := NQ(f)(r). Denote by Q(z)
the homogeneous polynomial over C obtained by evaluating the coefficients
of Q at a specific point z ∈ C in which all coefficient functions of Q are
holomorphic (in particular Q(z) can be the zero polynomial).

We say that a meromorphic function ϕ on C is “small” with respect to f
if Tϕ(r) = o(Tf (r)) as r →∞ (outside a set of finite Lebesgue measure).
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Denote by Kf the set of all “small” (with respect to f) meromorphic
functions on C. Then Kf is a field.

For a positive integer d, we set

Td :=
{

(i0, . . . , iM) ∈ NM+1
0 : i0 + · · ·+ iM = d

}
.

Let Q = {Q1, . . . , Qq} be a set of q ≥ n + 1 homogeneous polynomials in
Kf [x0, . . . , xM ], degQj = dj ≥ 1. We write

Qj =
∑
I∈Tdj

ajIx
I (j = 1, . . . , q)

where xI = xi00 · · ·x
iM
M for x = (x0, . . . , xM) and I = (i0, . . . , iM). Denote

by KQ the field over C of all meromorphic functions on C generated by{
ajI : I ∈ Tdj , j ∈ {1, . . . , q}

}
. It is clearly a subfield of Kf .

Let V ⊂ CPM be an arbitrary projective variety of dimension n, generated
by the homogeneous polynomials in its ideal I(V ). Assume that f is non-
constant and Imf ⊂ V. Denote by IKQ(V ) the ideal in KQ[x0, . . . , xM ] gen-
erated by I(V ). Equivalently IKQ(V ) is the (infinite-dimensional) KQ-sub-
vector space of KQ[x0, . . . , xM ] generated by I(V ). We note that Q(f) ≡ 0
for every homogeneous polynomial Q ∈ IKQ(V ). We say that f is alge-
braically nondegenerate over KQ if there is no homogeneous polynomial
Q ∈ KQ[x0, . . . , xM ] \ IKQ(V ) such that Q(f) ≡ 0.

The set Q is said to be V− admissible (or in (weakly) general position
(with respect to V )) if there exists z ∈ C in which all coefficient functions
of all Qj, j = 1, ..., q are holomorphic and such that for any 1 6 j0 < · · · <
jn 6 q the system of equations{

Qji(z)(x0, . . . , xM) = 0
0 6 i 6 n

(1.1)

has no solution (x0, . . . , xM) satisfying (x0 : · · · : xM) ∈ V. As we will show
in section 2, in this case this is true for all z ∈ C excluding a discrete subset
of C.

As usual, by the notation “‖P” we mean that the assertion P holds for

all r ∈ [1,+∞) excluding a Borel subset E of (1,+∞) with

∫
E

dr < +∞.

Our main result is stated as follows:
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Main Theorem. Let V ⊂ CPM be an irreducible (possibly singular) variety
of dimension n, and let f be a non-constant holomorphic map of C into V.
Let Q = {Q1, . . . , Qq} be a V− admissible set of homogeneous polynomials
in Kf [x0, . . . , xM ] with degQj = dj ≥ 1. Assume that f is algebraically
nondegenerate over KQ. Then for any ε > 0,

‖(q − n− 1− ε)Tf (r) 6
q∑
j=1

1

dj
Nf (r,Qj).

In the special case where the coefficients of the polynomials Qj’s are constant
and the variety V is smooth, the above theorem is the Second Main Theorem
of Ru in [21]. According to Vojta ([25], p. 183) generalizing this theorem of
Ru to singular varieties can be done already by his proof methods without
essential changes of the proof (see also Chen-Ru-Yan [3], [4]), so the essential
generalization in our main result is the one to moving targets.

We define the defect of f with respect to a homogenous polynomial Q ∈
Kf [x0, . . . , xM ] of degree d with Q(f) 6≡ 0 by

δf (Q) := lim
r→+∞

inf
(

1− Nf (r,Q)

d · Tf (r)

)
.

As a corollary of the Main Theorem we get the following defect relation.

Corollary 1.1. Under the assumptions of the Main theorem, we have

q∑
j=1

δf (Qj) 6 n+ 1.
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2 Lemmas

Let K be an arbitrary field over C generated by a set of meromorphic func-
tions on C. Let V be a sub-variety in CPM of dimension n defined by the
homogeneous ideal I(V ) ⊂ C[x0, . . . , xM ]. Denote by IK(V ) the ideal in
K[x0, . . . , xM ] generated by I(V ).

For each positive integer k and for any (finite or infinite dimensional)
C-vector sub-space W in C[x0, . . . , xM ] or for any K-vector sub-space W
in K[x0, . . . , xM ], we denote by Wk the vector sub-space consisting of all
homogeneous polynomials in W of degree k (and of the zero polynomial; we
remark that Wk is necessarily of finite dimension).
The Hilbert polynomial HV of V is defined by

HV (N) := dimC
C[x0, . . . , xM ]N
I(V )N

, N ∈ N0.

By the usual theory of Hilbert polynomials (see e.g. [12]), for N >> 0, we
have

HV (N) = deg V · N
n

n!
+O(Nn−1).

Definition 2.1. Let W be a K-vector sub-space in K[x0, . . . , xM ]. For each
z ∈ C, we denote

W (z) := {P (z) : P ∈ W, all coefficients of P are holomorphic at z}.

It is clear that W (z) is a C-vector sub-space of C[x0, . . . , xM ].

Lemma 2.2. Let W be a K-vector sub-space in K[x0, . . . , xM ]N . Assume
that {hj}Kj=1 is a basis of W . Then {hj(a)}Kj=1 is a basis of W (a) (and in
particular dimKW = dimCW (a)) for all a ∈ C excluding a discrete subset.

