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Abstract-Injections flaws which include SQL injection are the 
most prevalent security threats affecting Web applications[1]. 
To mitigate these attacks, Web Application Firewalls (WAFs) 
apply security rules in order to both inspect HTTP data streams 
and detect malicious HTTP transactions. Nevertheless, attackers 
can bypass WAF's rules by using sophisticated SQL injection 
techniques. In this paper, we introduce a novel approach to 
dissect the HTTP traffic and inspect complex SQL injection 
attacks. Our model is a hybrid Injection Prevention System 
(HIPS) which uses both a machine learning classifier and a 
pattern matching inspection engine based on reduced sets of 
security rules. Our Web Application Firewall architecture aims 
to optimize detection performances by using a prediction module 
that excludes legitimate requests from the inspection process. 

Index Terms-SQL injection - Web Application Firewall -
HTTP dissection - machine learning - Security rules 

I. INTRODUCTION 

Structured Query Language (SQL) injection is one of the 
most devastating vulnerabilities that impacts DataBase Man­
agement Systems (DBMS), as it can lead to the exposure of 
all the sensitive information stored in an application's database 
[2]. In order to confront SQL injection attacks, various 
methodologies and techniques have been used. On one hand, 
Web application developers adopted safe coding and applied 
input validation functions. They developed filters to protect the 
application's entries from SQL code injections. These filters 
block inputs that contain SQL keywords or special characters 
commonly used in malicious SQL code injection. On the other 
hand, Web Application Firewalls protect application's database 
by inspecting HTTP traffic and applying a set of security rules. 
The language used for expressing security rules can explicitly 
describe a signature of an SQL injection attack, or implicitly 
describe the way of detecting these attacks. It can also express 
an anomaly score value which increases every time a malicious 
pattern appears in an HTTP request. If the anomaly value 
reaches a predefined threshold, the request will be rejected. 
In spite of the robustness of the above methods, attackers can 
bypass them by substituting malicious pattern characters or 
varying its format. However, a basic solution is to write a 
specific rule for each type of evasion technique, but it requires 
a high mastery of both HTTP protocol and regular expressions 
programming. Furthermore, pattern matching algorithms, used 
by security rules in order to inspect complex patterns, decrease 
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the overall performances of the detection engine. Since pattern 
matching algorithms require a lot of resources, some WAFs [7] 
[9] are configured to only inspect POST request. 
In this paper, we propose a hybrid approach to detect SQL 
injection attacks and their evasion techniques. Our proposal 
enhances both the inspection process of HTTP streams and 
security rules management. 

Our contributions can be summarized as follows: 
1) A brief survey on filters evasion techniques including code 
obfuscations and headers-level SQL injections. 
2) A novel method to dissect and parse the HTTP protocol, 
that enhances security rules management, which makes the 
formalism of writing security rules less complex. 
3) A Hybrid Injection Prevention System (HIPS) architecture, 
by introducing a supervised machine learning module. The 
classifier (machine learning module) predicts SQL injections 
and forwards suspicious headers to the rules-based detection 
engine in order to be deeply analyzed . 
4) An evaluation of the effectiveness of the proposed method 
based on false negatives impact instead of false positives which 
are commonly used in Anti-spams cost evaluation. 

II. RELATED WORK 

In [3][4], Kruegel and Vigna propose an anomaly-based in­
trusion detection system for web applications. It characterizes 
HTTP requests using a number of statistical characteristics de­
rived from parameter's length, character distribution, structure, 
presence and order. This method focuses only on the incoming 
query parameters whereas it ignores the corresponding HTTP 
response. These results are either causing unnecessary false 
positives or missing certain attacks. AMNESIA [5] is an SQL 
injection detection and prevention system which combines 
static analysis and run-time monitoring. It uses a model-based 
approach to detect illegal queries. Nonetheless, it requires 
web application's source code reviewing. In SQLrand [3][6] 
instead of normal SQL keywords developers create queries 
using randomized instructions. In this approach a proxy filter 
intercepts queries to the database and de-randomizes the 
keywords. By using the randomized instruction set, attacker's 
injected code could not have been constructed. As it uses a 
secret key to modify instructions, security of the approach is 
dependent on attacker ability to seize the key. It requires the 



integration of a proxy for the database in the system as the 
same as developer training. ModSecurity WAF, proposed by 
Ivan Ristic [7], is an open source solution based on signature 
attack detection. ModSecurity is widely used and has medium 
performances. Though, this system is strongly related to some 
types of web servers and it only analyses POST queries in 
order to avoid performance deterioration. In addition, the rules 
formalism is very complex which requires a high expertise in 
HTTP protocol and in regular expressions coding. IronBee 
[8], a new project similar to ModSecurity, aims to improve 
detection performance and facilitate the expression of security 
rules by introducing the LUA scripting language. An other 
recent open source project NAXSI [9] uses a heuristic ap­
proach for the detection of XSS and SQL injection attacks. Its 
performances are acceptable but requires a learning process to 
define white-lists. SQLi and XSS rules are static and use a 
simple cumulative scoring system based on the appearance of 
some special strings. 

