

Analysis of the expansion phenomenon during the extrusion process: Experiments and model

Magdalena KRISTIAWAN & Guy DELLA VALLE

Ludovic Club, March 26, 2014 - Lyon

Département Caractérisation et Elaboration des Produits Issus de l'Agriculture

Objective of this work

✓ Test the validity of Ludovic[®] simulation for starch extrusion

✓ Show how to integrate the phenomenological model of expansion with Ludovic[®]'s interface

Aims: Extend the Ludovic [®]'s capability to

predict macro & microstructure of starchy foam

<u>Concept map</u>: Structure of Ludovic[®]

Input variables of **models** =

Extrusion's output variables at die exit (calculated by Ludovic[®])

EXPERIMENTS

1) Raw material - Maize starches

Starch	Product	Amylose / Amylopectine
Α	Amylomaize	70 / 30
В	Blend of A : D = 2 : 1	47 / 53
С	Blend of A : D = 1 : 2	23.5 / 76.5
D	Waxy maize	0 / 99

Molecular structure

2) Extrusion – Plasticizer : water

Control	Water content	Product temperature	SME	 Experimental sets: Low MC with Med & High Tp High MC with Low & Med Tp
variables	IVIC	Ip C	KWN/T	
Min	0.21	105	101	Q = 12 - 35 kg/h
Max	0.36	186	580	N = 80 – 240 rpm

Extruder configurations: Clextral BC45 & Slit die

3) Determination of melt viscosity using Rheopac

- An in-line rheometer
- A slit die with twin rectangular channels attached

to the die head of the extruder

- Channel 1 for the measurement
- Channel 2 for bypass a part of the total flow rate Q by adjusting the piston valves
- <u>Principle</u>
- Vary the local shear rate in the Channel 1
- Keep constant the Q, SME and die head P in extruder
- Measurement of ΔP/ ΔL and Q1 in the Channel 1 to obtain shear viscosity

Using Rabinowitsch correction

General rheological model for the plasticized starch

• Power law fluid with Non-newtonian and Shear thinning behavior $\eta = K \dot{\gamma}^{n-1}$

<u>Case 1</u>) Dependency of *K* and *n* <u>only</u> on **temperature (7)** and **moisture content (***MC***)**

$$K = K_o \left[\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_o} \right) - \alpha (MC - MC_o) \right]$$

 $n = a_1 T + a_2 M C + a_3 T M C$

<u>Case 2</u>) Dependency of *K* and *n* on thermomechanical history through a **specifc**

mechanical energy (SME) term

$$K = K'_o \left[\frac{E}{R} \left(\frac{1}{T} - \frac{1}{T_o} \right) - \alpha (MC - MC_o) - \beta (SME - SME_o) \right]$$

 $n = n_o + a_1 T + a_2 MC + a_3 SME + a_4 TMC + a_5 TSME + a_6 MCSME$

RESULTS & DISCUSSIONS

Shear viscosity of molten starch: SME (+) then viscosity (-)

Effect of Specific Mechanical Energy:

Complex dependency with amylose, water content & temperature

Determination of shear viscosity parameters for Ludovic® input

	Starch	А	В	С	D
	Amylose content	0.7	0.47	0.245	0
	K' _o (Pa.s)	1.13E+07	4.15E+05	7.54E+07	1.34E+06
<u>eopac data</u> :	E/R (K)	11,298	5,638	9,869	9,350
$- K_{i}n^{-1}$.	α	14.49	14.86	38.94	26.32
$-K\gamma$,	[≫] β (kJ/kg)⁻¹	0	2.68E-04	1.25E-03	1.59E-03
t(MC, Tp, SME)	n _o	0	0	0.34	0
	a ₁ (°C) ⁻¹	2.69E-03	1.87E-03	1.06E-06	8.92E-04
	a ₂	0	6.13E-01	9.69E-01	0
	a ₃ (kJ/kg)⁻¹	0	0	2.08E-05	1.56E-04
	a ₄ (°C kJ/kg)^-1	0	2.68E-03	1.09E-05	1.44E-02
	a ₅ (°C) ^{^-1}	0	0	0	0
	a ₆ (kJ/kg)^-1	0	8.36E-05	2.18E-04	0
$= a_1 T + a_2 MC + a_3 T$ $\left[\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_o}\right) - \alpha(MC - \frac{1}{T_o})\right]$	MC Com	npute new K,n=f(Mo	paramete C, Tp)	rs Cr (eate Set o points (<i>Tp</i> , γ, <i>SM</i>
$= a_1 T + a_2 MC + a_3 T$ $\left[\frac{E}{R}\left(\frac{1}{T} - \frac{1}{T_o}\right) - \alpha (MC - \frac{1}{T_o})\right]$	<i>MC</i> - <i>MC</i> _o)	npute new K,n=f(M0	param C, Tp)	iete	neters Cr

How to activate SME coupling in viscosity law for Ludovic[®] material input ?

