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Abstract

We study a model of the chemostat with several species in competition on a single resource. We take into account

the intra-specific interactions between individuals of the same population of micro-organisms and we assume that the

growth rates are increasing and the dilution rates are distinct. Using the concept of steady-state characteristic, we

present a geometric characterization of the existence and stability of all equilibria. Moreover, we give the necessary and

sufficient condition on the parameters such that the system has a positive equilibrium. Using a Lyapunov function, we

give a global asymptotic stability result for the competition model of several species. The operating diagram describes

the asymptotic behavior of this model with respect to control parameters and illustrates the effect of the intra-specific

competition on the region of coexistence of several species.
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1. Introduction

The competitive exclusion principle (CEP) states that, in a chemostat and under specific assumptions, when micro-

bial species compete for the same limiting nutrient in continuous culture, at most one species survives and all others

perish, [18]. The surviving species is the one with the smallest subsistence or ”break-even” concentration of the limiting

resource. The chemostat model describing this interaction between the microbial species has been used for different

systems specially for wastewater treatment processes and biological reactors... Nevertheless, for most of these systems,

it is observed that many species can coexist together and the prediction given by the CEP is not in accordance with the

reality. This has motivated a lot of recent research and a theory of microbial competition is now under development. The

aim of these studies is to construct mathematical models in agreement with the observations and to predict the qualita-

tive behavior of competition systems. By modifying the assumed operating conditions, many extensions of the classical

chemostat model have been performed. Coexistence of several species has been proved when considering models with

time-varying dilution rates, see [19], with time-varying input nutrient concentration, see [6, 8, 19] or with variable yields,
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[15, 17], see also [4, 5, 9–12, 14, 16, 20, 21] for other extensions. In particular, De Leenheer et al [9] have proposed

a chemostat model where crowding effects are taken into consideration. In this model, n species compete for a single

nutrient. The authors use the theory of monotone dynamical systems for an interconnection of two input/output systems

to prove an almost-global stability result of the positive equilibrium, see Section 2 for the details.

Recently, Lobry and al. proposed in [13], to replace the classical functional responses that are only resource de-

pendent, by growth functions that depend on both the resource and the consumers. In this model, they introduce the

concept of steady-state characteristic for each species. For several species in competition on a resource, they show that

the knowledge of the characteristics enables to give sufficient conditions for coexistence and to determine the asymptotic

behavior of the system. They prove, for the proposed model, the existence of a locally exponentially stable equilibrium

of coexistence, see [10, 12]. The consideration of density-dependent growth functions in the chemostat model, has

been also introduced in the literature in the field of mathematical ecology [1] or waste-water process engineering [7].

It has been shown that flocculation systems, for example, can reduce, under certain assumptions, to systems with a

single biomass compartment for each strain and a density-dependent growth rate, see [5], and that coexistence may arise

through this mechanism, [2].

Other approaches, to explain coexistence, rely on taking into account, in the chemostat model, inter-specific inter-

actions between populations of micro-organisms or intra-specific interactions between individuals themselves. In [21],

two models, corresponding respectively to the case where only intra-specific interference is permitted and to the case of

only inter-specific interactions, are considered. In the case of intra-specific interactions in the dynamics of two species,

there exists a positive equilibrium of coexistence which is locally asymptotically stable. In the case of inter-specific

interactions in the dynamics of two species, there exists a positive equilibrium of coexistence but which is unstable [21].

The case of both inter-specific interactions between two populations of micro-organisms and intra-specific interactions

between individuals themselves has been considered in [3]. It has been shown the existence of one or many positive

locally exponentially stable equilibria, according to the initial condition. The coexistence of both species occurs and for

certain values of the operating parameters, bistability is proven.

This paper is organized as follows: in Section 2 we present an intra-specific competition model of n species and give

some preliminary results. Section 3 is devoted to analyze this model in the case of two species. Using the concept of

steady-state characteristic defined by Lobry et al. [12, 13], we give a geometric characterization of the existence and

stability of all equilibria. We prove that only one equilibrium is stable. A global asymptotic stability result is given. At

the end of the section, we present the operating diagrams which depict the existence and the stability of each equilibrium

according to control parameters. In Section 4, this approach is extended to the study of the multi-species model. We

generalize the Lyapunov fonction used in [21] in the case of two species, to prove the global stability of the equilibrium,

corresponding to the extinction of all species except the one who has the lowest break-even. Numerical simulations

with realistic growth functions (of Monod type) illustrate either the coexistence or the competitive exclusion in different

cases. Finally, some conclusions are drawn in Section 5.

For convenience, we use the abbreviations LES for Locally Exponentially Stable equilibria and GAS for Globally

Asymptotically Stable equilibria, in all what follows.
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2. Mathematical model

In this paper, we consider a chemostat model of n species competing for a single nutrient with intra-specific linear

interactions between species themselves. This model can be written as follows:


Ṡ = D(S in − S ) −

n∑
i=1

fi(S )xi

ẋi = [ fi(S ) − aixi − Di]xi, i = 1, . . . , n

(1)

where S denotes the concentration of the substrate; xi denotes the concentration of the ith population of microorganisms;

S in and D denote, respectively, the concentration of substrate in the feed bottle and the dilution rate of the chemostat; Di

denotes the removal rate of the species i which is the sum of the death rates of species i and the dilution rate D, (Di are

not necessarily equal); ai is a positive parameter giving rise to death rate aixi which is due to intra-specific interactions

and fi(·) denotes the per-capita growth rate of the ith population.

Model (1) generalizes model (1.2) of [21] to multi-species populations, in the case of linear intra-specific interac-

tions. De Leenheer et al., [9], have analyzed the model (1), considering that mortality rates are due to the crowding

effects. The key idea of their analysis is the observation that system (1) can be interpreted as a negative feedback inter-

connection of monotone subsystems, see [9] and the references therein. They were interested only by positive equilibria

and they proved, by applying a small-gain theorem developed for monotone systems and under certain conditions on

the parameters ai and on the functions fi, i = 1, . . . , n, that system (1) possesses a positive equilibrium which is, with

respect to positive initial conditions, almost GAS, (this means that the positive equilibrium point attracts all solutions

that are not starting in a set of Lebesgue measure zero).

In this paper, we give a complete analysis of model (1). We describe all its equilibria and their stability, without

assumptions on the parameters ai. We give the necessary and sufficient condition on the parameters such that the system

has a positive equilibrium. We first do the following assumption on the growth function:

H1: For i = 1, . . . , n, fi(0) = 0 and for all S > 0, f ′i (S ) > 0.