Proof. Let (cij) be the matrix of coefficients of {hj}Kj=1. Since {hj}Kj=1 are
linearly independent over K, there exists a square submatrix A of (cij) of
order K and such that detA 6≡ 0. Let a be an arbitrary point in C such
that detA(a) 6= 0 and such that all coefficients of {hj}Kj=1 are holomorphic
at a. For each P ∈ W whose coefficients are all holomorphic at a, we write
P =

∑K
j=1 tjhj with tj ∈ K. In fact, there are coefficients bj (j = 1, . . . , K) of
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P such that (t1, . . . , tK) is the unique solution in KK of the following system
of linear equations:

A ·


t1
·
·
·
tK

 =


b1

·
·
·
bK

 .

By our choice of a, so in particular we have detA(a) 6= 0, and since {bj}Kj=1

are holomorphic at a, we get that the {tj}Kj=1 are holomorphic at a. Therefore,

P (a) =
∑K

j=1 tj(a)hj(a), tj(a) ∈ C. On the other hand, still by our choice

of a, we have hj(a) ∈ W (a) for all j ∈ {1, . . . , K}. Hence, {hj(a)}Kj=1 is
a generating system of W (a). Since detA(a) 6= 0, the matrix (cij(a)) has
maximum rank. Therefore, {hj(a)}Kj=1 are also linearly independent over
C.

Throughout of this section, we consider a V− admissible set of (n + 1)
homogeneous polynomials Q0, . . . , Qn in K[x0, . . . , xM ] of common degree d.
We write

Qj =
∑
I∈Td

ajIx
I , (j = 0, . . . , n),

where ajI ∈ K and Td is again the set of all I := (i0, . . . , iM) ∈ NM+1
0 with

i0 + · · ·+ iM = d.
Let t = (. . . , tjI , . . . ) be a family of variables. Set

Q̃j =
∑
I∈Td

tjIx
I ∈ C[t, x], (j = 0, . . . , n).

We have

Q̃j(. . . , ajI(z), . . . , x0, . . . , xM) = Qj(z)(x0, . . . , xM).

Assume that the ideal I(V ) is generated by homogeneous polynomials P1, . . . , Pm.
Since {Q0, . . . , Qn} is a V− admissible set, there exists z0 ∈ C such that the
homogeneous polynomials P1, . . . , Pm, Q0(z0), . . . , Qn(z0) in C[x0, . . . , xM ] have

no common non-trivial solutions. Denote by C[t](P1, . . . , Pm, Q̃0, . . . , Q̃n) the
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ideal in the ring of polynomials in x0, . . . , xM with coefficients in C[t] gener-

ated by P1, . . . , Pm, Q̃0, . . . , Q̃n. A polynomial R̃ in C[t] is called an inertia

form of the polynomials P1, . . . , Pm, Q̃0, . . . , Q̃n if it has the following prop-
erty (see e.g. [27]):

xsi · R̃ ∈ C[t](P1, . . . , Pm, Q̃0, . . . , Q̃n)

for i = 0, . . . ,M and for some non-negative integer s.
It is well known that for the (m + n + 1) homogeneous polynomials

Pi(x0, . . . , xM), Q̃j(. . . , tjI , . . . , x0, . . . , xM), i ∈ {1, . . . ,m}, j ∈ {0, . . . , n}
there exist finitely many inertia forms R̃1, ..., R̃s (which are homogeneous
polynomials in the tjI separately for each j (j = 0, . . . , n) ) such that the
following holds : For special values t0jI of tjI the (m + n + 1) homogeneous

polynomials Pi(x0, . . . , xM), Q̃j(. . . , t
0
jI , . . . , x0, . . . , xM), i ∈ {1, . . . ,m}, j ∈

{0, . . . , n} have a common non-trivial solution in x0, . . . , xM if and only if

t0jI is a common zero of the inertia forms R̃1, ..., R̃s (see e.g. [12], page 35

or [27], page 254). Choose such a R̃ for the special values t0jI = ajI(z0),

and put R(z) := R̃(. . . , akI(z), . . . ) ∈ K. Then by construction, R(z0) 6= 0,
hence R ∈ K \ {0}, so in particular R only vanishes on a discrete subset of

C, and, by the above property of the inertia form R̃, outside this discrete
subset, Q0(z), . . . , Qn(z) have no common solutions in V . Furthermore, by
the definition of the inertia forms, there exists a non-negative integer s such
that

xsi ·R ∈ K(P1, . . . , Pm, Q0, . . . , Qn), for i = 0, . . . ,M, (2.1)

where K(P1, . . . , Pm, Q0, . . . , Qn) is the ideal in K[x0, . . . , xM ] generated by
P1, . . . , Pm, Q0, . . . , Qn.

Let f be a nonconstant meromorphic map of C into CPM . Denote by Cf
the set of all non-negative functions h : C −→ [0,+∞] ⊂ R, which are of the
form

|u1|+ · · ·+ |uk|
|v1|+ · · ·+ |v`|

, (2.2)

where k, ` ∈ N, ui, vj ∈ Kf \ {0}.
By the First Main Theorem we have

1

2π

2π∫
0

log+|φ(reiθ)|dθ = o(Tf (r)), as r →∞
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for φ ∈ Kf . Hence, for any h ∈ Cf , we have

1

2π

2π∫
0

log+h(reiθ)dθ = o(Tf (r)), as r →∞.

It is easy to see that sums, products and quotients of functions in Cf are
again in Cf .

