
HAL Id: hal-01137577
https://hal.science/hal-01137577

Preprint submitted on 30 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Fréchet features for random distributions and
associated sensitivity indices

Jean-Claude Fort, Thierry Klein

To cite this version:
Jean-Claude Fort, Thierry Klein. New Fréchet features for random distributions and associated sen-
sitivity indices. 2015. �hal-01137577�

https://hal.science/hal-01137577
https://hal.archives-ouvertes.fr


New Fréchet features for random distributions
and associated sensitivity indices

Jean-Claude Forta and Thierry Klein b∗∗

March 30, 2015

Abstract

In this article we define new Fréchet features for random cumulative
distribution functions using contrast. These contrasts allow to construct
Wasserstein costs and our new features minimize the average costs as
the Fréchet mean minimizes the mean square Wasserstein2 distance. An
example of new features is the median, and more generally the quantiles.
From these definitions, we are able to define sensitivity indices when the
random distribution is the output of a stochastic code. Associated to
the Fréchet mean we extend the Sobol indices, and in general the indices
associated to a contrast that we previously proposed.
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Introduction
Nowadays the output of many computer codes is not only a real multidimen-
sional variable but frequently a function computed on so many points that it
can be considered as a functional output. In particular this function may be the
density or the cumulative distribution function (c.d.f) of a real random vari-
able (phenomenon). In this article we focused on the case of a c.d.f output.
To analyze such outputs one needs to choose a distance to compare various
c.d.f.. Among the large possibilities offered by the literature we have chosen
the Wasserstein distances (for more details on wasserstein distances we refer
to [?]). Actually for one dimensional probability distributions the Wassersteinp
distance simply is the Lp distance of simulated random variables from a uni-
versal (uniform on [0, 1]) simulator U : W p

p (F,G) =
∫ 1

0
|F−(u) − G−(u)|pdu =

E|F−(U)−G−(U)|p, where F− is the generalized inverse of F . This means that
using Wasserstein distances is to compare various c.d.f from various codes on a
same simulation space, which seems very natural in many situations. The most
relevant cases seem to be p = 2 and p = 1, and in this paper we will work with.
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In this article, we consider the problem of defining a generalized notion of
barycenter of random probability measures on R. It is a well known fact that
the set of Radon probability measures endowed with the 2-Wasserstein distance
is not an Euclidean space. Consequently, to define a notion of barycenter for
random probability measures, it is natural to use the notion of Fréchet mean
[?] that is an extension of the usual Euclidean barycenter to non-linear spaces
endowed with non-Euclidean metrics. If Y denotes a random variable with
distribution P taking its value in a metric space (M, dM), then a Fréchet mean
(not necessarily unique) of the distribution P is a point m∗ ∈M that is a global
minimum (if any) of the functional

J(m) =
1

2

∫
M
d2
M(m, y)dP(y) i.e. m∗ ∈ arg min

m∈M
J(m).

In this paper, a Fréchet mean of a random variable Y with distribution P will
be also called a barycenter. For random variables belonging to nonlinear metric
spaces, a well-known example is the computation of the mean of a set of planar
shapes in the Kendall’s shape space [?] that leads to the Procrustean means
studied in [?]. Many properties of the Fréchet mean in finite dimensional Rie-
mannian manifolds (such as consistency and uniqueness) have been investigated
in [?, ?, ?, ?, ?, ?].

This article is an attempt to use these tools and some extensions for ana-
lyzing computer codes outputs in a random environment, what is the subject
of computer code experiments. In the first section we define new contrasts for
random c.d.f. by considering generalized " Wasserstein" costs. From this, in the
second section we define new features in the way of the Fréchet mean that we
call Fréchet features. Then we propose some examples. The next two sections
are devoted to a sensitivity analysis of random c.d.f., first from a Sobol point
of view that we generalized to a contrast point of view as in [?].

1 Wasserstein distances and Wasserstein costs for
unidimensional distributions

For any p ≥ 1 we may define a Wasserstein distance between two distribution
of probability, denoted F and G (their cumulative distribution functions, c.d.f.)
on Rd by:

W p
p (F,G) = min

(X,Y )
E‖X − Y ‖p,

where the random variables (r.v.’s) have c.d.f. F and G (X ∼ F, Y ∼ G),
assuming that X and Y have finite moments of order p. We call Wasserteinp
space the space of all c.d.f. of r.v.’s with finite moments of order p.

