
HAL Id: hal-01137607
https://hal.science/hal-01137607v1

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

In situ investigation of MgO nanocube deformation at
room temperature

Inas Issa, Jonathan Amodeo, Julien Réthoré, Lucile Joly-Pottuz, Claude
Esnouf, Julien Morthomas, Michel Perez, Jérome Chevalier, Karine

Masenelli-Varlot

To cite this version:
Inas Issa, Jonathan Amodeo, Julien Réthoré, Lucile Joly-Pottuz, Claude Esnouf, et al.. In situ
investigation of MgO nanocube deformation at room temperature. Acta Materialia, 2015, 86, pp.295-
304. �10.1016/j.actamat.2014.12.001�. �hal-01137607�

https://hal.science/hal-01137607v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


In situ investigation of MgO nanocube deformation  
at room temperature 

 
I. Issa1,2, J. Amodeo1*, J. Réthoré2, L. Joly-Pottuz1, C. Esnouf1, J. Morthomas1,  

M. Perez1, J. Chevalier1 and K. Masenelli-Varlot1 

 

1 MATEIS, CNRS UMR5510, Université de Lyon, INSA-Lyon, F-69621 Villeurbanne Cedex, France 

2 LAMCOS, CNRS UMR5259, Université de Lyon, INSA-Lyon, F-69621 Villeurbanne Cedex, France 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(*) Corresponding author: 

 

Dr. Jonathan Amodeo 

Laboratoire MATEIS - UMR CNRS 5510 

Groupe METAL, groupe CERA 

25 avenue Jean Capelle 

Bat. St. Exupéry, 2ème étage 

69621 Villeurbanne Cedex, France 

Tel: 04 72 43 82 35 

Fax: 04 72 43 85 39 

e-Mail: jonathan.amodeo@insa-lyon.fr 

  



 2 

In situ investigation of MgO nanocube deformation  
at room temperature 

 

Abstract 

The mechanical behaviour of <100>-oriented MgO nanocubes is investigated using in situ 

TEM compression tests at room temperature and molecular dynamics simulations. 

Experiments show high strength and ductility in addition to specific deformation mechanisms 

interpreted by the simulation. The nucleation and the propagation of ½<110>{110} 

dislocations are at the onset of the plastic deformation. The different deformation processes 

as well as the possible formation of a dislocation network during compression are discussed. 

 

Keywords: MgO, in situ TEM, nanoparticles, molecular dynamics, nanomechanics, 

dislocations 

 

I Introduction 

Nanocrystalline (NC) ceramics are of particular interest because of their high mechanical 

characteristics e.g., high hardness, crack propagation resistance, superplastic deformation at 

moderate temperatures, better than their conventional polycrystalline counterparts [1,2]. 

Therefore, NC ceramics are increasingly used for their mechanical properties, as example in 

the field of modern orthopaedic surgery where they are employed as femoral heads or 

acetabular cups, in replacement of metallic alloys, to extend medical prosthesis lifetime. 

Their use indeed reduces wear rates and ion release, presumed to be responsible for 

inflammatory reactions [3,4]. In this context, one way to enhance the mechanical properties 

of post-processed NC ceramics and thereby optimize their compaction and sintering 

processes is to improve the global understanding of the mechanics of ceramic nanoparticles. 

As for NC ceramics, the mechanical properties of nano-objects as pillars, particles or wires 

have recently drawn intensive scientific attention mainly through their high achievable yield 
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strength and ductility [5]. Owing to the characteristic sizes of such objects, in situ mechanical 

tests in a transmission electron microscope (TEM) or in a scanning electron microscope 

(SEM) have revealed to give valuable pieces of information regarding the deformation 

mechanisms [6,7]. Deep in the submicrometer scale, size phenomena influence elastic 

properties of nanowires (NWs) and nanoparticles through the combination of surface and 

core effects in both the experiments and atomistic simulations [8,9]. This size effect involves 

also the plastic deformation regime for whom few theories based on the single-arm 

dislocation source model or the dislocation nucleation/starvation model [10,11] still try to 

provide a unique description of the now well-known principle “smaller is stronger”. 

Nevertheless, most of these studies are carried on metals, especially face-centered cubic 

(FCC), and only few works have been dedicated to ceramics [12-15]. Calvie et al. and 

collaborators have recently reported in situ compression tests in the TEM of a  g-alumina 

Al2O3 nanospheres [14]. The main feature of this study is that the sample undergoes wide 

and homogeneous plastic deformation, as observed in metallic [16,17], intermetallic [18] or 

silicon [19,20] nanoparticles. A detailed mechanical analysis based on digital image 

correlation (DIC) and finite elements simulations allowed the determination of a mechanical 

constitutive law [21]. However, the identification of elementary mechanisms responsible for 

plastic deformation in g-Al2O3 nanospheres could not be determined in situ. In particular, no 

dislocation could be observed experimentally. This lack was primarily attributed to the 

spherical geometry of the sample and to the diffraction conditions. Furthermore, g-Al2O3 is 

not a stable phase at the macroscopic scale what restricts drastically the comparison of its 

mechanical properties to the other bulk-type alumina (α-phase). At this point, it has to be 

mentioned that dislocations could successfully be observed in situ in silver nanoparticles [22] 

but compression axis could not be clearly determined from the images and the interpretation 

remained qualitative.  
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Here we propose to reach further the investigation of the mechanical behaviour of single 

crystalline ceramic nanoparticles using in situ TEM compression tests and molecular 

dynamics (MD) simulations applied to magnesium oxide (MgO).  