Hypothesis H1 means that the growth can take place if and only if the substrate is present. Moreover, the growth rate

of each species increases with the concentration of substrate. In the following, we prove that system (1) is behaving as

well as one would expect from any reasonable model of the chemostat.

Proposition 2.1. For any non-negative initial condition, the solution of (1) stay non-negative and is positively bounded.

The set

Ω =

(S , x1, . . . , xn) ∈ Rn+1
+ : Z = S +

n∑
i=1

xi 6 max
(
Z(0),

D
D∗

S in

)
is positively invariant and global attractor for (1), where D∗ = min(D,D1, . . . ,Dn).

Proof. From (1), we have

Ż = DS in − DS −
n∑

i=1

(Dixi + aix2
i ).
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Hence,

Ż 6 D(S in −
D∗

D
Z).

From Gronwall Lemma, we obtain

Z(t) 6
D
D∗

S in +

(
Z(0) −

D
D∗

S in

)
e−D∗t, for all t > 0. (2)

It is easy to see from (1) that the non-negative cone (S , x1, . . . , xn) is positively invariant. Thus solutions are non-negative

for all t > 0 and from (2) we deduce that the solutions are bounded and the set Ω is invariant and attractor. �

3. Analysis of the competition model with two species

For a better understanding of the qualitative behavior of solutions of model (1), we start by the case n = 2. In

this particular case, we can describe precisely the solutions and provide operating diagrams illustrating the regions of

equilibria stability according to the operating parameters S in and D. System (1), in the case of two species competing

for a single nutrient, reads


Ṡ = D(S in − S ) − f1(S )x1 − f2(S )x2

ẋ1 = [ f1(S ) − a1x1 − D1]x1

ẋ2 = [ f2(S ) − a2x2 − D2]x2.

(3)

We assume that H1 is verified for n = 2 and that the parameters a1 and a2 are positive. Now, we shall discuss the

existence of the equilibria of system (3) and then their asymptotic stability.

3.1. Existence of equilibria

We first denote λi = f −1
i (Di), for i = 1, 2, if equation fi(S ) = Di has a solution. Otherwise, λi = +∞. We assume

that the populations xi are labeled such that λ1 < λ2. The equilibria are solution of system (4):


0 = D(S in − S ) − f1(S )x1 − f2(S )x2

0 = [ f1(S ) − a1x1 − D1]x1

0 = [ f2(S ) − a2x2 − D2]x2.

(4)

By solving system (4), we will prove the existence of four equilibria, according to the concentration S in: a washout

equilibrium, two equilibria corresponding to the extinction of respectively the first and the second species and a positive

equilibrium corresponding to the coexistence of both species. Indeed, we first note that if x1 = x2 = 0, we obtain the

washout equilibrium E0 = (S in, 0, 0) which always exists. For the other equilibria, we have to define the functions

hi(S ) =
fi(S ) − Di

ai
fi(S ), Hi(S ) = D(S in − S ) − hi(S ), i = 1, 2. (5)
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Let S i be the solution of equation Hi(S ) = 0 and let

x̄i =
fi(S i) − Di

ai
, i = 1, 2. (6)

Then, we can state:

Proposition 3.1.

1. The equilibrium E1 = (S 1, x̄1, 0), corresponding to the extinction of species x2, exists if and only if S in > λ1.

2. The equilibrium E2 = (S 2, 0, x̄2), corresponding to the extinction of species x1, exists if and only if S in > λ2.

Proof.

1. If x2 = 0 and x1 , 0, then from the second equation of (4), we deduce that

x1 =
f1(S ) − D1

a1
,

which is positive if and only if S > λ1. From the first equation, we deduce that H1(S ) = 0. Since H1 is decreasing

on [λ1,+∞[,

H1(λ1) = D(S in − λ1) and H1(S in) = −h1(S in),

there exists a unique solution S 1 > λ1 of equation H1(S ) = 0 if and only if S in > λ1.

2. If x1 = 0 and x2 , 0, in the same way, we prove that there exists a unique solution S 2 > λ2 of equation H2(S ) = 0

if and only if S in > λ2.

�

We define, now, the function H(·) and the parameter λ̄2 by, respectively,

H(S ) = D(S in − S ) −
2∑

i=1

hi(S ) and λ̄2 = λ2 +
h1(λ2)

D
.

Proposition 3.2. The positive equilibrium E∗ = (S ∗, x∗1, x
∗
2) exists if and only if S in > λ̄2 with S ∗ is solution of equation

H(S ) = 0 and

x∗i =
fi(S ∗) − Di

ai
, i = 1, 2.

Proof. If x1 , 0 and x2 , 0, then from the second and the third equation of (4), we obtain

xi =
fi(S ) − Di

ai
, i = 1, 2,

which is positive if and only if S > λi. From the first equation, we deduce that H(S ) = 0. Since H is decreasing on

[λ2,+∞[,

H(λ2) = D(S in − λ2) − h1(λ2) and H(S in) = −

2∑
i=1

hi(S in),
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there exists a unique solution S ∗ > λ2 of equation H(S ) = 0 if and only if H(λ2) > 0, that is, S in > λ̄2. �

3.2. Stability of equilibria

To study the local asymptotic stability of equilibrium points of (3), we calculate the Jacobian matrix in (S , x1, x2):

J =


−D − f ′1(S )x1 − f ′2(S )x2 − f1(S ) − f2(S )

f ′1(S )x1 f1(S ) − 2a1x1 − D1 0

f ′2(S )x2 0 f2(S ) − 2a2x2 − D2

 .

In E0 = (S in, 0, 0), we obtain the matrix

JE0 =


−D − f1(S in) − f2(S in)

0 f1(S in) − D1 0

0 0 f2(S in) − D2

 .

The eigenvalues are on the diagonal. They are negative, that is, E0 is a stable node if and only if S in < λi, i = 1, 2. So,

we can state

Proposition 3.3. E0 is a stable node if and only if S in < λi, for i = 1, 2.

Now, E1 = (S 1, x̄1, 0) exists if and only if λ1 < S in. The Jacobian matrix at E1 is

JE1 =


−D − f ′1(S 1)x̄1 − f1(S 1) − f2(S 1)

f ′1(S 1)x̄1 −a1 x̄1 0

0 0 f2(S 1) − D2

 .