As previously mentioned, in the unidimensional case where d = 1, it is well
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known that Wp(F,G) is explicitly computed by:

W p
p (F,G) =

∫ 1

0

|F−(u)−G−(u)|pdu = E|F−(U)−G−(U)|p.

Here F− and G− are the generalized inverses of F and G that are increasing
with limits 0 and 1, and U is a r.v. uniform on [0, 1]. Of course F−(U) and
G−(U) have c.d.f. F and G.

This result extends to more general contrast functions.

Definition 1.1 We call contrast functions any application c from R2 to R sat-
isfying the "measure property" P defined by

P : ∀x ≤ x′ and ∀y ≤ y′, c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y) ≤ 0,

meaning that c defines a negative measure on R2.

Example 1.1 c(x, y) = −xy satisfies the P property.

Remark 1 If c satisfies P then any function of the form a(x) + b(y) + c(x, y)
satisfies P. For instance (x− y)2 = x2 + y2 − 2xy satisfies P.

Remark 2 More generally if C is a convex real function then c(x,y)=C(x-y)
satisfies P. This is the case of |x− y|p, p ≥ 1.

Definition 1.2 We define de Skorohod space D := D ([0, 1]) of all distribution
functions that is the space of all non decreasing function from R to [0, 1] that
are càd-làg with limit 0 (resp. 1) in −∞ (resp. +∞) equiped with the supremum
norm.

Definition 1.3 (The c−Wasserstein cost) For any F ∈ D, any G ∈ D and
any positive contrast function c, we define the c−Wasserstein cost by

Wc(F,G) = min
(X∼F,Y∼G)

E (c(X,Y )) < +∞

The following theorem can be found in ([?]).

Theorem 1.2 (Cambanis, Simon, Stout [?]) Let c a function from R2 tak-
ing values in R. Assume that it satisfies the "measure property" P. Then

Wc(F,G) =

∫ 1

0

c(F−(u), G−(u))du = E c(F−(U), G−(U)),

where U is a random variable uniformly distributed on [0, 1].

At this point we may notice that in a statistical framework one encounter
many contrasts that are defined via a convex function. Actually many features
of probability distribution can be characterized via such a contrast function.
For instance an interesting case is the quantiles. Applying the previous remark
we get:
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Proposition 1.1 For any α ∈ (0, 1) the contrast function (pinball function)
associated to the α-quantile cα(x, y) = (1− α)(y − x)1x−y<0 + α(x− y)1x−y≥0

satisfies P.

This result is the starting point of the definition of some new features of
random c.d.f..

2 Extension of the Fréchet mean to other fea-
tures

A Fréchet mean EX of a r.v. X taking values in a metric space (M, d) is define
as (whenever it exists):

EX ∈ argminθ∈ME d(X, θ)2.

That means that it minimizes the contrast E d(X, θ)2 which is an extension
of the classical contrast E‖X − θ‖2 in Rd.

Adopting this point of view we can define a "Fréchet feature" associated to
a convenient contrast function.

Now we consider a probability space (Ω,A,P) and a measurable application
F from Ω to D. Take c a positive contrast (satisfying property P) and define
the analogously to the Fréchet mean, the Fréchet feature associated to c or
contrasted by c as it follows:

Definition 2.1 Assume that F is a random variable taking values in D. Let
c be a non negative contrast function satisfying the property P. We define a
c-contrasted feature EcF of F by:

EcF ∈ argminG∈DE (Wc(F, G)) .

Of course this definition coincides with the Fréchet mean in the Wasserstein2

space when using the "contrast function" c(F,G) = W 2
2 (F,G).

Theorem 2.1 If c is a positive cost function satisfying the property P, if the
application defined on (ω, u) ∈ Ω × (0, 1) by F−(ω, u) is measurable and if EcF
exists and is unique we have:

(EcF)−(u) = argmins∈REc(F−(u), s).