MgO is an ionic model ceramic with the B1 crystalline structure which has been widely 

studied in the past decades for its potential application as a refractory material (Tf > 3000 K). 

MgO is also considered as a model material for dislocation properties analysis in B1-

structured alkali halides and other ionic ceramics (e.g., NaCl, LiF, KCl, CaO, etc.) [23]. As 

most ceramic materials do under compression, bulk MgO single crystals accommodate only 

a slight amount of strain before failure (~7% for <100>-oriented samples) at room 

temperature (RT), while larger deformation is reached at higher temperature [24,25]. In bulk 

MgO, plastic strain is governed either by lattice friction, solution hardening or dislocation-

dislocation interactions depending on the investigated temperature range [26-28]. At RT, 

lattice friction competes with solution hardening on the two main slip system families 

½<110>{110} and ½<110>{100} of the crystalline structure. {111} and {112} slips have been 

observed only in rare and exotic cases [29-31]. ½<110>{110} dislocation glide involves the 

nucleation of kink-pairs, typical of the lattice friction regime. This specific process leads to a 

characteristic dislocation microstructure made of rate-controlling long screw dislocations 

[32,33] which are also observed in body-centered cubic (BCC) metals at low temperature 

[34,35]. Above a transition temperature (ca. 600 K for ½<110>{110} slip systems and 1500 K 

for ½<110>{100}), lattice friction is overcome and plastic strain is accommodated by curved 

dislocations [36,37], ruled by the strength of dislocation-dislocation “forest” interactions 

[38,39]. In addition to well-known mechanical properties, MgO is stable at small scale and 

high pressure [40,41]. Finally, MgO nanoparticles can be easily synthetized from different 

methods leading to perfectly well-shaped nanocubes [42,43]. This sharp geometry permits to 

easily define a standard [001] compression axis, simplify the identification of slip systems 

and reduce the misorientation troubles commonly observed in nanosphere compression 

tests. 
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In this study, we report in situ compression experiments in the TEM and MD compression 

simulations of MgO nanocubes at RT. Simulations are performed to investigate elementary 

deformation mechanisms at the atomic scale and corroborate experimental observations. 

 

II Materials and methods 

II.1 Nanocube experimental synthesis and characterization 

Magnesium oxide nanocubes were prepared by burning commercial Magnesium chips (4-30 

mesh) in air as described in the pioneer work of Heidenreich [44]. This specific method is 

known to produce perfectly cubic-shaped nanoparticles down to sizes of a few nm. The 

smoke particles were caught directly on three substrates: a glass substrate for SEM imaging, 

a TEM grid (Cu 300-mesh covered by a holey carbon film) and the nanocompression 

sapphire substrate. 

Primary characterisations were carried out by SEM, high resolution TEM (HRTEM) and weak 

beam dark field (WBDF) TEM. SEM images were acquired on a Zeiss Supra 55VP 

microscope. The acceleration voltage was fixed to 1 kV and images were acquired with a 

secondary electron Everhardt-Thornley detector. For the HRTEM observations, a JEOL 

2010F TEM microscope equipped with a field emission gun and operating at 200 kV was 

used. Images were recorded using a Gatan Orius 200 CCD camera. Energy-dispersive 

spectroscopy (EDS) was performed using an 80 mm2 SSD detector from Oxford Instruments. 

Finally, WBDF characterisations were carried out on a JEOL 200CX microscope, equipped 

with a tungsten filament that operates at 200 kV. Images were acquired with the wave [220], 

that allows the detection of dislocations in the (101),	(101&), (011) and (011&) slip planes. 

Under such conditions, dislocations can be imaged as narrow lines which are approximately 

10-15 nm wide [45]. 

A typical SEM image of the collected smoke is displayed figure 1a. Particles consist mostly of 

sharp nanocubes with edge sizes ranging between 20 nm and 300 nm. EDS spectra (not 

displayed) acquired during HRTEM observations indicate that the nanocubes are exclusively 
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composed of MgO (99.9 ± 0.1 at.%). Particles are single crystals, as shown in the HRTEM 

image of figure 1b. The surfaces of the nanocubes are crystalline as well and are oriented 

along the <100> directions, as shown by the electronic diffraction patterns, figure 1b. 

Regarding the importance that dislocations have during all stages of plastic deformation, a 

large number of MgO nanocubes were characterized by WBDF before any mechanical test. 

Figure 1c displays a WBDF image of two MgO nanocubes. The image shows no bulk lattice 

defect such as dislocations, grain boundaries or twinning. Contrasts were only observed at 

the contact points of the nanocubes, and were attributed to the stress field induced by the 

elastic compression of the lattice [46]. None of the imaged nanocubes were found to contain 

bulk lattice defects. In the following, similar samples used for in situ nanocompression testing 

will thus be considered as initially dislocation-free. 