Thus, f2(S 1) − D2 is an eigenvalue of JE1 . The other eigenvalues of JE1 are the eigenvalues of the matrix

A1 =

 −D − f ′1(S 1)x̄1 − f1(S 1)

f ′1(S 1)x̄1 −a1 x̄1

 .
We can see that det(A1) > 0 and tr(A1) < 0, then the two eigenvalues of A1 have negative real part. The equilibrium E1

is then LES if and only if S 1 < λ2 or equivalently if S in < λ̄2.

We use similar arguments to check the stability of E2 = (S 2, 0, x̄2), which exists if and only if λ2 < S in. Since the

Jacobian matrix at E2 is

JE2 =


−D − f ′2(S 2)x̄2 − f1(S 2) − f2(S 2)

0 f1(S 2) − D1 0

f ′2(S 2)x̄2 0 −a2 x̄2

 .
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Then, f1(S 2) − D1 is an eigenvalue of JE2 . The two other eigenvalues of JE2 are the eigenvalues of the matrix

A2 =

 −D − f ′2(S 2)x̄2 − f2(S 2)

f ′2(S 2)x̄2 −a2 x̄2

 .
Since det(A2) > 0 and tr(A2) < 0, the two eigenvalues of A2 have negative real part. Consequently, E2 is LES if and only

if S 2 < λ1. Since we have S 2 > λ2 > λ1, E2 is a saddle point when it exists. Then,

Proposition 3.4.

1. E1 is LES if and only if λ1 < S in < λ̄2.

2. When it exists, E2 is a saddle point.

Now, by using a Routh-Hurwitz criterion, we can prove the local stability of the positive equilibrium E∗ when it exists,

that is, S in > λ̄2.

Proposition 3.5. E∗ is LES if and only if S in > λ̄2.

Proof. We can write the Jacobian matrix at E∗ = (S ∗, x∗1, x
∗
2) in the form:

JE∗ =


−m11 −m12 −m13

m21 −m22 0

m31 0 −m33


where

m11 = D + f ′1(S ∗)x∗1 + f ′2(S ∗)x∗2, m12 = f1(S ∗), m13 = f2(S ∗),

m21 = f ′1(S ∗)x∗1, m22 = a1x∗1, m31 = f ′2(S ∗)x∗2, m33 = a2x∗2,

which are positive. The characteristic polynomial is given by

P(λ) = c0λ
3 + c1λ

2 + c2λ + c3,

where

c0 = −1, c1 = −(m11 + m22 + m33), c2 = −(m12m21 + m13m31 + m11m22 + m11m33 + m22m33)

and

c3 = −m22m13m31 − m11m22m33 − m12m21m33.

According to Routh-Hurwitz criterion, E∗ is LES if and only if


ci < 0, i = 0, . . . , 3

c1c2 − c0c3 > 0.
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Since mi j > 0, for all i, j = 1, . . . , 3, it follows that ci < 0. Then, a straightforward calculation gives

c1c2 − c0c3 = −m11c2 + m22(m12m21 + m11m22 + m22m33) + m33(m13m31 + m11m22 + m11m33 + m22m33)

which is positive. Thus all the conditions of the Routh-Hurwitz criterion are satisfied and so E∗ is LES when it exists. �

Table 1 summarizes the previous results.

Equilibria Existence condition Stability condition

E0 Always exists S in < λi, i = 1, 2

E1 S in > λ1 S in < λ̄2

E2 S in > λ2 Unstable whenever it exists

E∗ S in > λ̄2 Whenever it exists

Table 1: Existence and local stability of equilibria in system (3).

Fig. 1(a) shows the number of equilibria according to the concentration of substrate in the feed bottle S in. The

equilibria are given by the intersection between the line ∆ of equation y = D(S in−S ) and either the curve of the function

h12(·) = h1(·) + h2(·) defined for S > λ2, or the curve of the function hi(·) defined respectively for S > λi, i = 1, 2, or the

line of equation y = 0 which represents the washout equilibrium E0.

(a)y

∆

DS in

h12 = h1 + h2

h1

h2

E∗

E1

E2

E0 S

DS in

λ̄2

E1

E2

E0

DS in

E1

E0

DS in

E0

S in

E0

λ1 λ2

E0

(b)y

∆

DS in

h1E∗

E1

E0

E1

λ1 λ2 λ̄2

E0
S

Figure 1: Steady-state characteristic: (a) equilibria of (3) according to S in for a2 > 0 and (b) existence of the positive equilibrium E∗ for a2 = 0.

If S in > λ̄2, the intersection between the line ∆ and the curve of the function h12(·) represents the solution S ∗ of the

equation H(S ) = 0 satisfying S ∗ > λ2. Therefore, the condition x∗i > 0, i = 1, 2, is satisfied, and there exists a unique

positive equilibrium E∗. We choose the red color for GAS equilibrium, the green color for saddle-node equilibrium and

blue color for unstable equilibrium. Notice that when S in = λ1, E0 coalesces with E1, when S in = λ2, E0 coalesces with

E2 and when S in = λ̄2, E1 coalesces with E∗.

From previous results, Lemma 1.1 and Theorem 2.2 of [21], we can derive the global asymptotic behavior of (3)

according to S in. More specifically, we have the following result:

8



Proposition 3.6. Under assumption H1 in the case n = 2 and for ai > 0, i = 1, 2, the following cases occur:

1. If S in < λ1, there exists a unique equilibrium E0 = (S in, 0, 0) which is GAS.

2. If λ1 < S in < λ2, then there exists two equilibria: E0 is unstable and E1 = (S 1, x̄1, 0) is GAS.

3. If λ2 < S in < λ̄2, then there exists three equilibria: E0 and E2 = (S 2, 0, x̄2) are unstable while E1 is LES. Moreover,

if it exists a constant α > 0 which satisfies:

max
0<S<S 1

g(S ) 6 α 6 min
λ2<S<S in

g(S ) where g(S ) =
f2(S )
f1(S 1)

f1(S ) − f1(S 1)
f2(S ) − D2

S in − S 1

S in − S
,

then E1 is GAS with respect to all solutions with x1(0) > 0, (see Fig. 4(a)).

4. If S in > λ̄2, then there exists four equilibria: E0, E1 and E2 are unstable while E∗ = (S ∗, x∗1, x
∗
2) is LES (see Fig.

4(b)).