That is EcF is the inverse of the function taking value at u the c-contrasted
feature of the real r.v. F−(u). For instance the Fréchet mean in the Wasserstein2

space is the inverse of the function u −→ E (F−(u)).
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Remark 3 Here, we proposed a general framework on F and made some strong
assumptions on existence uniqueness and measurability. But one can construct
explicit parametric models for F. We refer to [?] for such example. In particular
in [?], the authors used some results of [?] that ensures measurability for some
parametric models on F.

Another example is the Fréchet median. A contrast function defining the median
in R is |x− y|. An immediate extension to the Wassertein1 space is to consider
the "contrast function" c(F,G) = W1(F,G). Thus we obtain the Fréchet median
of a random c.d.f. as :

(Med(F))−(u) ∈ Med(F−(u)).

More generally we can define an α-quantile of a random c.d.f., qα(F), as:

(qα(F))−(u) ∈ qα(F−(u)),

where qα(X) is the set of the α-quantiles of X taking its values in R.

Proof of Theorem ??.

Since c satisfies P we have:

E Wc(F, G) = E
∫ 1

0

c(F−(u), G−(u))du =

∫ 1

0

E c(F−(u), G−(u))du,

by Fubini’s theorem.
Now for all u ∈ (0, 1) the quantity E c(F−(u), G−(u)) is minimum for G−(u)

a feature contrasted by c. Noticing that this results in an increasing and càd-làg
function the theorem follows. �

3 Example
In this section we illustrate our definitions through an example.

Let F0 an increasing absolutely continuous c.d.f (hence F−1
0 exists), X a r.v.

with distribution F0, M and Σ two real r.v.’s, Σ>0. We consider the random
c.d.f. F of ΣX +M . We have:

F(x) = F0(
x−M

Σ
) and F−1(u) = ΣF−1

0 (u) +M.

As well known the Fréchet mean of F is given by: (E(F))−1(u) = ΣF−1
0 (u)+

M , thus E(F)(x) = F0(
x− EM

EΣ
).

Now using the α-quantile contrast cα(x, y) = (1− α)(y − x)1x−y<0 + α(x−
y)1x−y≥0 and following our definition, we define the "α-quantile" of F:
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(qα(F))−1(u) = qα(ΣF−1
0 (u) +M).

Assuming that Σ = 1 it simplifies in qα(F)(x) = F0(x − qα(M)). When
M = 0 we have qα(F)(x) = F0(

x

qα(Σ)
) (see figure(??)).

Once these features defined, referring to computer experiment framework,
in the next section we propose a sensitivity analysis of these Fréchet features of
a random c.d.f. as stochastic output of a computer code.

4 Sensitivity indices for a random c.d.f.

4.1 Sobol index
A very classical problem in the study of computer code experiments (see [?]) is
the evaluation of the relative influence of the input variables on some numerical
result obtained by a computer code. This study is usually called sensitivity
analysis in this paradigm and has been widely assessed (see for example [?], [?],
[?] and references therein). More precisely, the numerical result of interest Y is
seen as a function of the vector of the distributed input (Xi)i=1,··· ,d (d ∈ N∗).
Statistically speaking, we are dealing here with the unnoisy non parametric
model

Y = f(X1, . . . , Xd), (1)

where f is a regular unknown numerical function on the state space E1 ×E2 ×
. . . × Ed on which the distributed variables (X1, . . . , Xd) are living. Generally,
the inputs are assumed to be stochastically independent and sensitivity analysis
is performed by using the so-called Hoeffding decomposition (see [?] and [?]).
In this functional decomposition f is expanded as a L2 sum of uncorrelated
functions involving only a part of the random inputs. For any subset v of
Id = {1, . . . , d} this leads to an index called the Sobol index ([?]) that measures
the amount of randomness of Y carried in the subset of input variables (Xi)i∈v.
Without loss of generality, let us consider the case where v reduces to a singleton.
Let us first recall some well known facts about Sobol index. The global Sobol
index quantifies the influence of the r.v. Xi on the output Y . This index is based
on the variance (see [?],[?]): more precisely, it compares the total variance of Y
to the expected variance of the variable Y conditioned by Xi,

Si =
Var(E[Y |Xi])

Var(Y )
. (2)

By the property of the conditional expectation it writes also

Si =
Var(Y )− E(Var[Y |Xi])

Var(Y )
. (3)

In view of this formula we can define a Sobol index for the Fréchet mean of a
random c.d.f. F = h(X1, . . . , Xd). Actually we define Var(F) = EW 2

2 (F, E(F)),
and
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Si(F ) =
Var(F)− E(Var[F|Xi])

VarF
.