By the result on the inertia forms mentioned above, similarly to Lemma
2.2 in [7], we have

Lemma 2.3. Let
{
Qj

}n
j=0

be a V− admissible set of homogeneous polyno-

mials of degree d in K[x0, . . . , xM ]. If K ⊂ Kf , then there exist functions
h1, h2 ∈ Cf \ {0} such that,

h2 · ‖f‖d 6 max
j∈{0,...,n}

|Qj(f0, . . . , fM)| 6 h1 · ‖f‖d.

In fact, the second inequality is elementary. In order to obtain the first
inequality, we use equation (2.1) in the same way as the corresponding equa-
tion in Lemma 2.1 in [7], and we observe that we have Pi(f0, ..., fM) ≡ 0 for
i = 1, ...,m since f(C) ⊂ V , so the maximum only needs to be taken over
the Qj(f0, ..., fM), j = 0, ..., n. The rest of the proof is identically to the one
of Lemma 2.2 in [7].

We use the lexicographic order in Nn
0 and for I = (i1, . . . , in), set ‖I‖ :=

i1 + · · ·+ in.

Definition 2.4. For each I = (i1, · · · , in) ∈ Nn
0 and N ∈ N0 with N ≥ d‖I‖,

denote by LIN the set of all γ ∈ K[x0, . . . , xM ]N−d‖I‖ such that

Qi1
1 · · ·Qin

n γ −
∑

E=(e1,...,en)>I

Qe1
1 · · ·Qen

n γE ∈ IK(V )N .

for some γE ∈ K[x0, . . . , xM ]N−d‖E‖.

Denote by LI the homogeneous ideal inK[x0, . . . , xM ] generated by ∪N≥d‖I‖LIN .

Remark 2.5. i) LIN is a K-vector sub-space of K[x0, . . . , xM ]N−d‖I‖, and
(I(V ), Q1, . . . , Qn)N−d‖I‖ ⊂ LIN , where (I(V ), Q1, . . . , Qn) is the ideal in
K[x0, . . . , xM ] generated by I(V ) ∪ {Q1, . . . , Qn}.

ii) For any γ ∈ LIN and P ∈ K[x0, . . . , xM ]k, we have γ · P ∈ LIN+k

iii) LI ∩ K[x0, . . . , xM ]N−d‖I‖ = LIN .
iv) K[x0,...,xM ]

LI is a graded modul over the graded ring K[x0, . . . , xM ].
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Set

mI
N := dimK

K[x0, . . . , xM ]N−d‖I‖
LIN

.

For each positive integer N, denote by τN the set of all I := (i0, . . . , in) ∈ Nn
0

with N − d‖I‖ ≥ 0. Let γI1, . . . , γImI
N
∈ K[x0, . . . , xM ]N−d‖I‖ such that they

form a basis of the K-vector space
K[x0,...,xM ]N−d‖I‖

LIN
.

Lemma 2.6. {[Qi1
1 · · ·Qin

n ·γI1], . . . , [Qi1
1 · · ·Qin

n ·γImI
N

], I = (i1, . . . , in) ∈ τN}
is a basis of the K-vector space K[x0,...,xM ]N

IK(V )N
.

Proof. Firstly, we prove that:

{[Qi1
1 · · ·Qin

n · γI1], . . . , [Qi1
1 · · ·Qin

n · γImI
N

], I = (i1, . . . , in) ∈ τN} (2.3)

are linearly independent.
Indeed, let tI` ∈ K, (I = (i1, . . . , in) ∈ τN , ` ∈ {1, . . . ,mI

N}) such that∑
I∈τN

(
tI1[Qi1

1 · · ·Qin
n · γI1] + · · ·+ tImI

N
[Qi1

1 · · ·Qin
n · γImI

N
]
)

= 0.

Then ∑
I∈τN

Qi1
1 · · ·Qin

n

(
tI1γI1 + · · ·+ tImI

N
γImI

N

)
∈ IK(V )N . (2.4)

By the definition of LIN , and by (2.4), we get

tI∗1γI∗1 + · · ·+ tI∗mI∗
N
γI∗mI∗

N
∈ LI∗N ,

where I∗ is the smallest element of τN .

On the other hand, {γI∗1, . . . , γI∗mI∗
N
} form a basis of

K[x0,...,xM ]N−d‖I∗‖
LI∗N

.

Hence,

tI∗1 = · · · = tI∗mI∗
N

= 0. (2.5)

Then, by (2.4), we have∑
I∈τN\{I∗}

Qi1
1 · · ·Qin

n

(
tI1γI1 + · · ·+ tImI

N
γImI

N

)
∈ IK(V )N .
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Then, similarly to (2.5), we have

tĨ1 = · · · = t
ĨmĨ

N
= 0,

where Ĩ is the smallest element of τN \ {I∗}.
Continuing the above process, we get that tI` = 0 for all I ∈ τN and ` ∈
{1, . . . ,mI

N}, and hence, we get (2.3).
Denote by L the K-vector sub-space in K[x0, . . . , xM ]N generated by

{Qi1
1 · · ·Qin

n · γI1, . . . , Q
i1
1 · · ·Qin

n · γImI
N
, I = (i1, . . . , in) ∈ τN}.

Now we prove that: For any I = (i1, . . . , in) ∈ τN , we have

Qi1
1 · · ·Qin

n · γI ∈ L+ IK(V )N (2.6)

for all γI ∈ K[x0, . . . , xM ]N−d‖I‖.
Set I ′ = (i′1, . . . , i

′
n) := max{I : I ∈ τN}. Since γI′1, . . . , γI′mI′

N
form a

basis of
K[x0,...,xM ]N−d‖I′‖

LI′N
, for any γI′ ∈ K[x0, . . . , xM ]N−d‖I′‖, we have

γI′ =

mI′
N∑

`=1

tI′` · γI′` + hI′`, where hI′` ∈ LI
′

N , and tI′` ∈ K. (2.7)

On the other hand, by the definition of LI′N , we have Q
i′1
1 · · ·Q

i′n
n · hI′` ∈

IK(V )N (note that I ′ = max{I : I ∈ τN}). Hence,

Q
i′1
1 · · ·Qi′n

n · γI′ =

mI′
N∑

`=1

tI′`Q
i′1
1 · · ·Qi′n

n · γI′` +Q
i′1
1 · · ·Qi′n

n · hI′` ∈ L+ IK(V )N .