In the following, we consider the case a2 = 0 where the system might yet have a positive equilibrium and we show

that the hypothesis a2 > 0 is not necessary for coexistence. The model can be rewritten as


Ṡ = D(S in − S ) − f1(S )x1 − f2(S )x2

ẋ1 = [ f1(S ) − a1x1 − D1]x1

ẋ2 = [ f2(S ) − D2]x2.

(7)

Using the same manner as the proof of Propositions 3.1 and 3.2, we have proved the following result:

Proposition 3.7. The system (7) admits the following equilibria:

1. The washout equilibrium E0 = (S in, 0, 0), that always exists.

2. The equilibrium E2 = (λ2, 0,D(S in − λ2)/D2) of extinction of species x1, that exists if and only if S in > λ2.

3. The equilibrium E1 = (S 1, x̄1, 0), of extinction of species x2, with S 1 is solution of H1(S ) = 0, that exists if and

only if S in > λ1.

4. The positive equilibrium E∗ = (λ2, x∗1, x
∗
2), with x∗1 = ( f1(λ2) − D1)/a1, x∗2 = H1(λ2)/D2, that exists if and only if

S in > λ̄2,

where the function H1(·) and x̄1 are defined in (5) and (6).

In the particular case a2 = 0, the local and global stability of the equilibria can be determined as previously. Thus,

we obtain the same result of existence and stability as in Table 1 and Prop. 3.6. Fig. 1(b) illustrates the steady-state

characteristic and the same condition of existence of the positive equilibrium E∗ in this case. This means that the intra-

specific competition of the most competitive species inhibits its growth and allow then the coexistence even if the least

competitive species has a zero inhibition term.

Thus, if λ1 < λ2 then the first species has a competitive advantage over the second species and so this second species

need not to inhibit its growth in order to coexist with the other species. Hence, the coexistence is due to the fact that the

most efficient species sees its growth inhibited by the intra-specific competition when the other species has no reason to

be inhibited.

9



3.3. Operating diagram

The operating diagram describes the system behavior when the concentration of the substrate in the feed bottle S in

and the dilution rate D vary. In model (3), each parameter Di, i = 1, 2, can be written as Di = D + Ai, Ai > 0 where Ai

can be interpreted as the specific natural death rate of species i.

We first denote m̄i = supS>0 fi(S ) − Ai and we assume that m̄i > 0. For the description of the steady-states and their

stability, with respect to control parameters S in and D, we define the inverse function Fi of the increasing functions fi,

i = 1, 2 , so that:

S = Fi(D)⇔ fi(S ) = D + Ai, for all S ∈ [0,+∞[ and D ∈ [0, m̄i[.

Note that the inverse functions F1 and F2 can be calculated explicitly in the case of the Monod growth functions con-

sidered in Section 3.4. Let Γ1 be the curve of equation S in = F1(D) and Γ2 that of equation S in = F2(D).

If the curves Γ1 and Γ2 do not intersect, we assume, without loss of generality, that for all D ∈]0, m̄2[, F1(D) < F2(D),

(see Fig. 2(a)). To express the stability condition S in > λ̄2, we define the function:

F12 :]0, m̄2[ −→ ]0,+∞[

D −→ F2(D) +
h1(F2(D))

D .

(a)
S in

I3

Γ12

I2

Γ2

I1

Γ1

I0

D

(b)S in Γ12

I5

I3

I1��:

I0

Γ21 Γ1 Γ2

I4

?
I2

D

Figure 2: Operating diagram of (3) : (a) Curves Γi do not intersect. (b) Curves Γi intersect.

In Figure 2, the curve of equation S in = F12(D) is labeled as Γ12. Notice that if Ai > 0, then

lim
D−→0+

F12(D) = +∞,

and since h1(F2(D)) > 0, we have F2(D) < F12(D) for all D ∈]0, m̄2[.

The curves Γi, i = 1, 2 and Γ12 separate the operating plane (D, S in) in four regions, as shown in Fig. 2(a), labeled

as Ik, k = 0, . . . , 3. The transition from the region I0 to the region I1 by the curve Γ1 (the red curve) corresponds to

a saddle-node bifurcation making the equilibrium E0 unstable (saddle point) with the appearance of a LES equilibrium
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E1. The transition from the region I1 to the region I2 by the curve Γ2 (the blue curve) corresponds to the appearance of

a saddle point E2 by a bifurcation with a saddle point E0. The transition from the region I2 to the region I3 by the curve

Γ12 (the magenta curve) corresponds to a saddle-node bifurcation making the equilibrium E1 unstable (saddle point)

with the appearance of a LES equilibrium E∗.

Notice that the function Fi(·) is not defined if supS>0 fi(S ) 6 Ai and we let Fi(0) = +∞. In this case, the regions I1,

I2 and I3 are empty. Table 2 summarizes the results of Prop. 3.6 and shows the existence and stability of equilibria E0,

E1, E2 and E∗ in the regions Ik, k = 0, . . . , 3, of the operating diagram, in the case where Γ1 and Γ2 do not intersect and

F1(D) < F2(D). The letter S (resp. U) means stable (resp. unstable). No letter means that the corresponding equilibrium

does not exist.

Region E0 E1 E2 E∗

(D, S in) ∈ I0 S
(D, S in) ∈ I1 U S
(D, S in) ∈ I2 U S U
(D, S in) ∈ I3 U U U S

Table 2: Existence and local stability of steady states according to (D, S in), in the case Γ1 ∩ Γ2 = ∅.

Now, we assume that the curves Γ1 and Γ2 intersect in D∗. The cases D < D∗ and D > D∗ have to be distinguished.

When D < D∗, we assume for example that F1(D) < F2(D), for all D ∈]0,D∗[ (see Fig. 2(b)). Hence,

F2(D) < F12(D) for all D ∈]0,D∗[

since h1(F2(D)) > 0. In this case, the result is similar to that when the curves Γ1 and Γ2 do not intersect.

When D > D∗, F2(D) < F1(D) for all D ∈]D∗, m̄1[. In this case, E∗ is stable if S in > λ̄1 := λ1 + h2(λ1)/D. We then

define the function:

F21 : [D∗, m̄1[ −→ ]F1(D∗),+∞[

D −→ F1(D) +
h2(F1(D))

D .

The curve of equation S in = F21(D) is labeled as Γ21. Since h2(F1(D)) > 0, it follows that

F1(D) < F21(D) for all D ∈]D∗, m̄1[.