 

II.2 In situ TEM nanocompression 

Pristine MgO nanocubes were deposited onto a 75 µm-thick sapphire substrate by passing 

the substrate in the smoke during synthesis. This method precludes the use of solvents that 

may modify the surface structure of MgO samples [47]. Since the nanocubes exhibit <100> 

surfaces, the compression axis is expected to be parallel to [001].  

In situ nanocompression tests were carried out using a dedicated sample holder from 

Nanofactory Instruments, fitted in a JEOL 2010F microscope operating at 200 kV 

accelerating voltage. The sample holder was equipped with a truncated diamond tip 

(flattened area of about 0.25 μm2) and a load cell (maximum load of 3 mN), as shown figure 

1d. Particles were positioned on the substrate, displaced toward the tip during compression 

at a controlled displacement rate of 2 nm/s that is equivalent to an engineering strain rate of 

0.02 s-1 for a 100 nm nanocube.  

The longitudinal displacement of the substrate was determined using DIC. For this purpose, 

a rigorous comparison of grey level transitions between the tip, the samples and the 

substrate has been performed on successive images. DIC allows arbitrary displacement 
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fields to be estimated with a sub-pixel resolution (about 1/100 pixel). The distance measured 

between substrate and diamond tip edges corresponds to the instant size of the sample. 

Furthermore, not only the longitudinal displacement but also the lateral deformation was 

obtained. As the longitudinal and lateral deformations were synchronized on-the-fly with the 

force value, true stress and true strain were deduced considering that lateral deformations 

were equivalent in both directions. The true strain is defined as ln	(𝐿 𝐿*)⁄ , where 𝐿 is the 

instantaneous position and 𝐿* is the initial position of the substrate with respect to the tip i.e., 

the initial nanocube size. The true stress is defined as the ratio between the instant force 

measured by the sensor and the effective cube surface inferred from the DIC calculation. 

 

 

Fig. 1 (Color online) (a) SEM image of smoked MgO nanocubes. (b) HRTEM image of a 

nanocube. In the inset, the diffraction pattern shows {200} crystallographic planes with a 

lattice spacing of about 2.15 Å. The sample is fully crystalline and surfaces are oriented 

along the <100> directions. (c) WBDF TEM image of two nanocubes free of bulk lattice 

defects. Only few contrasts due to contacts between adjacent cubes can be observed. (d) 

Scheme of the nanocompression experimental set-up. For the sake of clarity, the size of the 

sample has been widely increased compared to other components. (e) Scheme of the MD 
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nanocompression simulation set-up, made of two force fields to respectively sustain and 

compress the nanocube.	

 

 

II.3 Computational methods 

MD simulations were performed to investigate elementary deformation mechanisms of 

initially dislocation-free MgO nanocubes under compression at RT using the LAMMPS code 

[48]. Atomic interactions were described using a rigid ion model that included a Buckingham 

term in addition to long-range Coulombic interactions. Here we used the Ball and Grimes 

partial charges parameterization [49] successfully employed to describe surface diffusion 

[49], elastic constants and dislocation properties [50], which are considered as key points for 

interatomic potential transferability towards nanomechanical test simulations. We used a cut-

off parameter of 8 Å for short-range interactions. Full long-range interactions between 

charges in compression simulations were computed using the multi-level summation method 

(MSM) solver [51]. MSM relative error in per-atom forces from 10-4 to 10-8 were tested without 

significant outcome on the simulation results. Cubic samples with edge lengths from 4.2 nm 

to 12.7 nm were shaped with free surfaces oriented along the <100> directions as suggested 

by the experiment. The MD compression tests of MgO nanocubes were performed using the 

following procedure. First, the structure of the nanocubes was optimized using conjugate 

gradient and the FIRE algorithm [52]. Next, the samples were equilibrated during 30 ps in the 

NVE ensemble down to 300 K. Then, we used the Nosé-Hoover thermostat [53] for 50 ps 

equilibration in the NVT canonical ensemble. Finally, the compression tests were performed 

using two external potentials (see figure 1e) which model an infinite flat punch and the 

substrate [54,55]. To model uniaxial compression along the [001] direction, the top indenter 

was subjected to a constant displacement rate equivalent to an engineering strain rate of 108 

s-1. The bottom potential was kept fixed to sustain the sample. During compression 

simulations, time steps down to 2 fs were used and the Nosé-Hoover thermostat imposed a 
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temperature of 300 K. Note that sample size, strain rate and other simulation parameters 

were chosen regarding settings generally adopted in the case of the embedded-atom method 

(EAM) for metals [17], what involves a significant increase of the cpu costs due to long-range 

Coulombic interactions in this study. The true strain was calculated as in the experiment (see 

previous section) and the compressive stress was computed as the ratio between the force 

experienced by the indenter and the instantaneous maximum contact area drawn by the last 

upper atomic layers. Simulations were analysed using AtomViewer [56], a tool which 

combines a modified bond-angle method [57] to identify crystalline structures, a Nye-tensor 

analysis for dislocation Burgers vector definition [58] and a skeletonization algorithm for 

dislocation reconstruction [59].  