We get (2.6) for the case where I = I ′.
Assume that (2.6) holds for all I > I∗ = (i∗1, . . . , i

∗
n). We prove that (2.6)

holds also for I = I∗.
Indeed, similarly to (2.7), for any γI∗ ∈ K[x0, . . . , xM ]N−d‖I∗‖, we have

γI∗ =

mI∗
N∑

`=1

tI∗` · γI∗` + hI∗`, where hI∗` ∈ LI
∗

N , and tI∗` ∈ K.
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Then,

Q
i∗1
1 · · ·Qi∗n

n · γI∗ =

mI∗
N∑

`=1

tI∗`Q
i∗1
1 · · ·Qi∗n

n · γI∗` +Q
i∗1
1 · · ·Qi∗n

n · hI∗`. (2.8)

Since hI∗` ∈ LI
∗
N , we have

Q
i∗1
1 · · ·Qi∗n

n · hI∗` −
∑

E=(e1,...,en)>I∗

Qe1
1 · · ·Qen

n · gE ∈ IK(V )N ,

for some gE ∈ K[x0, . . . , xM ]N−d‖E‖.
Therefore, by the induction hypothesis,

Q
i∗1
1 · · ·Qi∗n

n · hI∗` ∈ L+ IK(V )N .

Then, by (2.8), we have

Q
i∗1
1 · · ·Qi∗n

n · γI∗ ∈ L+ IK(V )N .

This means that (2.6) holds for I = I∗. Hence, by (descending) induction we
get (2.6).

For any Q ∈ K[x0, . . . , xM ]N , we write Q = Q0
1 · · ·Q0

n ·Q. Then by (2.6),
we have

Q ∈ L+ IK(V )N .

Hence,

{[Qi1
1 · · ·Qin

n · γI1], . . . , [Qi1
1 · · ·Qin

n · γImI
N

], I = (i1, . . . , in) ∈ τN}

is a generating system of K[x0,...,xM ]N
IK(V )N

. Combining with (2.3), we get the con-
clusion of Lemma 2.6.

Lemma 2.7. #{LI : I ∈ Nn
0} <∞.

Proof. Suppose that #{LI : I ∈ Nn
0} = ∞. Then there exists an infinite

sequence {LIk}∞k=1 consisting of pairwise different ideals. We write Ik =
(ik1, . . . , ikn). Since ik` ∈ N0, there exists an infinite sequence of positve
integers p1 < p2 < p3 < · · · such that ip1` 6 ip2` 6 ip3` 6 · · · , for all
` = 1, . . . , n : In fact, firstly we choose a sub-sequence iq11 6 iq21 6 iq31 6 · · ·
of {ik1}∞k=1. Next, we choose a sub-sequence of ir12 6 ir22 6 ir32 6 · · ·
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of {iqk2}∞k=1. Continuing the above process until obtaining a sub-sequence
ip1n 6 ip2n 6 ip3n 6 · · · .

We now prove that:

LIp1 ⊂ LIp2 ⊂ LIp3 ⊂ · · · . (2.9)

Indeed, for any γ ∈ LIpkN (for any N and k satisfying N−‖Ipk‖ ≥ 0), we have

Q
ipk1

1 · · ·Qipkn
n γ −

∑
E=(e1,...,en)>Ipk

Qe1
1 · · ·Qen

n γE ∈ IK(V )N ,

for some γE ∈ K[x0, . . . , xM ]N−d‖E‖.
Then, since ipk+11 − ipk1, . . . , ipk+1n − ipkn are non-negative integers, we have

Q
ipk+11

1 · · ·Qipk+1n

n γ −
∑

E=(e1,...,en)>Ipk

Q
e1+(ipk+11

−ipk1)

1 · · ·Qen+(ipk+1n
−ipkn)

n γE ∈ IK(V )N .

On the other hand since E = (e1, . . . , en) > Ipk we have (e1 + ipk+11 −
ipk1, . . . , en + ipk+1n− ipkn) > Ipk+1

. Therefore, γ ∈ LIpk+1

N−d‖Ipk‖+d‖Ipk+1
‖. Hence,

LIpkN ⊂ LIpk+1

N−d‖Ipk‖+d‖Ipk+1
‖ for all k,N. Therefore, LIpk ⊂ LIpk+1 for all k. We

get (2.9).
Since K[x0, . . . , xM ] is a noetherian ring, the chain of ideals in (2.9) becomes
finally stationary. This is a contradiction.

Lemma 2.8. There are integers n0, c and c′ such that the following asser-
tions hold.

i) dimK
K[x0,...,xM ]N−d‖I‖

(I(V ),Q1,...,Qn)N−d‖I‖
= c for all I ∈ Nn

0 , N ∈ N0 satisfying N −
d‖I‖ ≥ n0.

ii) For each I ∈ Nn
0 there is an integer mI such that mI = mI

N for all
N ∈ N0 satisfying N − d‖I‖ ≥ n0.

iii) mI
N 6 c′, for all I ∈ Nn

0 and N ∈ N0 satisfying N − d · ‖I‖ ≥ 0.