For D > D∗, the curves Γ2, Γ1 and Γ21(D) separate the operating plane (D, S in) in four regions, as shown in Fig. 2(b),

labeled I0, I2, I4 and I5. The curve Γ2 (the blue curve) is the border which makes E0 a saddle point and at the same

time E2 exists and is a LES equilibrium. The curve Γ1 (the red curve) is the border which makes E1 exists but it is a

saddle point. The curve Γ21 (the green curve) is the border which makes E2 a saddle point and at the same time E∗ exists

and is a LES equilibrium.
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Table 3 shows the existence and local stability of equilibria in the regions Ik, k = 0, . . . , 5, of the operating diagram,

when the curves Γ1 and Γ2 intersect.

Region E0 E1 E2 E∗

(D, S in) ∈ I0 S
(D, S in) ∈ I1 U S
(D, S in) ∈ I2 U S
(D, S in) ∈ I3 U S U
(D, S in) ∈ I4 U U S
(D, S in) ∈ I5 U U U S

Table 3: Existence and local stability of steady states according to (D, S in), in the case Γi intersect.

(a)S in Γ12 Γ2 Γ1

I3

I2

I1

I0

D

(b)S in Γ12 Γ2 Γ1

I3

I2

I1

I0

D

(c)S in Γ2 Γ1

I2

I1

I0

D

Figure 3: Reduction and disappearance of the region I3 of coexistence as a1 decreases: (a) a1 = 1.5, (b) a1 = 0.15 and (c) a1 = 0.1 .

Remark 3.1. For small or large parameter values of D and S in, we see that there is either the washout of two species

or the exclusion of one species. In the case F1(D) < F2(D) for all D ∈]0, m̄2[, making the parameter a2 varying, the

regions of operating diagram are identical since the functions Fi(·), i = 1, 2, and F12(·) are independent of a2. Hence,

the intra-specific competition of the least competitive species has no effect on the region of coexistence.

In the other hand, decreasing a1 reduces the region I3 of coexistence and increases the region I2 of competitive

exclusion of the second species (see Fig. 3(a-b)). Then, the region I3 tends to disappear as a1 tends to zero and we find

the operating diagram of the classical chemostat model with a1 = 0 (see Fig. 3(c)). Thus, the intra-specific competition

of the most competitive species leads to changes in the size and presence of regions of coexistence.

3.4. Simulations

To illustrate our results, we consider model (3) when the fonctions fi(·) are of Monod type, defined by:

fi(S ) =
miS

Ki + S
, i = 1, 2,
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where mi is the maximum specific growth rate and Ki is the Michaelis-Menten (or half-saturation) constant. Straightfor-

ward calculation shows that the inverse functions Fi, i = 1, 2 are given by:

Fi(D) =
Ki(D + Ai)
mi − D − Ai

and

Fi j(D) = F j(D) +
1

aiD

[
miF j(D)

Ki + F j(D)
− D − Ai

]
miF j(D)

Ki + F j(D)
, i, j = 1, 2, with i , j.

Note that if Ai = 0, i = 1, 2, then

lim
D−→0

Fi j(D) = 0, for i , j and j = 1, 2.

For the numerical simulations, we use the values of the parameters given in Table 4: see Figs. 2(b) and 4.

Parameters m1 m2 K1 K2 a1 a2 A1 A2

Values 2 2.5 2 3 0.2 0.1 0.4 0.5

Table 4: Parameter values for model (3) with a Monod growth function.

For Fig. 3, we considered successively the cases a1 = 1.5, 0.15 and 0.1, while A2 = 1. The other parameters remain

unchanged.
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0.6

0.8

1.2
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1.8

(a)

S

x1

x2

E1•

E2
•

E0

•

(b)

S

x1

x2

E∗
•

E1•

E2 •

E0

•

Figure 4: The case D < D∗: (a) Global convergence to the equilibrium E1 for (D, S in) ∈ I3. (b) Global convergence to the coexistence equilibrium
E∗ for (D, S in) ∈ I5.

Fig. 2(b) illustrates the case where the curves S in = Fi(D) intersect once. For example, we choose the case

D = 0.5 < D∗ ' 0.945. For (D, S in) = (0.5, 2.5) ∈ I3, Fig. 4(a) shows the global convergence towards the competitive

exclusion of the second species for any positive initial condition. In this case, the break even concentrations are given
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by: λ1 ' 1.636, λ2 = 2. Moreover, λ2 < S in < λ̄2 = 3 and the equilibria are given by

E0 = (2.5, 0, 0), E1 ' (1.867, 0.328, 0) and E2 ' (2.071, 0, 0.21),

where E1 is GAS in the interior of the positive quadrant and all other equilibria are unstable.

For (D, S in) = (0.5, 6) ∈ I5, Fig. 4(b) shows the global convergence to the coexistence equilibrium E∗ for any

positive initial conditions. In this case, S in > λ̄2 and the equilibria are given by

E0 = (6, 0, 0), E1 ' (2.826, 1.355, 0), E2 ' (2.555, 0, 1.498) and E∗ ' (2.304, 0.853, 0.860).

4. Study of the competition model with several species

Now, we consider the case of n species competing for a same limiting resource, we determine the equilibria of (1)

under assumption H1 and we precise their asymptotic stability according to the control parameter S in. For that, we use

the concept of steady-state characteristic introduced by Lobry and al., [12, 13], to describe geometrically the equilibria.

The steady-state characteristic is a curve which is associated to each species. It permits, if the dynamic of the renewal

of the resource is known to give sufficient conditions for coexistence and to predict the issue of the competition. These

curves are determined empirically.

4.1. Existence of equilibria

In the following, we study the existence of the equilibria of the system (1) under assumption H1 and for all ai > 0,

i = 1, . . . , n. If equation fi(S ) = Di has a solution, then we denote λi = f −1
i (Di). Otherwise, λi = +∞. We assume that

the populations xi are labeled such that

λ1 < λ2 < · · · < λn.

To find the equilibria of (1), we solve the following system:


0 = D(S in − S ) −

n∑
i=1

fi(S )xi

0 = [ fi(S ) − aixi − Di]xi, i = 1, . . . , n.