Product		- • ×	
Product Name Starch D Product Name Starch I Thermal Characteristics Viscosity	1) Create So	et of Points	power law testing:Patria_D_S8 THESE SME Fie Smulation Main Extruder Process Options © Execute Gobal Results RTD Results Results (k)
Power Law Viscosity Law = f(Temp, Shear Parameter 1 : Temporatur Parameter 2 : Shear Rate	© Carlead Fa		Numerical parameters Precision (°C) 2.0 Max Iterations # 2.0 Reverse and Direct Precision 1 a) Output Temperature (°C) Compliang
Temp (*C) 90 90 90	r Rate (s-1) Total Dissipated	Energ Viscosity (Pa.s) 20 6041.661948 30 5967.904831 45 5858.954026	Alarms Settings Coupling Mode Coupling Mode Coupled Viscosity Computation for : - Starch D'on : Total Dissipated Energy (Standard Result) Alarms Settings Alarms Al
90 90 90 90 90 90 90	10 10 10 1 10 22 10 341 10 512.	67.5 5699.245857 101.25 5467.809122 51.875 5138.155868 7.8125 4680.563793 .71875 4069.438693 578125 3299.050944	38-46 kg/h 165%C 15%C
Points Count 1,573	Export to Delete Modify Cancel	Digitize Test SOP	Podified solveur.exe (solveur_use0.dt) new Local Permanent Loonse _ 3/25/201
		ıh	<u></u>

March 26, 2014, Lyon

SCIENCE & IMPACT

- 8 -

Compute ...

3/25/2014 9:11:14 AM

a Threshold a

Ludovic simulation: Experimental set (Amylose 0.0, Water 0.25, Tp 158° C, SME 131 kWh/t)

Sensibility to thermomechanical history (SME, Tp, MC)

Ludovic simulation: Experimental set (Amylose 0.70, MC 0.21, Tp 166 °C, SME 750 kJ/kg

Sensibility to thermal conductivity k

March 26, 2014, Lyon

Significant effect of *k* !!!

Sensibility to melting temperature T_m

The higher amylose content, the broader melting endotherme (Mateev 2001)

Ludovic Club March 26, 2014, Lyon

15

Ludovic simulation: Experimental set (Amylose 0.70, MC 0.21, Tp 166° C, SME 750 kJ/kg

Sensibility to melting temperature T_m

Experiments vs Simulations

Experiments vs Simulations

May be the problem on:

Die geometry ????

Rheological model ????

Computing of starch destructurization using Ludovic

% destructurization = $\frac{\Delta \text{ intrinsic viscosity}}{\text{initial intrinsic viscosity}}$

Native maize starch			
Amylose /	Intrinsic		
Amylopectine	viscosity		
	(ml/g)		
0 / 100	185		
24.5 / 75.5	159		
47 / 53	132		
70 / 30	104		

Amylopectine (higher MW) is more sensitive to thermomechanical treatment than amylose (lower MW)

CONCLUSIONS

- The determination of material properties is primordial
 - The *rheological behavior* of molten polymer,

f(thermomechanical history)

- The *thermal physical properties* of material,

f(*T*, water content)

- The computed dissipated mechanical energy is underestimated
 - Well correlation between $\text{SME}_{\text{computed}}$ and the $\text{SME}_{\text{experimental}}$
 - Well correlation between % starch destructurization and SME_{computed}

- Integration of Ludovic[®] with phenomenological model of expansion
- 1) Coupling the model with Ludovic[®]
- 2) Simulation and validation (experiments)
- New Ludovic[®] outputs:
- 1) Macrostructure:
- Indices Expansion Volumique (VEI)
- Indices Expansion Radial & Longitudinal
- Anisotropie factor
- 2) Microstructure:
- Mean cell size (MCS)
- Mean cell wall thickness (MCWT)
- Finesse

<u>Concept map</u>: Structure of Ludovic[®]

Input variables of **models** =

Extrusion's output variables at die exit (calculated by Ludovic[®])

Context: Starchy material processing using extrusion-cooking

Expansion by extrusion cooking: **Relation with Glass transition temperature** *Tg*

Concept map: Phenomenological model of expansion

$\rho^* \approx z \otimes [\eta(\gamma)]^{\times} \otimes [MC] \otimes [Tp] \otimes [E'(T\alpha)]^{\vee}$

where *z*, *x*, *y* = f(*MC*, *Tp*, ...)

Thank you....

Discussion....

Ludovic Club, March 26, 2014 - Lyon

Département Caractérisation et Elaboration des Produits Issus de l'Agriculture