Proof. For each z in C such that all coefficients of Qj (j = 1, . . . , n} are holo-
morphic at z, we denote by (I(V ), Q(z), . . . , Q(z)) the ideal in C[x0, . . . , xM ]
generated by I(V ) ∪ {Q1(z), . . . , Qn(z)}.

We have

(I(V ), Q1(z), . . . , Qn(z)) ⊂ (I(V ), Q1, . . . , Qn)(z). (2.10)
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Indeed, for any P ∈ (I(V ), Q1(z), . . . , Qn(z)), we write P = G + Q1(z) ·
P1 + · · · + Qn(z) · Pn, where G ∈ I(V ), and Pi ∈ C[x0, . . . , xM ]. Take P̃ :=

G + Q1 · P1 + · · · + Qn · Pn ∈ (I(V ), Q1, . . . , Qn), then all coefficients of P̃

are holomorphic at z. It is clear that P̃ (z) = P. Hence, we get (2.10).
Let N be an arbitrary positive integer and I be an arbitrary element in
τN . Let {hk :=

∑n
j=1 Qj · Rjk +

∑mk

j=1 γjk · gjk}Kk=1 be a basic system of
(I(V ), Q1, . . . , Qn)N−d·‖I‖, where gjk ∈ I(V ), and Rjk, γjk,∈ K[x0, . . . , xM ]
satisfying deg(Qj · Rjk) = deg(γjk · gjk) = N − d · ‖I‖. By Lemma 2.2, and
since {Q0, . . . , Qn} is a V− admissible set, there exists a ∈ C such that:

i) {hk(a)}Kk=1 is a basic system of (I(V ), Q1, . . . , Qn)N−d·‖I‖(a),
ii) all coefficients of Qj, Rjk, γjk, gjk are holomorphic at a, and
iii) the homogeneous polynomials Q0(a), . . . , Qn(a) ∈ C[x0, . . . , xM ] have

no common zero points in V.
On the other hand, it is clear that hk(a) ∈ (I(V ), Q1(a), . . . , Qn(a)), for all
k = 1, . . . , K. Hence, by (2.10), and by i), we have

(I(V ), Q1(a), . . . , Qn(a))N−d·‖I‖ = (I(V ), Q1, . . . , Qn)N−d·‖I‖(a).

Then, we have

dimK(I(V ), Q1, . . . , Qn)N−d·‖I‖ = K = dimC(I(V ), Q1, . . . , Qn)N−d·‖I‖(a)

= dimC(I(V ), Q1(a), . . . , Qn(a))N−d·‖I‖.

Therefore,

dimK
K[x0, . . . , xM ]N−d‖I‖

(I(V ), Q1, . . . , Qn)N−d‖I‖
= dimC

C[x0, . . . , xM ]N−d‖I‖
(I(V ), Q1(a), . . . , Qn(a))N−d‖I‖

.

(2.11)

On the other hand, by the Hilbert-Serre Theorem ([12], Theorem 7.5), there
exist positive integers n1, c such that

dimC
C[x0, . . . , xM ]N−d‖I‖

(I(V ), Q1(a), . . . , Qn(a))N−d‖I‖
= c,

for all I ∈ Nn
0 and N ∈ N0 satisfying N − d‖I‖ ≥ n1.

Combining with (2.11), we have

dimK
K[x0, . . . , xM ]N−d‖I‖

(I(V ), Q1, . . . , Qn)N−d‖I‖
= c, (2.12)
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for all I ∈ Nn
0 and N ∈ N0 satisfying N − d‖I‖ ≥ n1.

Let hI and h be the Hilbert functions of K[x0,...,xM ]
LI and K[x0,...,xM ]

(I(V ),Q1,...,Qn)
,

respectively. Since (I(V ), Q1, . . . , Qn) ⊂ LI , we have hI 6 h. On the other
hand, by Matsumura [17], Theorem 14, hI(k) is a polynomial in k for all
k >> 0 and by (2.12), we have h(k) = c for all k ≥ n1. Hence, there are
constants mI , n2 such that hI(k) = mI for all k ≥ n2 and then mI

N =
hI(N −d‖I‖) = mI for all N ∈ N0 satisfying N −d‖I‖ ≥ n2. By Lemma 2.7,
we may choose n2 common for all I. Taking n0 := max{n1, n2}, we get
Lemma 2.8, i) and ii).

We have mI
N = hI(N − d‖I‖) 6 h(N − d‖I‖) 6 max{c, h(k) : k =

0, . . . , n0}.Hence, taking c′ := max{c, h(k) : k = 0, . . . , n0}, we get Lemma 2.8
iii).

Set

m := min
I∈Nn

0

mI .

We fix I0 = (i01, . . . , i0n) ∈ Nn
0 , and N0 ∈ N0 such that N0 − d‖I0‖ ≥ n0 and

mI0
N0

= m.
For each positive integer N, divisible by d, denote by τ 0

N the set of all
I = (i1, . . . , in) ∈ τN such that N − d‖I‖ ≥ n0 and ik ≥ max{i01, . . . , i0n},
for all k ∈ {1, . . . , n}.
We have

#τN =

(
N
d

+ n

n

)
=

1

dn
· N

n

n!
+O(Nn−1),

#{I ∈ τN : N − d‖I‖ 6 n0} = O(Nn−1),

#{I = (i1, . . . , in) ∈ τN : ik < max
16`6n

i0`, for some k} = O(Nn−1), and so

#τ 0
N =

1

dn
· N

n

n!
+O(Nn−1). (2.13)

Lemma 2.9. mI
N = deg V · dn for all N >> 0, divisible by d, and I ∈ τ 0

N .