(8)

For convenience, we introduce the following functions, for i = 1, . . . , n:

hi(S ) =


fi(S )−Di

ai
fi(S ) if S > λi

0, else
(9)

and

H(S ) = D(S in − S ) −
n∑

i=1

hi(S ).
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If xi = 0 for all i = 1, . . . , n, then S = S in from the first equation of (8). This corresponds to the washout equilibrium

E0 = (S in, 0, . . . , 0), which always exists. If xi , 0, for all i = 1, . . . , n, we deduce from equation i + 1 of (8) that,

xi =
fi(S ) − Di

ai
, (10)

which is positive if and only if S > λi. From the first equation of (8), we deduce that H(S ) = 0. Since H is decreasing

on [λn,+∞[,

H(λn) = D(S in − λn) −
n−1∑
k=1

hk(λn) and H(S in) = −

n∑
i=1

hi(S in),

there exists a unique solution S ∗ > λn of equation H(S ) = 0 if and only if H(λn) > 0, that is,

S in > λ̄n with λ̄n = λn +
1
D

n−1∑
k=1

hk(λn).

Hence, one has the following result.

Proposition 4.1. The system (1) admits a unique positive equilibrium E∗ = (S ∗, x∗1, . . . , x
∗
n) if and only if

S in > λ̄n.

To get the other equilibria corresponding to the extinction of one or many species, we first define the steady-state

characteristic: in order to identify these equilibria.

Definition 4.1. We define the steady-state characteristic by the set of the curves y = 0 and y = hJ(S ) where

hJ =
∑
i∈J

hi,

with J is a subset of {1, . . . , n}, defined for S > max{λ j : j ∈ J}.

From the first equation of (8), for any fixed value of S in, the equilibria are obtained by taking the intersections of the

line ∆ of equation y = D(S in − S ) with the steady-state characteristics y = 0 and y = hJ(S ), J ⊂ {1, . . . , n}, (see Fig. 5,

for n = 3). We can see then that:

• If S in > λ̄n, it exists 2n equilibria:

1. A washout equilibrium E0.

2. C1
n equilibria E1, . . . , En, where one species survives, and given by the intersection of ∆ and the curves of

hi, i = 1, . . . , n.

3. C2
n equilibria Ei j, with i, j = 1, . . . , n and i < j, where two species coexist and the other species are excluded.

They are given by the intersection of ∆ and the curves hi j = hi + h j.

4. Cm
n equilibria where m species coexist, for any 1 6 m 6 n.
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5. A positive equilibrium E∗ where all species coexist, which is the intersection of the line ∆ and the curve

h12...n =
∑n

i=1 hi.

The total number of equilibria is, then,
∑n

k=0 Ck
n = 2n.

• If λ1 < S in 6 λ̄n, we can extend the last reasoning to see that according to the position of S in, the intersection

of the line ∆ with the steady-state characteristics y = hJ , J = {1, 2, . . . , j}, j 6 n is composed of the intersection

with the curve y = 0 (which corresponds to the washout equilibrium), the curves y = hi, i = 1, . . . , j, the curves

y = hi + hk, i, k = 1, . . . , j, i , k, ... and the curve y = h1 + h2 + . . . + h j (which corresponds to the coexistence of

j species).

• If S in 6 λ1, the only intersection point of the characteristics with ∆ is on the curve y = 0 and it corresponds to the

washout equilibrium E0.

y

∆

DS in

h123

h12

h13

h1

h23

h2

h3

E∗

E12
E13

E1
E23

E2

E3

E0

E12

λ1 λ2 λ̄2 λ3 λ̄23 λ̄13S in λ̄3 S in

S

Figure 5: Steady-state characteristic for n = 3.

In Fig. 5, we illustrate the case of three species competing for a nutriment. It shows the number of equilibria of (1)

according to S in. We denote by

λ̄13 = λ3 +
h1(λ3)

D
and λ̄23 = λ3 +

h2(λ3)
D

.

Then, we can see that

• If S in > λ̄3, it exists 23 equilibria: A washout equilibrium E0, a positive equilibrium E∗, which is the intersection

of the line ∆ and the curve h123 :=
∑3

i=1 hi. Three equilibria E1, E2 and E3, where one species survives, three

equilibria E12, E13 and E23, where two species coexist while the third species is excluded.

• If λ̄13 < S in < λ̄3, then it exists seven equilibria: E0, E1, E2, E3, E12, E13 and E23.

• If λ̄23 < S in < λ̄13, then it exists six equilibria: E0, E1, E2, E3, E12 and E23.

• If λ3 < S in < λ̄23, then it exists five equilibria: E0, E1, E2, E3 and E12.

• If λ̄2 < S in < λ3, then it exists four equilibria: E0, E1, E2 and E12.
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• If λ2 < S in < λ̄2, then it exists three equilibria: E0, E1 and E2.

• If λ1 < S in < λ2, then it exists two equilibria E0 and E1.

• If S in < λ1, then it exists a unique equilibrium E0.

4.2. Stability of equilibria

We are interested, now, in the asymptotic behavior of (1). We show that in each case, only one equilibrium can be

stable. To do so, we calculate the Jacobian matrix and we use mainly Lemma 6.3 of [2], what we recall here:

Lemma 4.1. Consider the matrix

A =



−D −
n∑

i=1

αi c1 c2 · · · cn

α1 −b1 0 · · · 0

α2 0 −b2 · · · 0
...

...
...

. . .
...

αn 0 0 · · · −bn


. (11)

Assume that D > 0 and for i = 1, . . . , n, αi > 0, bi > 0 and ci 6 bi. Then, all the eigenvalues of A have negative real

part.

We first prove the next result:

Proposition 4.2. If S in > λ̄n, the positive equilibrium E∗ = (S ∗, x∗1, . . . , x
∗
n) is LES and all other equilibria are unstable.

Proof. The Jacobian matrix at (S , x1, . . . , xn) is in the form (11) with

αi = f ′i (S )xi, bi = −[ fi(S ) − 2aixi − Di] and ci = − fi(S ).

If S in > λ̄n, then the positive equilibrium E∗ = (S ∗, x∗1, . . . , x
∗
n) satisfies fi(S ∗) − aix∗i − Di = 0 and the Jacobian matrix

terms at E∗ satisfy:

αi = f ′i (S ∗)x∗i , bi = aix∗i and ci = − fi(S ∗).

Using H1, the positivity of the coefficients ai and Lemma 4.1, we conclude that E∗ is LES.

Now, denoting by Ē = (S̄ , x1, . . . , xn) the equilibrium point which has at least one component xk = 0, for k = 1, . . . , n.