An Ewald summation method [60] with a radius of 12 Å was used for the calculation of bulk 

material properties that involved periodic boundary conditions e.g., lattice parameter, elastic 

constants and generalized stacking fault (GSF) energies [61]. We used the same short-range 

interaction cut-off (8 Å) for bulk material properties and nanocompression simulations. GSF 

energies were computed using the full periodic method described in Gouriet et al. (2014) 

study [62] to avoid artefacts induced by charged surfaces. Calculations were performed 

along the ½<110> Burgers vector direction for {110}, {100} and {111} planes. Simulation cells 

were chosen large enough, especially along the orientation of the stacking fault normal, to 

reduce the interactions between fault periodic replicas and minimize long-range Coulombic 

effects. The initial size of the simulation cells are 1.79 nm*1.69 nm*14.29 nm, 1.79 nm*1.79 

nm*14.31 nm and 1.49 nm*1.55 nm*27.71 nm respectively for {110}, {100} and {111} GSF 

calculations.  

 

III Results 

III.1 Mechanical behaviour of MgO nanocubes  

The mechanical response of a 140 nm edge size MgO nanocube is displayed on figure 2a. 

The compression test is composed of five successive load-unload cycles. In addition to the 
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stress-strain curve, four on the fly on-the-fly images are presented figure 2b-e for true strain 

of about 𝜀=1.2%, 𝜀 =18.7%, 𝜀 =49.7% and 𝜀 =78.9% respectively. The sample is deformed 

up to 𝜀 =79.0% before final unload.  

Early in the first cycle, the stress-strain dependency is nonlinear and noisy. This transitory 

stage reflects the accommodation regime between the substrate, the sample and the tip up 

to 𝜀 =3.5%. Then, the curve exhibits an elastic-like behaviour up to 𝜀 =9.0% and a true stress 

of about 𝜎=0.78 GPa. A Young’s modulus of about 𝐸[**0]=141.9 GPa is deduced from the 

early beginning of the first unload. From this point and during the rest of the whole 

compression test, mobile contrast bands are observed in the nanocube. 

 

 

Fig. 2 (a): Stress-strain curve for a 140 nm edge lengths MgO nanocube compressed in 

situ. Five loading-unloading cycles are shown. Black arrows refer to snapshots. (b)-(e): 

Images at 𝜀=1.2%, 𝜀 =18.7%, 𝜀 =49.7% and 𝜀 =78.9% true strain are represented.  
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Contrast bands may occur for several reasons e.g., the elastic deformation of the lattice or 

the presence of mobile/sessile dislocations. In the following, we will focus only on contrast 

bands that are believed to be the signature of dislocations. These contrast bands may be 

recognized by their peculiar curved shape as well as their specific orientation e.g., the two 

angled contrast bands observed on the 𝜀 =18.7% image of figure 2. Nevertheless, due to the 

Bragg conditions, all the defects cannot be observed during the experiment.  

One can note that all the residual contrasts accumulated during the first load cycle, up to 

𝜀=13.1%, vanish during the first unload. This phenomenon occurs because of both the 

compressive stress relaxation and the surface image forces, believed to be particularly 

effective in nanometer-sized samples. This leads to a perfectly refreshed microstructure 

comparable to the one observed figure 2b. 

At 𝜀=18.7%, one may see two freshly nucleated, linear and parallel contrast bands (figure 

3c). These bands are tilted of about 45 degrees from the [001] nanocube surfaces what 

might be an evidence of dislocation glide in {110} slip planes. After their emergence from a 

surface and/or an edge (the quasi-2D conditions of the experiment precluding a more 

precised investigation), both traces escape from the opposite side of the nanocube. Further 

contrast bands can be observed during the third cycle and the beginning of the fourth one 

where the true stress rises up to 𝜎=1.51 GPa. During the fourth cycle, successive strain 

bursts take place. Similar strain bursts are often described in the literature [63-66] and are 

attributed to dislocation nucleation or multiplication peaks and subsequent severe sudden 

plastic deformation. Although the deformed nanocube becomes very thick during the fourth 

cycle, these severe plastic deformation events are still recognizable by the high contrast they 

produce e.g., on the 𝜀 =49.7% image (figure 2d). Nevertheless, it is not possible to 

quantitatively analyse slip contrasts from the middle of the cycle four up to the end of the fifth 

cycle because of their high density (figure 2e). Finally, the sample is unloaded after the fifth 
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cycle and a total deformation of about 𝜀=79.0%. No sign of failure has been observed during 

the unload. 

 

III.2 Focus on the early stages of deformation  

In order to investigate further the elementary mechanisms are responsible for the first stages 

of the MgO nanocubes deformation, we performed two supplementary in situ compression 

tests. Stress-strain curves of 90 and 120 nm edge lengths nanocubes are represented figure 

3. As the stress-strain curve main features of ca. 100 nm range MgO nanocube have been 

described in the previous section, we will focus only on new outcomes in the following.  