Proof. For any γ ∈ LI0N0
, we have

T := Qi01
1 · · ·Qi0n

n γ −
∑

E=(e1,...,en)>I0

Qe1
1 · · ·Qen

n γE ∈ IK(V )N0 ,
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for some γE ∈ K[x0, . . . , xM ]N−d‖E‖.
Then, for any I = (i1, . . . , in) ∈ τ 0

N , we have

Qi1
1 · · ·Qin

n γ −
∑

E=(e1,...,en)>I0

Qe1+i1−i01
1 · · ·Qen+in−i0n

n γE

= Qi1−i01
1 · · ·Qin−i0n

n · T ∈ IK(V )N0 . (2.14)

On the other hand since I ∈ τ 0
N and E > I0, we have (e1 + i1 − i01, . . . , en +

in − i0n) > I.
Hence, by (2.14) we have

γ ∈ LIN0+d‖I‖−d‖I0‖.

This implies that

LI0N0
⊂ LIN0+d‖I‖−d‖I0‖.

Then

m = mI0
N0

= dimK
K[x0, . . . , xM ]N0−d‖I0‖

LI0N0

≥ dimK
K[x0, . . . , xM ]N0−d‖I0‖

LIN0+d‖I‖−d‖I0‖

= mI
N0+d‖I‖−d‖I0‖. (2.15)

On the other hand since (N0 + d‖I‖ − d‖I0‖)−d‖I‖ = N0−d‖I0‖ ≥ n0, and
N − ‖I‖ ≥ n0 (note that I ∈ τ 0

N), by Lemma 2.8, we have

mI = mI
N0+d‖I‖−d‖I0‖ = mI

N .

Hence, by (2.15), m ≥ mI = mI
N . Then, by the minimum property of m, we

get that

mI
N = m for all I ∈ τ 0

N . (2.16)

We now prove that:

dimK IK(V )N = dimC I(V )N . (2.17)

Indeed, let {P1, . . . , Ps} be a basis of the C− vector space I(V )N . It is
clear that IK(V )N is a vector space over K generated by I(V )N , therefore
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{P1, . . . , Ps} is also a generating system of IK(V )N . Then, for (2.17), it suf-
fices to prove that if t1, . . . , ts ∈ K satisfy

t1 · P1 + · · ·+ ts · Ps ≡ 0, (2.18)

then t1 = · · · = ts ≡ 0. We rewrite (2.18) in the following form

A ·


t1
·
·
·
ts

 =


0
·
·
·
0

 ,

where A ∈Mat(
(
M+N
N

)
× s,K).

If the above system of linear equations has non-trivial solutions, then rankKA <
s. Then rankCA(z) < s for all z ∈ C excluding a discrete set. Take a ∈ C
such that rankCA(a) < s. Then the following system of linear equations

A(a) ·


t1
·
·
·
ts

 =


0
·
·
·
0

 ,

has some non-trivial solution (t1, . . . , ts) = (α1, . . . , αs) ∈ Cs \ {0}. Then
α1 · P1 + · · ·+ αs · Ps ≡ 0, this is a contradiction. Hence, we get (2.17).

By Lemma 2.6 and (2.17), we have∑
I∈τN

mI
N = dimK

K[x0, . . . , xM ]N
IK(V )N

= dimC
C[x0, . . . , xM ]N
I(V )N

= deg V · N
n

n!
+O(Nn−1), (2.19)

for all N large enough.
Combining with (2.16), we have

m ·#τ 0
N +

∑
I∈τN\τ0N

mI
N = deg V · N

n

n!
+O(Nn−1). (2.20)
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On the other hand by Lemma 2.8, mI
N 6 c′, for all I ∈ τN \ τ 0

N . Hence, by
(2.13), we have

m = deg V · dn.

Combining with (2.16), we have

mI
N = deg V · dn

for all I ∈ τ 0
N .

Lemma 2.10. For each s ∈ {1, . . . , n}, and for N >> 0, divisible by d, we
have: ∑

I=(i1,...,in)∈τN

mI
N · is ≥

deg V

d · (n+ 1)!
Nn+1 −O(Nn).

Proof. Firstly, we note that if I = (i1, . . . , in) ∈ τ 0
N , then all symmetry I ′ =

(iσ(1), . . . , iσ(n)) of I also belongs to τ 0
N . On the other hand, by Lemma 2.9,

we have mI
N = deg V · dn, for all I ∈ τ 0

N . Therefore, by (2.13) we have∑
I=(i1,...,in)∈τ0N

mI
N · i1 = · · · =

∑
I=(i1,...,in)∈τ0N

mI
N · in

= deg V · dn ·
∑
I∈τ0N

‖I‖
n

= deg V · dn ·

∑
I∈τN

‖I‖
n
−

∑
I∈τN\τ0N

‖I‖
n


≥ deg V · dn

 N
d∑

k=0

k

n
·
(
k + n− 1

n− 1

)
−
(
#τN −#τ 0

N

)
· N
nd


= deg V · dn

 N
d∑

k=0

k

n
·
(
k + n− 1

n− 1

)
−O(Nn−1) · N

nd
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= deg V · dn
N
d∑

k=1

(
k + n− 1

n

)
−O(Nn)

= deg V · dn
(
N
d

+ n

n+ 1

)
−O(Nn)

≥ deg V

d · (n+ 1)!
Nn+1 −O(Nn).

Hence, for each i ∈ {1, . . . , n}∑
I=(i1,...,in)∈τN

mI
N · is ≥

∑
I=(i1,...,in)∈τ0N

mI
N · is

≥ deg V

d · (n+ 1)!
Nn+1 −O(Nn).

We recall that by (2.19), for N >> 0, we have

dimK
K[x0, . . . , xM ]N
IK(V )N

= HV (N) = deg V · N
n

n!
+O(Nn−1).