The Jacobian matrix at Ē is in the form (11) with

αi = f ′i (S̄ )xi, bi = aixi, ci = − fi(S̄ ) for all i , k

and

αk = f ′k (S̄ )xk = 0, bk = Dk − fk(S̄ ).
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If S in > λ̄n, then S̄ > λn > λk and the eigenvalue fk(S̄ ) − Dk is positive. Thus, all equilibria that admit at least one zero

component are unstable. �

One can extend this result for any value of S in. We can prove that the equilibrium corresponding to the intersection of

the line ∆ with the curve of the function h1...n :=
∑n

i=1 hi, is LES and all other equilibria are unstable. Indeed, when

S ∈]λk, λk+1], k = 1, . . . , n − 1, we denote by Ek = (S k, xk
1, . . . , x

k
n), k = 1, . . . , n − 1, the intersection of the line ∆

with the steady-state characteristic y =
∑k

i=1 hi(S ). From definition (9) of hi, i = 1, ..., n we see that, for S ∈]λk, λk+1],

hk+1(S ) = . . . = hn(S ) = 0 and then, from (10), xk
k+1 = . . . = xk

n = 0. We deduce that fk+1(S k) − Dk+1, . . . , fn(S k) − Dn

are eigenvalues of the Jacobian matrix at Ek. Since S k < λk+1 < . . . < λn, these eigenvalues are negative. Using Lemma

(4.1), the other eigenvalues have negative real parts. The equilibrium Ek is then LES. Now, the other equilibria with

S ∈]λk, λk+1] have at least a null component among the first k + 1 ones. The corresponding eigenvalue of the Jacobian

matrix associated to such component is then positive. Hence, such equilibria are unstable.

Consequently, we can state:

Proposition 4.3. For any value of S in, there is only one LES equilibrium. All other equilibria are unstable.

In Fig. 5, we stained in red the part of the characteristic which corresponds to LES equilibria, and in blue the unstable

equilibria. Table 5 summarizes the previous results:

Condition E0 E1 E2 E12 E3 E23 E13 E∗

S in < λ1 S
λ1 < S in < λ2 U S
λ2 < S in < λ̄2 U S U
λ̄2 < S in < λ3 U U U S
λ3 < S in < λ̄23 U U U S U
λ̄23 < S in < λ̄13 U U U S U U
λ̄13 < S in < λ̄3 U U U S U U U
S in > λ̄3 U U U U U U U S

Table 5: Existence and local stability of equilibria of (1) with n = 3.

We aim now, to prove in the case of multi-species model the global stability of the equilibrium E1 = (S 1, x̄1, 0, . . . , 0)

corresponding to the extinction of all species except the one who has the lowest break-even concentration.

Proposition 4.4. Assume that λ1 < S in < λ̄2 and that there exist constants αi > 0, for each i > 2 satisfying λi < S in

such that

max
0<S<λ1

gi(S ) 6 αi 6 min
λi<S<S in

gi(S ) where gi(S ) =
fi(S )

f1(S 1)
f1(S ) − f1(S 1)

fi(S ) − Di

S in − S 1

S in − S
, (12)

Then, the equilibrium E1 is GAS for system (1) with respect to all solutions with x1(0) > 0.
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Proof. Consider the Lyapunov function V = V(S , x1, . . . , xn) defined as follows:

V =
S in − S 1

f1(S 1)

∫ S

S 1

f1(σ) − f1(S 1)
S in − σ

dσ +

∫ x1

x̄1

ξ − x̄1

ξ
dξ +

n∑
i=2

αixi,

where αi > 0 are the positive constants satisfying (12) if S < S in and αi > 0 are arbitrary if S > S in. The function V is

continuously differentiable for 0 < S < S in and xi > 0, i = 1, . . . , n and positive except at the point E1, where it is equal

to 0. The time derivative of V computed along the trajectories of (1) is given by:

V ′ = x1( f1(S ) − f1(S 1))
[
1 −

f1(S )
S in − S

S in − S 1

f1(S 1)

]
− a1(x1 − x̄1)2 −

n∑
i=2

αiaix2
i +

n∑
i=2

xi( fi(S ) − Di)(αi − gi(S ))

First, note that, the first term of the above sum is always non-positive for 0 < S < S in and equals 0 for S ∈]0, S in[

if and only if S = S 1 or x1 = 0. The second and the third term are obviously non-positive and vanish only if x1 = x̄1

and xi = 0 for i = 2, . . . , n. Finally, the last term of the above sum is always non-positive for every S ∈]0, S in[ and equal

to zero if and only if xi = 0 for i = 2, . . . , n. Then, V 6 0 and V = 0 if and only if S = S 1, x1 = x̄1 and xi = 0 for

i = 2, . . . , n. Hence, the result follows by applying the LaSalle extension theorem (see [18]). �

4.3. Operating diagram with three species

In the following, we analyse the operating diagram of model (1) with n = 3 in the case Ai > 0, with respect

to control parameters S in and D. The function f3 has an increasing inverse function that we denote by F3. We set

m̄3 = supS>0 f3(S ) − A3 and we assume that m̄3 > 0 and for example that

F1(D) < F2(D) < F3(D), for all D ∈]0, m̄3[.

To illustrate the stability conditions given by Table 5, we also define the functions:

F23 :]0, m̄3[ −→ ]0,+∞[

D −→ F3(D) +
h2(F3(D))

D ,

F13 :]0, m̄3[ −→ ]0,+∞[

D −→ F3(D) +
h1(F3(D))

D

and

F123 :]0, m̄3[ −→ ]0,+∞[

D −→ F3(D) + 1
D [h1(F3(D)) + h2(F3(D))] .
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Note that if Ai > 0, i = 1, ..., 3, then

lim
D−→0+

F23(D) = lim
D−→0+

F13(D) = lim
D−→0+

F123(D) = +∞.

By the definition of F23 and since h2(F3(D)) > 0, it follows that

F3(D) < F23(D) for all D ∈]0, m̄3[

and for similar reasons that

F12(D) < F13(D) < F123(D) for all D ∈]0, m̄3[.

(a)S in Γ23 Γ12 Γ13 Γ123 Γ1Γ2

I6

I5

?

I9

I8

I7

I4

I3 I2 I1 I0

Γ3

D

(b)

∆

DS in h123

h12

h13

h1

h23

h2

h3

E∗
E12

E13

E1

E23

E2

E3

E0

λ1 λ2 λ3 λ̄23 λ̄2 λ̄13 λ̄3 S in

S

Figure 6: (a) Operating diagram of (1) with n = 3. (b) Steady-state characteristic for (D, S in) ∈ I9 with D < D∗1.