From Theorem ?? we get:

Var(F) = E
∫ 1

0

|F−(u)−E(F)−(u)|2du = E
∫ 1

0

|F−(u)−EF−(u)|2du =

∫ 1

0

Var(F−(u))du.

And the Sobol index is now:

Si(F) =

∫ 1

0
Var(F−(u))du−

∫ 1

0
EVar[F−(u)|Xi]du∫ 1

0
Var(F−(u))du

=

∫ 1

0
Var(E[F−(u)|Xi])du∫ 1

0
Var(F−(u))du

.

As a toy example, applying this to our previous example F(x) = F0(
x−M

Σ
),

where M and Σ play the role of influent random variables, we find:

SΣ =
Var Σ + 2cov(Σ,M)Eξ

Var Σ + Var M + 2cov(Σ,M)Eξ
, SM =

Var M + 2cov(Σ,M)Eξ
Var Σ + Var M + 2cov(Σ,M)Eξ

where ξ has c.d.f. F0, since Eξ =
∫ 1

0
F−1

0 (u)du.

In practiceM and Σ depends upon numerous random variables (X1, . . . , Xd),
then the Sobol index with respect to Xi becomes:

Si =
Var E[Σ|Xi] + 2cov(E[Σ|Xi],E[M |Xi])Eξ + Var E[M |Xi]

Var Σ + Var M + 2cov(Σ,M)Eξ

4.2 Sensitivity index associated to a contrast function
The formula (??) can be extended to more general contrast functions. The
contrast function naturally associated to the mean of a real r.v. is c(x, y) =
|x − y|2. We have EY = argminθ∈REc(Y, θ) and Var(Y ) = minθ∈R Ec(Y, θ).
Thus the denominator of Si is the variation between the minimum value of
the contrast and the expectation of the minimum of the same contrast when
conditioning by the r.v. Xi. Hence for a feature of a real r.v. associated to a
contrast function c we defined a sensitivity index (see ([?])):

Si,c =
minθ∈R Ec(Y, θ)− Eminθ∈R E[c(Y, θ)|Xi]

minθ∈R Ec(Y, θ)
.

Along the same line, we now define a sensitivity index for a c-contrasted
feature of a random c.d.f. by:

Si,c =
minG∈W EWc(F, G)− EminG∈W E[Wc(F, G)|Xi]

minG∈W EWc(F, G)
.
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The computation of Si,c simplifies when c satisfies the property P and as-
suming the uniqueness of EcF:

Si,c =
E
∫ 1

0
c(F−(u), (EcF)−(u))du− E[

∫ 1

0
c(F−(u), (Ec[F|Xi])

−(u))du]

E
∫ 1

0
c(F−(u), (EcF)−(u))

where Ec[F|Xi] is the c-contrasted feature conditional to Xi (i.e. with respect
to the conditional distribution of F), also assumed to be unique.

For instance if c = |x−y|, (EcF)−(u) is the "median" (assumed to be unique)
of the random variable F−(u) and:

Si,Med =
E
∫ 1

0
|F−(u)−Med(F−(u))|du− E[

∫ 1

0
|F−(u)−Med[F−(u)|Xi]|du]

E
∫ 1

0
|F−(u)−Med(F−(u))|du

.

The same holds for any α-quantile, using the corresponding contrast function
cα but whith less readable formula.

5 Conclusion
This article is an attempt to define interesting features for a functional output
of a computer experiment, namely a random c.d.f., together with its sensitivity
analysis. This theory is based on contrast functions that allow to compute
Wasserstein costs. In the same way as the Fréchet mean for the Wassersstein2

distance we have defined features that minimize some contrasts made of these
Wasserstein costs. Straightforwardly from the construction of that features we
have developed a proposition of sensitivity analysis, first of Sobol type and
then extended to sensitivity indices associated to our new contrasts. We intend
to apply our methodology to an industrial problem: the PoD (Probability of
Detection of a defect) in a random environment. In particular we hope that our
α-quantiles will provide a relevantt tool to analyze that type of data.
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