Therefore, from Lemmas 2.6, 2.10 we get immediately the following result.

Lemma 2.11. For all N >> 0 divisible by d, there are homogeneous poly-
nomials φ1, . . . , φHV (N) in K[x0, . . . , xM ]N such that they form a basis of the

K− vector space
K[x0,...,xM ]N
IK(V )N

, and

HV (N)∏
j=1

φj −
(
Q1 · · ·Qn

)deg V ·Nn+1

d·(n+1)!
−u(N) · P ∈ IK(V )N ·HV (N) ,

where u(N) is a function in N satisfying u(N) 6 O(Nn), P is a homogeneous
polynomial of degree

N ·HV (N)− n · deg V ·Nn+1

(n+ 1)!
+ nd · u(N) =

deg V ·Nn+1

(n+ 1)!
+O(Nn).

Lemma 2.12 (see [18]). Let f be a non-constant holomorphic map of C into
CPM . Let Hj = aj0x0 + · · ·+ ajMxM , j ∈ {1, . . . , q} be q linear homogeneous

19



polynomials in Kf [x0, . . . , xM ]. Denote by K{Hj}qj=1
the field over C of all

meromorphic functions on C generated by {aji, i = 0, . . . ,M ; j = 1, . . . , q}.
Assume that f is linearly non-degenerate over K{Hj}qj=1

. Then for each ε > 0,

we have∥∥∥ 1

2π

∫ 2π

0

max
K

log
∏
k∈K

(‖f‖ · max
i=0,...,M

|aki|

|Hk(f)|
(reiθ)

)
dθ 6 (M + 1 + ε)Tf (r),

(2.21)

where maxK is taken over all subsets K ⊂ {1, . . . , q} such that the polyno-
mials Hj, j ∈ K are linearly independent over K{Hj}qj=1

.

Remark 2.13. Since the coefficients of the H ′js are small functions (with
respect to f), by the First Main Theorem, and by (2.21), for each ε > 0, we
have ∥∥∥ 1

2π

∫ 2π

0

max
K

log
∏
k∈K

( ‖f‖
|Hk(f)|

(reiθ)
)
dθ 6 (M + 1 + ε)Tf (r).

3 Proof of the Main Theorem

Replacing Qj by Q
d
dj , where d is the l.c.m of the Qj’s, we may assume that

the polynomials Q1, . . . , Qq have the same degree d. Let N >> 0 be an
integer divisible by d. For each J := {j1, . . . , jn} ⊂ {1, . . . , q}, by Lemma
2.11 (for K := KQ), there are homogeneous polynomials φJ1 , . . . , φ

J
HV (N) (de-

pending on J) in KQ[x0, . . . , xM ] and there are functions (common for all J)
u(N), v(N) 6 O(Nn) such that they form a basis of the KQ− vector space
KQ[x0,...,xM ]
IKQ (V )N

, and

HV (N)∏
`=1

φJ` −
(
Qj1 · · ·Qjn

)deg V ·Nn+1

d·(n+1)!
−u(N) · PJ ∈ IKQ(V )N ·HV (N) ,

where PJ is a homogeneous polynomial of degree deg V ·Nn+1

(n+1)!
+ v(N).

On the other hand, for any Q ∈ IKQ(V )N ·HV (N), we have Q(f) ≡ 0.
Therefore

HV (N)∏
`=1

φJ` (f) =
(
Qj1(f) · · ·Qjn(f)

)deg V ·Nn+1

d·(n+1)!
−u(N) · PJ(f).

20



Since the coefficients of PJ are small functions (with respect to f), it is easy
to see that there exist hJ ∈ Cf such that

|PJ(f)| 6 ‖f‖degPJ · hJ = ‖f‖
deg V ·Nn+1

(n+1)!
+v(N) · hJ .

Hence,

log
(HV (N)∏

`=1

|φJ` (f)|
)
6
(deg V ·Nn+1

d · (n+ 1)!
− u(N)

)
· log

∣∣Qj1(f) · · ·Qjn(f)
∣∣+ log+ hJ

+
(deg V ·Nn+1

(n+ 1)!
+ v(N)

)
· log ‖f‖.

This implies that there are functions ω1(N), ω2(N) 6 O( 1
N

) such that

log
(
|Qj1(f)| · · · |Qjn(f)|

)
≥
( d · (n+ 1)!

deg V ·Nn+1
− ω1(N)

Nn+1

)
· log

(HV (N)∏
`=1

|φJ` (f)|
)

− 1

Nn+1
log+ h̃J − (d+ ω2(N)

)
· log ‖f‖, (3.1)

for some h̃J ∈ Cf .
We fix homogeneous polynomials Φ1, . . . ,ΦHV (N) ∈ KQ[x0, . . . , xM ]N such

that they form a basis of the KQ− vector space KQ[x0,...,xM ]N
IKQ (V )N

. Then for each

subset J := {j1, . . . , jn} ∈ {1, . . . , q}, there exist homogeneous linear poly-
nomials LJ1 , . . . L

J
HV (N) ∈ KQ[y1, . . . , yHV (N)] such that they are linearly inde-

pendent over KQ and

φJ` − LJ` (Φ1, . . . ,ΦHV (N)) ∈ IKQ(V )N , for all ` ∈ {1, . . . , HV (N)}. (3.2)

It is easy to see that there exists a meromorphic function ϕ such that

Nϕ(r) = o(Tf (r)), N 1
ϕ

(r) = o(Tf (r)) and Φ1(f)
ϕ
, . . . ,

ΦHV (N)(f)

ϕ
are holomorphic

and have no common zeros (note that all coefficients of Φ` are in KQ ⊂ Kf ).
Let F : C → CPHV (N)−1 be the holomorphic map with the reduced rep-

resentation F :=
(Φ1(f)

ϕ
: · · · :

ΦHV (N)(f)

ϕ

)
. Since f is algebraically nonde-

generate over KQ, and since the polynomials Φ1, . . . ,ΦHV (N) form a basis of
KQ[x0,...,xM ]N
IKQ (V )N

, we get that F is linearly non-degenerate over KQ. As a corollary,

21



F is linearly non-degenerate over the field over C generated by all coefficients
of L`’s.