III. SQLI AT TACKS AND EVASION TECHNIQUES 

Halfond, Viegas, and Orso researches [5] proposed a tax­
onomy of SQL injection attacks. Depending on the goal, 
attackers can append a syntactically correct SQL code to the 
original query, or forge their own malicious SQL commands 
and introduce them to the DBMS via a vulnerable web appli­
cation inputs. They will use one of these classes: Tautology, 

Incorrect Queries, UNION Queries, Piggy-backed Queries, 

Stored Procedure, Inference (Blind Injection, Timing Attacks). 

In the following, we will present two techniques attackers can 
use in order to bypass the WAF rules. 

A. SQL injections by code obfuscations 

Despite the deployment of SQLi attacks detection systems, 
attackers can manage to overcome these systems by trying 
to disguise the appearance of their requests. This is due to 
both the flexibility of the SQL language and the complexity 
of writing security rules wich express all scenarios of a masked 
attack. The combined use of ASCII encoding, Hexadecimal, 
and trans-coding functions, which are available by the CGIs, 
makes the pattern matching inspection process more complex. 
Indeed, the pattern matching algorithms are able to detect 
variations in the forms but they can't detect trans-coding of 
string characters. Thus, attacks detection systems start with the 
transformation (sanitization) of the query before submitting 
it to the pattern matching engine. Despite these efforts, it 
is always possible to bypass filters posed by these systems, 
because both the flexibility of DBMS languages and the 
semantic content of the query are not known by the detection 
systems. More details are shown in the following example : 
- Uppercase/lowercase blend: Some filters often ignore the 
situation of mixed case, such as the input AND or and which 
can be replaced by AnD 
- Tautology: (where name = '='), (where false = " "), (OR 
true like true) 
- SQL keywords: SELECT becomes sel/**/ect , AND becomes 
&& or AandND 

- The use of trans-coding functions : (char(44) = ') , 
(exec(char(Ox73687574646j776e» is a system shutdown. 

B. Headers-level SQL injection 

The injection of SQL codes is not only restricted to 
GET and POST methods through URLs or request's body. 
Unfortunately, other more injection techniques exploit the 
open paradigm of the HTTP protocol in order to avoid web 
applications' security mechanisms. Attackers exploit HTTP 
protocol headers because most defense systems analyze only 
few or probably do not analyze HTTP headers due to the 
huge resources requirement. 

1) User-agent Header: This header is used by web 
applications to store information about the client application 
(web browser, audit application, etc). Some e-commerce 
applications store this information in databases for clients 
profiling. An attacker can exploit this header to insert SQL 
code that overcome security checks. He can insert a tautology 
in order to make the check condition always valid. Example 
: user-agent : Firefox' OR 1=1. 

2) Referer Header: Referer is another HTTP header which 
can be vulnerable to SQL injection once the application is 
storing it in database without sanitizing it. An attacker may 
inject arbitrary SQL conunands to the database by exploiting 
the Referer header. With the same way as in the User-Agent, 
the attacker can insert a tautology to make the control over 
the completely useless Referer or insert SQL malicious code 
after separator: 
Referer: 1','0'); SQL 

3) X-Forwarded-For Header : This header is used to get 
the original IP address of a client who is connected through 
a proxy or other load-balancing device. An attacker can also 
make the control obsolete by inserting a tautology. Example : 
X-Forwarded-For :ip-address or 1=1 

4) Cookie Header : Web applications use the cookie 
header in order to ease the authentication process of their 
clients. It often happens that the application does not validate 
the cookie passed by the client and inserts it directly in an 
SQL statement that selects the user session. An attacker can 
then inject SQL code in this header and completely avert 
the application authentication mechanism. He can use tools 
such as cookie manager to forge a valid cookie. Cookie 
variables sometimes are not properly sanitized before being 
used in SQL query. The cookie contains base64 encoded 
form identifier, a field that is unknown and a password. If we 
use as a cookie 12345 UNION SELECT mypass :: mypass 
base64 encoded, the SQL query becomes: 
SELECT user-password FROM nk-users WHERE user­
id=12345 UNION SELECT mypass 
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IV. PROPOSED SOL UTION 