We observe that both samples are characterized by a strain burst occurring at higher stress 

than in the case of the 140 nm sample. At this point, true stress is about 2.72 and 5.03 GPa, 

respectively for the 120 and the 90 nm samples. In the inset of figure 3, an image of the 120 

nm sized nanocube is shown at 𝜀=7.3% i.e., during the initial strain burst. Once again, we 

observe an inclined and straight contrast band, tilted of about 45 degrees from the indenter 

and generated from the surface and/or an edge of the nanocube, similarly to what was 

observed in the case of the 140 nm sample (figure 2).  

 

 

Fig. 3 (Color online) Stress-strain curves for two MgO nanocubes of 90 (red line) and 120 

(black line) nm edge lengths. In the inset: TEM image of a 120 nm sample during 
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compression, 𝜀=7.3%. The black arrow shows a contrast band corresponding to dislocations 

that emerge from the surface of the cube. Two MD simulation snapshots of a 12.6 nm edge 

lengths nanocube are also represented. Reconstructed ½<110>{110} dislocations are in 

green. The slip plan is in red. Atoms are shown in transparent light grey for the sake of 

clarity. The coordinates system is oriented along the cubic directions. 

 

 

To confirm our hypothesis of {110} glide planes, we performed MD compression tests of 

MgO Nanocubes. Although the compression rate that can be computed is far higher than in 

the experiment, and the maximum size of the sample smaller (especially in the case of ionic 

systems), MD simulations are known to provide a qualitative basis for the identification and 

interpretation of elementary mechanisms possibly responsible for the deformation of nano-

objects [17,67,68]. Figure 3 shows early-nucleated dislocations during the compression of a 

12.6 nm edge length nanocube by MD. Here, dislocations are nucleated from the two lateral 

edges (contrarily to th other top and bottom planar edges) of the nanocube. The slip plane is 

(01&1) and the Nye tensor analysis leads to dislocations characterized by a ½[011] Burgers 

vector. ½<110> Burgers vectors are characteristic of perfect dislocations in the B1 structure. 

Similar compression tests have been performed for 10.1, 7.6, 5.9 and 4.2 nm edge length 

cubes. All the Corresponding stress-strain curves are presented figure 4. They are first 

characterized by a linear elastic regime up to 𝜀~3%. 𝐸[**0] values are displayed table 1. In 

order to compare 𝐸[**0] to bulk Young’s modulus 𝐸[**0]2345, bulk elastic constants are calculated. 

Results lead to 𝐶00=282.8 GPa, 𝐶07=138.0 GPa and 𝐶88=138.0 GPa. These results are in 

good agreement with recent calculations using the same interatomic potential [50]. We 

deduced 𝐸[**0]2345 =192.3 GPa using the anisotropic elastic theory. Afterwards, the elastic 

regime becomes non-linear up to 10.8%< 𝜀 <11.4%, depending the size of the sample. This 

phenomenon is commonly observed at the nanoscale and is attributed to surface forces and 

anharmonicity [69,70]. The yield stress varies continuously from 40.5 to 35.2 GPa decreasing 

the size of the sample and dislocations nucleate. Nucleation can be inferred from the 
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simulated stress-strain curves by the correlated stress drops. When dislocations nucleate (or 

escape), top or bottom surfaces of the sample are rearranged leading to a slight increase of 

the distance between the sample top surface and the indenter. As the flat punch force varies 

inversely with this distance, the stress drops down. The onset of plastic deformation is 

controlled by ½<110>{110} dislocations only, nucleated either from an edge, a surface or a 

corner of the nanocube. A detailed analysis of the localization of dislocation nucleation first 

events is summarized table 1.  

  

Tab. 1 Young’s moduli and yield stresses for MD compression simulations, plus sites and 
slip systems of the first nucleated dislocations. 𝐸2345=192.3 GPa is deduced from the 𝐶9: and 
the anisotropic elastic theory. For the 7.6 nm particle, two dislocations nucleate 
simultaneously. 

 

 

No dislocation is observed in the {100} or {111} glide planes during the simulations. This 

result agrees with early 45 degrees tilted contrast bands, described on the TEM images of 

figures 2 and 3. This confirms that the initial elementary process that governs the 

deformation of <100>-oriented and pristine MgO nanocubes under uniaxial compression is 

the nucleation of ½<110> perfect dislocations, gliding later on in {110} slip planes. 
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Fig. 4 (Color online) Stress-strain curves of MgO nanocubes from MD compression 

simulations. �-�: Images of nanocubes during compression. Green lines correspond to 

dislocations and red arrows represent ½ <110> Burgers vector orientation. �-� show the 

evolution of the 5.9 nm sample. �-� show the dislocation organization at the end of the first 

nucleation peak of the 12.6 nm sample. The blue circle shows a dislocation junction embryo. 

The coordinates system is oriented along the cubic directions. 

 

IV Discussion 

Only few in situ compression experiments have been dedicated to ceramic nanoparticles, 

especially in the 100 nm range size. Here we present results based on a TEM experimental – 

MD simulation crossed approach, applied to initially dislocation-free MgO nanocubes.  
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IV.1 Toward small-size effects on MgO mechanical properties 

On the contrary to their bulk counterpart, nanometer-sized MgO particles deform up to 

large strain, beyond 𝜀=78.9% in the experiment, and no sign of crack has been observed 

during and after the compression of the nanocubes. These results apply also in the case of 

MD compression simulation using the Ball and Grimes interatomic potential. In the 

simulation, we observe a strong effect of the size decrease on the elastic regime. For 

particles with size lower than 10 nm edge length, 𝐸[**0] decreases reducing size (table 1). 