It is easy to see that

TF (r) 6 N · Tf (r) + o(Tf (r)). (3.3)

In order to simplify the writing of the following series of inequalities, put

A(N) :=
(

d·(n+1)!
deg V ·Nn+1 − ω1(N)

Nn+1

)
. By (3.2), for all ` ∈ {1, . . . , HV (N)} we have

log |φJ` (f)| = log |LJ` (F )|+ log |ϕ|.

Hence, by (3.1), and by taking h̃ ∈ Cf such that log+ h̃J 6 log+ h̃ for all J ,
we get

log
(
|Qj1(f)| · · · |Qjn(f)|

)
≥ A(N) ·

(
HV (N) · log |ϕ|+ log

(HV (N)∏
`=1

|LJ` (F )|
))

− 1

Nn+1
log+ h̃J −

(
d+ ω2(N)

)
log ‖f‖

≥ A(N) · log
(HV (N)∏

`=1

|LJ` (F )|
)

+ A(N) ·HV (N) · log |ϕ|

− log+ h̃−
(
d+ ω2(N)

)
log ‖f‖ . (3.4)

Then, by Lemma 2.3, and by increasing h̃ ∈ Cf if necessary, we get

log

q∏
j=1

|Qj(f)| = max
{β1,...,βq−n}⊂{1,...,q}

log|Qβ1(f) · · ·Qβq−n(f)|

+ min
J={j1,...,jn}⊂{1,...,q}

log|Qj1(f) · · ·Qjn(f)|

≥ (q − n)d · log‖f‖+ min
J⊂{1,...,q},#J=n

A(N) · log
(HV (N)∏

`=1

|LJ` (F )|
)

−
(
d+ ω2(N)

)
log ‖f‖+ A(N) ·HV (N) · log |ϕ| − log+h̃

= (q − n− 1)d · log‖f‖+ min
J⊂{1,...,q},#J=n

A(N) · log
(HV (N)∏

`=1

|LJ` (F )|
)

− ω2(N) · log‖f‖+ A(N) ·HV (N) · log |ϕ| − log+h̃
(3.5)
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Now for given ε > 0 we fix N = N(ε) big enough such that

ω2(N) 6
ε

3
and A(N) < 1 . (3.6)

By using Remark 2.13 to the holomorphic map F : C → CPHV (N)−1, the
error constant ε

2N
> 0 and the system of linear polynomials LJ1 , . . . L

J
HV (N) ∈

KQ[y1, . . . , yHV (N)], where J runs over all subsets J := {j1, . . . , jn} ∈ {1, . . . , q},
we get:

∥∥∥ 1

2π

∫ 2π

0

max
J⊂{1,...,q},#J=n

log
(HV (N)∏

`=1

‖F‖
|LJ` (F )|

(reiθ)
)
dθ

6
1

2π

∫ 2π

0

max
K

log
∏
k∈K

( ‖F‖
|LJ` (F )|

(reiθ)
)
dθ 6 (HV (N) +

ε

2N
)TF (r) , (3.7)

where maxK is taken over all subsets of the system of linear polynomials
LJ1 , . . . L

J
HV (N) ∈ KQ[y1, . . . , yHV (N)], where J runs over all subsets J :=

{j1, . . . , jn} ∈ {1, . . . , q}, such that these linear polynomials are linearly in-
dependent over KQ.

So, by integrating (3.5) and combining with (3.6) and (3.7) we have (using
that Nϕ(r) = o(Tf (r)), N 1

ϕ
(r) = o(Tf (r)), that A(N) ·HV (N) 6 O( 1

N
) and

that h̃ ∈ Cf )∥∥∥ q∑
j=1

Nf (r,Qj) ≥d(q − n− 1)Tf (r)−
ε

3
Tf (r) + A(N) ·HV (N) ·

(
Nϕ(r)−N 1

ϕ
(r)
)
− ε

12
Tf (r)

+ A(N) · 1

2π

∫ 2π

0

min
J⊂{1,...,q},#J=n

log
(HV (N)∏

`=1

|LJ` (F )|(reiθ)
)
dθ

≥d(q − n− 1)Tf (r)−
ε

3
Tf (r)−

ε

12
Tf (r)−

ε

12
Tf (r)

+ A(N) · 1

2π

∫ 2π

0

min
J⊂{1,...,q},#J=n

log
(HV (N)∏

`=1

|LJ` (F )|(reiθ)
)
dθ
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=d(q − n− 1)Tf (r)−
ε

2
Tf (r)

− A(N) · 1

2π

∫ 2π

0

max
J⊂{1,...,q},#J=n

log
(HV (N)∏

`=1

‖F‖
|LJ` (F )|

(reiθ)
)
dθ

+ A(N) ·HV (N) · TF (r)

≥d(q − n− 1)Tf (r)− A(N)
(
HV (N) +

ε

2N

)
TF (r)

+ A(N) ·HV (N) · TF (r)− ε

2
Tf (r)

≥d(q − n− 1)Tf (r)−
ε

2N
TF (r)− ε

2
Tf (r)

≥d(q − n− 1− ε)Tf (r).

This completes the proof of the Main Theorem. �
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