Let Γ3 be the curve of equation S in = F3(D), Γ23 that of S in = F23(D), Γ13 that of S in = F13(D) and Γ123 that of

S in = F123(D). The curves Γi , i = 1, 2, 3, Γ23, Γ12, Γ13 and Γ123 separate the operating plane (D, S in) in ten regions, as

shown in Fig. 6(a), labeled Ik, k = 0, . . . , 9. The curve Γ1 (the red curve) is the border which makes E0 a saddle point

and at the same time E1 exists and is a LES equilibrium. The curve Γ2 (the blue curve) is the border which makes E2

exists but it is a saddle point. The curve Γ3 (the green curve) is the border which makes E3 exists but it is a saddle point.

The curve Γ12 (the cyan curve) is the border which makes E1 a saddle point and at the same time E12 exists and is a LES

equilibrium. The curve Γ23 (the black curve) is the border which makes E23 exists but it is a saddle point. The curve

Γ13 (the gold curve) is the border which makes E13 exists but it is a saddle point. The curve Γ123 (the magenta curve) is

the border which makes E12 a saddle point and at the same time E∗ exists and is a LES equilibrium. The curve Γ12 does

intersect with the curves Γ23 and Γ3 in D∗1 and D∗2, respectively.

Table 6 shows the existence and local stability of equilibria in the regions Ik, k = 0, . . . , 9, when the curves Γi,

i = 1, 2, 3, do not intersect. Note that in the case where the curves Γi intersect, the study can be treated similarly.

In the case n > 2, we remark that if there are two zeros parameters ai then the positive equilibrium E∗ does not exist.

Thus, a necessary condition of existence of E∗ is that at most one ai is zero. Furthermore, E∗ can be stable if all the
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Region E0 E1 E2 E3 E23 E12 E13 E∗

(D, S in) ∈ I0 S
(D, S in) ∈ I1 U S
(D, S in) ∈ I2 U S U
(D, S in) ∈ I3 U S U U
(D, S in) ∈ I4 U S U U U
(D, S in) ∈ I5 U U U U S
(D, S in) ∈ I6 U U U S
(D, S in) ∈ I7 U U U U U S
(D, S in) ∈ I8 U U U U U S U
(D, S in) ∈ I9 U U U U U U U S

Table 6: Existence and local stability of steady states of three species model.

species are inhibited (namely, ai , 0) except the least competitive species.

4.4. Simulations

In the following, we illustrate the results obtained for system (1) with n = 3 and the functions fi(·) are of Monod

type, defined by:

fi(S ) =
miS

Ki + S
, i = 1, 2, 3.

For the numerical simulations, we use the parameters shown in Table 7 and Table 8.

Parameters m1 m2 m3 K1 K2 K3

Values 2 2.5 3 2 3 4

Table 7: Parameter values for Monod functions.

Parameters a1 a2 a3 A1 A2 A3

Values 0.1 0.2 0.3 0.3 1 1.5

Table 8: Parameter values for model (1) with n = 3.

Note that

D∗1 w 0.869 and D∗2 w 0.968.

For these parameter values, the curves S in = Fi(D) do not intersect and we obtain the operating diagram in Fig. 6(a).

The steady-state characteristic is depicted in Fig. 6(b) for

(D, S in) = (0.6, 60) ∈ I9 or even S in > λ̄3 w 34.443,

where there exist 23 equilibria for system (1). In this case, Fig. 7(a) shows the coexistence of the three species and the

convergence towards the positive equilibrium E∗ w (18.214, 9.021, 2.732, 1.199) for several positive initial conditions.
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Figure 7: (a) Coexistence of the three species for (D, S in) ∈ I9. (b) Competitive exclusion of the third species for (D, S in) ∈ I8. (c) Competitive
exclusion of the third and the second species for (D, S in) ∈ I4. (c) Washout of all species for (D, S in) ∈ I0.

Fig. 7(b) shows the competitive exclusion of the third species for

(D, S in) = (0.6, 32) ∈ I8 or even λ̄13 w 29.840 < S in < λ̄3.

For several positive initial conditions, the solutions of (1) converge towards the equilibrium E12 ' (8.583, 7.220, 1.262, 0).

Fig. 7(c) shows the competitive exclusion of the third and the second species for

(D, S in) = (0.6, 16) ∈ I4 or even λ̄23 w 13.935 < S in < λ̄2 w 18.777.

For several positive initial conditions, the solutions of (1) converge towards the equilibrium E1 ' (4.581, 4.922, 0, 0).

Fig. 7(d) shows the washout of all species for

(D, S in) = (0.6, 0.6) ∈ I0 or even S in < λ1 w 1.636.

For several positive initial conditions, the solutions of (1) converge towards the equilibrium E0 ' (0.6, 0, 0, 0).

5. Conclusion

In this paper, we considered a mathematical model describing multi-species competition for a single growth-limiting

resource in a chemostat. For monotonic growth functions and different dilution rates, we proved that the outcome of

competition contrasts the competitive exclusion principle which predicts that only one species can exist in the long term.

Indeed, we proved that according to the concentration S in of the substrate in the chemostat, several species can coexist.

If S in is large enough, there exists a unique coexistence equilibrium which is LES while all other equilibria are unstable.

This proves that intra-specific interactions, between individuals of the same species, may be responsible for the observed

coexistence, since they are the only difference between the classical chemostat model [18] and the model presented here.

The operating diagram depicts regions in the (D, S in) plane in which the various outcomes occur. To maintain the

coexistence of species in the chemostat, the ideally parameter values of D and S in should be chosen in the red region of
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coexistence but not in the cyan region of washout or in the other regions of exclusion of one species (see Figs. 2, 3 and

6). Hence, the importance of the main control parameters D and S in on the maintenance of species coexistence and the

protection of the least relevant species among microbial ecosystems.

The intra-specific competition of the n − 1 most efficient species introduces a region of coexistence of n species

while the least competitive species has no reason to be inhibited in order to coexist with all other species. Decreasing

the values of intra-specific competition terms reduces the region of coexistence and increases the regions of competitive

exclusion. When these terms tends to zero, the region of coexistence tends to disappear and we find the same result than

for the classical chemostat model. The simulations illustrate the mathematical results demonstrated in the case where

the growth rates are of Monod type.
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