Furthermore, the elastic regime becomes non-linear. This phenomenon is weaker for larger 

particles and is thus not expected in the experiments (at least for the sizes we investigate 

here). Nevertheless, 𝐸[**0] is still lower in the experiment (~142 GPa for the 140 nm particle) 

compared to the experimental bulk value 𝐸[**0]2345~248 GPa [71,72]. We believe that this 

variation is not a size-effect but may rather be an extrinsic effect as e.g., electron-beam 

assisted deformation [73-75]. In Zheng et al. (2010), the authors point out that the force 

required to deform amorphous silica (a-SiO2) nanoparticles at a given elastic strain is 

lowered by a factor 2 to 3 in the case of electron-beam-on tests compared to electron-beam-

off [74]. In Mačković and collaborators (2014), a-SiO2 nanoparticles are pre-irradiated and 

then compressed under beam-on/off conditions. Results show that the Young’s modulus is 

increased by a factor 2 (whatever the conditions) compared to the low-dose/beam-off 

reference conditions with a maximum load force of 50% up to 500% the original one [73]. 

Similar observations have been made by Zhang and collaborators in crystalline zinc tin oxide 

NWs where electron-beam irradiation is believed to change elastic and electrical conductivity 

properties [75]. Nevertheless, despite the fact that similar processes might influence the 

Young’s modulus in our experiments, we believe that they should not modify the elementary 

mechanisms responsible for plastic deformation.  

While we have performed several compression tests, only perfectly aligned and 

homogeneously deformed samples are presented here. Therefore, alignment should not be a 

strong source of bias. Furthermore, we did not notice any significant influence of the aspect 
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size variation, during the deformation of the 140 nm sample, on the subsequent elastic 

reloads. As a corollary, no effect of the beam exposure time has been deduced from the 

analysis of elastic reloads. The aspect size effect on the subsequent elastic portions 

observed in the simulations has also been investigated without significant outcome. More 

details about this analysis are provided as supplementary information. Finally, the flow stress 

is also influenced by downscaling, and raises up in comparison to bulk <100>-compression 

tests at RT i.e., from ca. 50 MPa in bulk conditions [24,26,27,76] up to the GPa range for the 

nanocubes (figures 2 and 3). These results confirm that lowering the scale permits to 

increase both strength and ductility even for originally brittle ceramics. More specifically, yield 

stresses from experiments and simulations seem to exhibit a size-effect around 10 and 100 

nm. However, the number of experiments should be increased, as the investigated range of 

size, to get a more significant statistic and further strengthen this hypothesis. In the following, 

we will further focus on the special features of the plastic deformation regime of MgO 

nanoparticles.  

 

IV.2 Dislocation nucleation and slip systems in nanosized MgO  

Both in situ TEM compression tests and MD simulations agree that {110} dislocations are 

responsible for plastic deformation in the MgO nanocubes. MD compression simulations lead 

to full ½<110> Burgers vectors. Neither dislocations in the {100} or {111} slip planes nor 

twinning dislocations were observed in both the experiments and the simulation. 

½<110>{110} dislocation glide is also one known mechanism responsible for the deformation 

of MgO micropillars [77,78] and bulk single crystals [24,26,38,76,79]. Indeed, for <100>-

compressions, only ½<110>{110} and ½<110>{111} slip system families may contribute to 

the deformation. Schmid factor for these slip system families is about 𝑚{00*}=0.50 for 4 over 

6 ½<110>{110} slip systems and 𝑚{000}=0.41 for 8 over 12 ½<110>{111} slip systems, other 

being null. Although both slip system families exhibit comparable Schmid factors, 

½<110>{111} slip is unfavoured in the case of NaCl-type ionic materials as MgO due to 
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charge repulsion between ions [80]. This phenomena leads to a surprisingly high shear 

stress for the {111} slip planes compared to what is generally observed e.g., in FCC metals. 

With this orientation, {100} slip can only occur in case of misorientations or local rotations. 

Nevertheless, ½<110>{100} slip is believed to be effective under a rather higher shear stress 

than ½<110>{110} in RT compression experiments [25,27,79], what does not make {100} slip 

planes suitable candidates to accommodate deformation in our study. 

Although the yield strength in the MD simulations (figure 4) is obviously influenced by the 

strain rate dependence of dislocation nucleation from the surfaces [67], the role of 

½<110>{110} dislocations during the compression of MgO nanocubes is most probably strain 

rate independent and further constrained by energetic considerations. 

To further investigate the relative role of {100}, {110} and {111} glide planes, we have 

calculated GSF energies using the same interatomic potential than for the MD compression 

simulations. GSF energies are computed by simply shifting the atoms contained in the upper 

half of a simulation cell relatively to its lower half by an appropriate translation vector owned 

by the boundary plan. GSF energies provide a good estimate of the sensitivity of a slip plane 

to be sheared in a given direction. This concept is frequently used to discuss dislocation-

based elementary processes as dislocation core spreading through Peierls-Nabarro 

approaches [61,81,82]  or  dislocation nucleation [83-85]. As shown in e.g., Carrez et al. 