A. H T TP Protocol Dissection 

In most security solutions, traffic dissection process is the 
first operation before applying any security control. In HAKA 
project [10], HTTP stream is divided in two tables, HTTP­
request and HTTP-response, each table is associated with one 
hook and each hook contains all security rules declared for 
either requests or responses. In this section we introduce an 
other manner to dissect HTTP streams. 

a) Typical H TTP request: HTTP protocol is expressed 
in a human-readable ASCII text. Headers use text to describe 
a request from a client (browser) or a response from the 
server. An HTTP request begins usually with a GET or POST 
method, followed by the URL and the protocol version. The 
following headers provide various information about the client, 
connection, content, etc. These headers are separated by \r\n 
to distinguish each header. 

GET! HTTP!l.llr\Host: makioutech.comlrlnUser-Agent: 
Mozilla/5.0 (Windows NT 6.1: WOW64: rv:27.0) Gecko! 

Layer 3 Layer 4 20100101 Firefox/27.OIrlnAccept: texUhlml,application/ 

Header Header 
xhlml+xml,applicalion/xml:q·0.9,·/·:q·0.8Ir1nAccepl-
Language: fr,fr-fr:q·0.8,en-us:q·0.5,en:q·0.3IrlnAccepl-
Encoding: gzip, defialelrlnConnection: keep-alivelr\ 
nCookie: LivePersonID'-122160192574886r1n 

Fig. 1: Raw HTTP Request 

b) H T TP Request Dissection: Our dissection module is 
able to recognize request's components (headers and the body) 
which are separated by \r\n characters. However, before 
making the dissection, it has to get information about security 
rules. Indeed, users are obliged to declare security rules for 
the body and for each header. With the knowledge of headers 
involved in the inspection process, the dissector will only 
extract and parse these headers, 

B. The Hybrid Injection Prevention System (HIPS) 

• 1 Request Dissector URL: The information that the URL 
must be inspected is known by the dissector, since the user 
has declared a security rule on the hook : H T TP URL. The 
dissector extracts URL string and passes it to the classifier. 
• 2 If legitimate: The result of the classification is negative, 
which means that the URL string does not include any 
potential SQL injection code, 
• 3 If SQLi: The classifier decides to forward the URL 
string to the security rules detection engine, because the 
URL contains probably an SQL injection code, In the result 
section, we will show the minimum threshold for which a 
legitimate content is considered suspicious. 
• 4 If SQLi: The detection engine loads all the security rules 
hooked to the H T TP URL hook 
• 5 If matched: The detection engine uses a pattern matching 
algorithm to inspect the URL content, if one security rule 
matches with a specific pattern, the detection engine rejects 
the HTTP request. 
• 6 No Rule matched: After applying all security rules, no 
rule matches with the analyzed content. 
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Fig, 2: Detection Engine Architecture 

• 7 HTTP Next Dissector: The header analyzed above doesn't 
contain a malicious code, next headers will be analyzed in 
the same way until the end of dissectors, 

C. Data Collection and Representation 

1) SQL injections data collection framework: Malicious 
traffic is collected from an attack platform that includes: 
- Specific SQLi attack tools using evasion techniques 
- A Web server 
- A vulnerable web application with known SQL injection 
attacks. 

SQLi Attack 

tools 

Web 

server 

log 

Vulnerable Web 
Application 

SQLDBMS 

Fig, 3: Attack Traces Collection Framework 

2) features vector selection: Feature selection plays an 
important role in the identification of the potential malicious 
data used to escape SQLi filters, Based on our experience with 
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SQL injections attacks and evasion techniques, we identify a 
limited vector of features. There are several motivating factors 
behind limiting the feature set of both the SQL injection 
and evading strings for our classifier. A smaller feature set 
may result in a significant decrease of both learning and 
classification time. The following table shows the result of 
our features vector selection. 