(2009) [86], GSF energies calculated in the {110} and the {100} planes of MgO do not exhibit 

the characteristic, “FCC-like”, stable stacking fault energy (sSFE) what allows ½<110> 

undissociated dislocations only. This corroborates the results inferred from the Nye tensor 

analysis during the MD compression simulations where perfect dislocations only are 

observed (figure 3 and figure 4). Conversely, unstable stacking fault energies (uSFE) can be 

computed along the Burgers vector direction. The uSFE increases up to a maximum value 

𝑢𝑆𝐹𝐸ABC reached for a displacement equivalent to the half of the Burgers vector length (i.e., 

1.49 Å). Here we find 𝑢𝑆𝐹𝐸{00*}ABC =916.7 mJ/m2, 𝑢𝑆𝐹𝐸{0**}ABC =2073.1 mJ/m2 and 

𝑢𝑆𝐹𝐸{000}
ABC =2309.4 mJ/m2. 𝑢𝑆𝐹𝐸{00*}ABC  and 𝑢𝑆𝐹𝐸{0**}ABC  are comparable to ab initio calculations 
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and recent molecular statics simulations using the same interatomic potential [50,86]. While 

the difference between sSFE and uSFE is often used as an energetic criterion to justify 

preferred dislocation-based nucleation processes (i.e., partial dislocation, perfect dislocation 

or twinning) in FCC metallic nano-objects [83], we believe that in the strict case of perfect 

dislocation, the height of the energetic barrier to produce an elementary shear equal to the 

Burgers vector (i.e., the 𝑢𝑆𝐹𝐸ABC ) is a good estimate of the slip plane sensitivity to 

dislocation nucleation. Here we show that 𝑢𝑆𝐹𝐸{00*}ABC < 𝑢𝑆𝐹𝐸{0**}
ABC < 𝑢𝑆𝐹𝐸{000}

ABC , what confirms 

and the occurrence of ½<110>{110} dislocations, and the lack of ½<110>{111} dislocations 

in the MD compression simulations of MgO nanocubes and thus possibly in the in situ TEM 

experiments. Finally, one can note that 𝑢𝑆𝐹𝐸ABC values are one to two orders of magnitude 

higher in MgO than the sSFE-uSFE range commonly reached in standard FCC metals i.e., 

on the range of 10-100 mJ/m2 [87-89], what might support the extremely high strength 

observed on the simulation simulated stress-strain curves (figure 4).  

 

IV.3 Deformation regimes and dislocation network 

While the nucleation process and the propagation of ½<110>{110} dislocations are at the 

onset of plastic deformation of initially pristine MgO nanocubes, one interesting thing is to 

look if dislocation network occur. Figure 5 shows four supplementary TEM images of the 140 

nm nanocube (already described in a previous section) during the first load cycle. On this 

figure, one can identify at least two mechanisms that operate simultaneously. Indeed, red 

lines on figure 5 emphasize a contrast band that escapes progressively the sample from the 

surface, just after it nucleates from the other side of the sample. This process of nucleation-

exhaustion of dislocations is often observed when dislocation glide is not precluded [10,63]. 

In some cases, it can be the unique rate-controlling mechanism e.g., in the MD compression 

simulations for nanocube edge lengths size lower than 10 nm shown figure 4. Indeed, for the 

4.2 nm and the 5.9 nm edge lengths simulated samples, stress-strain curves clearly show 

consecutive stress drops. These peaks are due the nucleation of one or very few dislocations 
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that induce localized deformation and directly escape from the cube after their nucleation, as 

observed in figure 4. This dislocation starvation process is less pronounced in the 7.9 nm 

edge length sample and disappears nearly from the 12.6 nm sample. Actually, in the case of 

the 12.6 nm sample, deformation is homogeneous and dislocations nucleate from multiple 

slip systems during the first stress drop. In this case, gliding dislocations intersect and react 

what can be viewed as the critical step of the dislocation network formation (figure 4). This 

process is strongly different from the dislocation starvation process described above, as it 

does not require further dislocation nucleation i.e., dislocations later unlock from the 

dislocation network and multiply to accommodate further deformation. 

 

 

Fig. 5 (Color online) TEM images of a 140 nm MgO nanocube during the first cycle of load. 

Dashed red lines show a contrast band that escapes progressively the sample. Green lines 

show an arrangement of contrast bands that are attributed to the formation of a dislocation 

network.  
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One should note that the lack of subsequent large stress drops on the 12.6 nm sample 

stress-strain curve is not only due to this last microstructural process but also to the increase 

of the sample size. Indeed, following a simple first order approach, one can approximate the 

average shear 𝛾  produced by a {110} gliding dislocation in a cube of edge length 𝑙  by 

equation (1): 

 

 𝛾 = 𝑏 I
J
= 𝑏 √7

74
           (1) 

 

Where 𝑏 is the Burgers vector length, 𝑆̅ is the averaged {110} surface area swept by the 

dislocation and 𝑉 is the volume of the sample. From equation (1), the amount of shear 

produced by a dislocation decreases as the size of the nanocube increases. As a 

consequence, and assuming a constant strain rate, the stress response to a shear increment 

will be smoother for large samples than for small one. 