Variables Tokens (key words) 
xl SELECT 
x2 UNION 
x3 UPDATE 
. .  Other SQL keywords 
xn * (Asterisk) 
. .  Other Special Symbols 
xm UNHEX 
. .  Other Evasion Keywords 
x45 % (percent) 

TABLE I: Features Table 

3) Request representation: Each request's header is char­
acterized by a vector :t defined by :t = (Xl"", xn) 
where Xl," . , Xn are the values taken by the random vari­
ables Xl, . . .  , Xn that are assumed conditionally independent 
relative to the category c (SQLi, Legitimate). Each random 
variable gives an information about a pattern type in a dis­
sected header. In this model, all random variables are binary: 
Xi = 1 if pattern of type i noted pai is present, otherwise 
Xi = O. Consequently, each random variable Xi = 1 follows 
a Bernoulli distribution with parameter Pi = p(pai)' 

D. The Machine Learning Model 

A naive Bayesian model, which we have adopted in our 
classifier, is a simple classification scheme that estimates 
the class-conditional probability by assuming that features 
are conditionally independent. In fact, we have a binary 
classification problem of identifying the normal http stream 
as legitimate requests class and malicious stream as SQLi 
requests class. According to the Bayes theorem [11] and the 
total probabilities theorem, for a vector :t = (Xl"", Xn), 
the probability to belong to the class c is defined as follows: 

(1) 

Using the theorem of the total probabilities, we deduce: 

p(C = c)-p(x =:t jC=c) 
L p(C=c).p(x =:t jC=c) 

(2) 

cE{SQLi,Leg} 
1) Cost Evaluation: Works of [12] on cost-sensitive evalu­

ation measures consist of evaluating the false positives effect 
on the total cost, in term of time wasting by users to delete 
spams. But in our case, the cost is the impact of false negatives 
on the trust of users granted to our classifier. 

2) The False Negatives Effect: A false negative is mistak­
enly classifying an SQLi attack as a legitimate content, and a 
false positive is a legitimate content mistakenly classified as 
an SQLi attack. In our model, the cost of a false negative is 
much higher than the cost of a false positive. Indeed, wasting 
time in analyzing legitimate requests is more acceptable than 
passing a malicious code to the Web application. The two error 
types are defined as such follows: 

• Classifying an SQLi attack as legitimate content: 
(SQLi -7 Leg) 

• Classifying a legitimate content as an SQLi attacks: 
(Leg -7 SQLi) 

In our classifier model, the first error is more serious than 
the second error. To illustrate this idea, we introduce the 
parameter A, as its objective is to give more importance to 
the first error by assuming that Leg -7 SQ Li is A times more 
costly than SQLi -7 Leg. 

3) Classification criteria: According to the above two 
error types, the selection criteria is as follows: 
The content of a header 55 is classified as legitimate if and 
only if: 

p(C = LeglX = 55) > A.p(C = SQLilX = 55) (3) 

given that p(C = LeglX = 55)+p(C = SQLilX = 55) = 1, 

the selection criteria becomes as follows: 

Where : 

p( C = LeglX = 55) > a 

A a a=-- A= --I+A' I-a 

(4) 

(5) 

4) Method and parameters evaluation: In this section, we 
define the parameters that allow us to evaluate our filter. To 
this end, two evaluation parameters are used: accuracy (Acc) 
and error (Err = 1 - Acc) [12]. They are defined as follows: 

Acc 

Err 

where: 

nsqli--+sqli + nleg--+leg 
Nsqli + Nleg 

nsqli--+leg + nsqli--+sqli 
Nsqli + Nleg 

• Nsqli = nsqli--+leg + nsqli--+sqli 
• Nleg = nleg--+leg + nleg--+sqli 

(6) 

• ny--+z denotes the number of patterns of class y that are 
mistakenly classified in class z. 

The parameters defined above do not take into consideration 
the notion of weight for the two error types introduced in the 
previous paragraph. This leads us to introduce the weighted 
accuracy (Wacc) and weighted error (Werr = 1- Wacc). We 
assumed that SQLi -7 Leg is A times more devastating for 
our system than Leg -7 SQLi. To make accuracy and error 
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rate sensitive to this cost, we should treat each SQL injection 
as if it was A inputs; when an SQL injection is misclassified, 
this counts as A errors; and when it is classified correctly, this 
counts as A successes 

W 
Ansqli--+sqli + nleg--+leg ace = _----'c_----'c __ ----"_---"-

ANsqli + Nleg 
W _A_n..c:. s,,:ql-ci--+:-::-- l e", g,-+_n-:- l-:-e,,-g --+,--,- s,,:ql..:. i err = ANsqli + Nleg 

(7) 

To have a precise idea of the filter's performance, we 
compare it to a non-filtered system in which all requests are 
considered as legitimate. 
We introduce the definition of the base-line weighted error and 
the base-line weighted accuracy (respectively noted Waccb 

and Werrb) which are defined as follows: 

W b ANleg ace = ��----"-:-::---ANsqli + Nleg 
W b Nsqli err = ----'----ANsq1i + N1eg 

(8) 

The TC R (Total Cost Ratio) value measures the performance 
of a machine learning classifier to the same environment 
without a classifier. In the case where the TC R value is 
negligible, the best approach is to not use a classifier and 
to send all requests to the rules based detection engine. An 
effective filter which could be used in real environments should 
have a TC R value higher than 1. 