The two deformation regimes described above and their respective transition have already 

been observed in metallic nano-objects [10,90], and apply thus also to B1-structured 

ceramics. Further simulations e.g., discrete dislocation dynamics simulations (DDD) 

[65,91,92], performed at lower strain rates and applied to larger nanocubes should improve 

our understanding of the effective deformation processes that operate during in situ TEM 

compression tests of MgO nanocubes. 

 

Finally, clear signs of curved dislocations occur during the in situ TEM compression tests as 

in the MD compression simulations. These results are in contradiction with RT TEM 

observations performed in bulk MgO after compression [33], where dislocation patterns 

consist merely in long, straight and screw dislocation segments, characteristic of a Peierls 

lattice friction regime. As the Peierls stress (stress necessary to generate dislocation glide at 

0 K) is about 150 MPa in the {110} slip planes and 1600 MPa in the {100} in MgO 
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[27,76,79,86], we believe that the lattice friction is overcome in both the experiments and in 

the simulations of MgO nanocube leading to more isotropic dislocation lines. 

This topological property is of primary importance because contact reactions between 

straight screw dislocations may sometimes not lead to the formation of junction locks. This 

particularly applies in the case of the BCC structure [93] and for the B1 structure of MgO as 

shown in recent DDD simulations [39]. Actually, non-screw dislocations are required to 

generate dislocation junction in MgO. Figure 4 shows images of a 12.6 nm nanocube 

deformed in MD simulations where two curved dislocations with 60 degrees tilted Burgers 

vectors react to create a junction embryo following the reaction path 1 2⁄ [101&](101) +

1 2⁄ [011&](011) → 1 2⁄ [112&](1&10). This local interaction process is not observed in smaller 

samples where all the deformation is accommodated by only few dislocations that never 

intersect (figure 4). This result confirms that the probability for dislocation to intersect is more 

likely in larger samples due to a higher number of defects. Finally, one can see figure 4 that 

contact interactions between dislocations (e.g., junctions, crossed or repulsive states) 

enhance the build-up of a dislocation network during the deformation of the 12.6 nm 

nanocube.  

 

In summary, and in contrary to what is observed in bulk MgO at RT, the high stress reached 

during the nanocompression tests could allow dislocations to overtake the lattice friction and 

thus increase the possibility of contact reactions between dislocations. This process 

improves the formation of a dislocation network, as it is observed in the compression 

simulations of the 12.6 nm nanocube (figure 4). We believe that a similar process is likewise 

the source of the persistent contrast bands observed during the in situ TEM compression 

tests (figure 2 and figure 5). 
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IV.4 Implications for NC ceramics  

The results presented above have direct potential future impact for the processing (i.e. 

compaction, ball milling) or the design (i.e. mechanical properties) of nanostructured bulk 

ceramics. Indeed, knowing the plastic deformation mechanisms and mechanical constitutive 

laws of ceramic nanoparticles are of key importance for phenomena such as third body wear 

particle in contact mechanics, milling of nanoparticles which may exhibit a plastic behaviour 

below a certain size, or particle compaction during green body preparation of ceramics. It is 

for example usually considered that ceramic nanopowders just rearrange without 

plasticization during compaction [94]. The results presented here for MgO nanocubes and 

previously for transition alumina nanospheres [14,21] prove that wide plastic flow of ceramic 

nanoparticles can occur during compaction at RT. This propensity to plastic deformation 

during compaction opens a new route to deformable ceramics, even at RT. In other words, it 

would be possible to use plastic deformation of ceramic nanoparticles to obtain green bodies 

with very high densities and small pores, and sinter them at temperatures well below the 

ones currently used [95]. Sintering at much lower temperatures would then keep the 

nanoscale specificities after all the process chain, leading to higher mechanical or peculiar 

functional properties. This might then apply to orthopaedic devices, with ceramics exhibiting 

high wear and crack resistance, but also for transparent polycrystalline ceramics for which 

the quest is today to reach the highest density with the smallest grains [96]. 

 

V Conclusion 

In summary, we have investigated the mechanical behaviour of <100>-oriented and initially 

dislocation-free MgO nanocubes using original in situ TEM compression tests in the 100 nm 

size range and MD simulations. Results show high strength as homogeneous and wide 

deformation without failure. The analysis of TEM contrast bands suggests possible {110} slip. 

These results are confirmed by the MD compression simulations, in which the nucleation of 

½<110>{110} perfect dislocations is at the onset of the plastic deformation. Schmid factor 
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analysis and considerations based on GSF energy calculations consolidate these results. 

Dislocations nucleate from edges, corners or surfaces of the nanocubes. In contrary to what 

is observed in bulk MgO single crystals at RT, dislocations are curved in both the experiment 

and the simulation, what is due the high stress experienced by the sample during the 

nanocompression test. This property could enhance the formation of a dislocation network 

that is generally a high-temperature like process in bulk MgO. Additional simulations and 

experiments under WBDF diffraction conditions will be conducted to further confirm these 

results. 
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