The TC R formula is defined as follows: 

TC R = 
Werrb 

= 
Nsqli 

Werr Anleg--+sqli + nsqli--+leg 

V. RESULTS EVALUATION 

(9) 

We have collected a training data set from the framework 
previously presented in this paper. The training set is a mixture 
of SQIi attacks and legitimate requests shown in the below 
table with different proportions (80-20)%,(66-34)%,(50-50)%, 
then we varied, for each scenario, the A parameter and finally 
calculated values of Wacc, Waccb and TCR. 

By increasing the a (threshold) value from 99% to 50%, we 
have an increase in number of false positives, which means 
that the rules engine will analyze legitimate requests, but at 
the same time, the evaluation has shown an increase in TCR 
value. However, in practice, false positives (legitimate requests 
classified as SQLi attacks) will be forwarded to the rules 
engine that will apply all security rules. This will decrease 
the overall performances of our system. To find a compromise 
between lower number of false positives and false negatives, 
the TCR values should be medium values. Acceptable values 
of TCR are related to a threshold values higher than 50% and 
lower than 90%. 

Data (%) .\ a False False TCR 
SQLi-Leg Num (%) Pos.(%) Neg.(%) Value 

80-20 1 50 4.6 0.6 15.38 
66-34 1 50 2.0 0.3 28.57 
50-50 1 50 3.0 0.5 14.29 
80-20 2 66.67 6.0 0.5 8.16 
66-34 2 66.67 2.0 0.3 15.38 
50-50 2 66.67 3.0 0.5 7.69 
80-20 5 83.33 5.6 0.4 3.39 
66-34 5 83.33 2.9 0.3 6.45 
50-50 5 83.33 4.0 0.6 3.23 
80-20 9 90 5.8 0.6 1.90 
66-34 9 90 4.0 0.3 3.54 
50-50 9 90 5.0 0.5 1.82 
80-20 99 99 6.6 0.4 0.18 
66-34 99 99 4.0 0.3 0.34 
50-50 99 99 5.0 0.4 0.17 

TABLE II: Costs Table 

TCR 

30,00 

25,00 

20,00 

15,00 
• 50-SO 

10,00 .66-34 
5,00 

0,00 

99 " 

Fig. 4: Total Cost Ratio 

VI. COMPARATIV E  ANALYSIS 

Security Rules based WAFs do not have a module that 
predicts SQL injection attacks. In this case, our approach 
will improve the inspection performance because the classifier 
module will not forward legitimate traffic to the detection 
engine. Only suspected requests are deeply inspected by apply­
ing pattern matching algorithms. In [13], Authors worked on 
Classification of Malicious Web Code by Machine Learning. 

They implemented and evaluated two classifiers both SQLIAs 
and XSS which can use TF-IDF method for weight calculation, 
and three machine learning approach among SVM, Naive­
Bayes, k-Nearest Neighbor Algorithm. They obtain good pre­
cision values for their classifier (99.16 %) by using SVM 
with Gaussian Kernel. Our classifiers obtains 97.6% by using 
Bayesian algorithm. However, they do not provide a solution 
to handle false negatives and false positives. On the other 
hand, the use of SVM algorithms with Gaussian Kernel may 
require significant CPU resources and decreases the classifier 
performances in multi-gigabits rates networks. 
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VII. CONCLUSION 

In this paper, we focused on the problem of detecting com­
plex SQL injections. We proposed a novel approach to dissect 
HTTP requests in order to cover most evasion techniques and 
improve security rules management process. We also provided 
an Injection Prevention System architecture which includes a 
machine learning classifier. Based on the TCR results, we have 
shown the effectiveness of the classifier by tuning its values 
in order to reduce false negatives. We were also able to show 
that false positives did not impact the overall performances of 
our system. 
A key element of future work is to apply the same approach 
in order to develop an anti XSS and SQL attacks solution. 
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