
HAL Id: hal-01137542
https://hal.science/hal-01137542

Submitted on 31 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Web Application Firewalls to detect
advanced SQL injection attacks

Abdelhamid Makiou, Youcef Begriche, Ahmed Serhrouchni

To cite this version:
Abdelhamid Makiou, Youcef Begriche, Ahmed Serhrouchni. Improving Web Application Firewalls
to detect advanced SQL injection attacks. Information Assurance and Security (IAS), 2014 10th
International Conference on, University of Okinawa, Japan, Nov 2014, OKINAWA, Japan. pp.35-40,
�10.1109/ISIAS.2014.7064617�. �hal-01137542�

https://hal.science/hal-01137542
https://hal.archives-ouvertes.fr

Improving Web Application Firewalls to Detect

Advanced SQL Injection Attacks

Abdelhamid MAKIOU
Youcef BEGRICHE

Ahmed SERHROUCHNI

Telecom Paristech 46, Rue Barrault 75013 Paris France
E-mails:makiou@telecom-paristech.fr youceibegriche@ieee.org ahmed@telecom-paristech.fr

Abstract-Injections flaws which include SQL injection are the
most prevalent security threats affecting Web applications[1].
To mitigate these attacks, Web Application Firewalls (WAFs)
apply security rules in order to both inspect HTTP data streams
and detect malicious HTTP transactions. Nevertheless, attackers
can bypass WAF's rules by using sophisticated SQL injection
techniques. In this paper, we introduce a novel approach to
dissect the HTTP traffic and inspect complex SQL injection
attacks. Our model is a hybrid Injection Prevention System
(HIPS) which uses both a machine learning classifier and a
pattern matching inspection engine based on reduced sets of
security rules. Our Web Application Firewall architecture aims
to optimize detection performances by using a prediction module
that excludes legitimate requests from the inspection process.

Index Terms-SQL injection - Web Application Firewall -
HTTP dissection - machine learning - Security rules

I. INTRODUCTION

Structured Query Language (SQL) injection is one of the
most devastating vulnerabilities that impacts DataBase Man­
agement Systems (DBMS), as it can lead to the exposure of
all the sensitive information stored in an application's database
[2]. In order to confront SQL injection attacks, various
methodologies and techniques have been used. On one hand,
Web application developers adopted safe coding and applied
input validation functions. They developed filters to protect the
application's entries from SQL code injections. These filters
block inputs that contain SQL keywords or special characters
commonly used in malicious SQL code injection. On the other
hand, Web Application Firewalls protect application's database
by inspecting HTTP traffic and applying a set of security rules.
The language used for expressing security rules can explicitly
describe a signature of an SQL injection attack, or implicitly
describe the way of detecting these attacks. It can also express
an anomaly score value which increases every time a malicious
pattern appears in an HTTP request. If the anomaly value
reaches a predefined threshold, the request will be rejected.
In spite of the robustness of the above methods, attackers can
bypass them by substituting malicious pattern characters or
varying its format. However, a basic solution is to write a
specific rule for each type of evasion technique, but it requires
a high mastery of both HTTP protocol and regular expressions
programming. Furthermore, pattern matching algorithms, used
by security rules in order to inspect complex patterns, decrease

978-1-4799-8099-4114/$31.00 ©2014 IEEE 35

the overall performances of the detection engine. Since pattern
matching algorithms require a lot of resources, some WAFs [7]
[9] are configured to only inspect POST request.
In this paper, we propose a hybrid approach to detect SQL
injection attacks and their evasion techniques. Our proposal
enhances both the inspection process of HTTP streams and
security rules management.

Our contributions can be summarized as follows:
1) A brief survey on filters evasion techniques including code
obfuscations and headers-level SQL injections.
2) A novel method to dissect and parse the HTTP protocol,
that enhances security rules management, which makes the
formalism of writing security rules less complex.
3) A Hybrid Injection Prevention System (HIPS) architecture,
by introducing a supervised machine learning module. The
classifier (machine learning module) predicts SQL injections
and forwards suspicious headers to the rules-based detection
engine in order to be deeply analyzed .
4) An evaluation of the effectiveness of the proposed method
based on false negatives impact instead of false positives which
are commonly used in Anti-spams cost evaluation.

II. RELATED WORK

In [3][4], Kruegel and Vigna propose an anomaly-based in­
trusion detection system for web applications. It characterizes
HTTP requests using a number of statistical characteristics de­
rived from parameter's length, character distribution, structure,
presence and order. This method focuses only on the incoming
query parameters whereas it ignores the corresponding HTTP
response. These results are either causing unnecessary false
positives or missing certain attacks. AMNESIA [5] is an SQL
injection detection and prevention system which combines
static analysis and run-time monitoring. It uses a model-based
approach to detect illegal queries. Nonetheless, it requires
web application's source code reviewing. In SQLrand [3][6]
instead of normal SQL keywords developers create queries
using randomized instructions. In this approach a proxy filter
intercepts queries to the database and de-randomizes the
keywords. By using the randomized instruction set, attacker's
injected code could not have been constructed. As it uses a
secret key to modify instructions, security of the approach is
dependent on attacker ability to seize the key. It requires the

integration of a proxy for the database in the system as the
same as developer training. ModSecurity WAF, proposed by
Ivan Ristic [7], is an open source solution based on signature
attack detection. ModSecurity is widely used and has medium
performances. Though, this system is strongly related to some
types of web servers and it only analyses POST queries in
order to avoid performance deterioration. In addition, the rules
formalism is very complex which requires a high expertise in
HTTP protocol and in regular expressions coding. IronBee
[8], a new project similar to ModSecurity, aims to improve
detection performance and facilitate the expression of security
rules by introducing the LUA scripting language. An other
recent open source project NAXSI [9] uses a heuristic ap­
proach for the detection of XSS and SQL injection attacks. Its
performances are acceptable but requires a learning process to
define white-lists. SQLi and XSS rules are static and use a
simple cumulative scoring system based on the appearance of
some special strings.

III. SQLI AT TACKS AND EVASION TECHNIQUES

Halfond, Viegas, and Orso researches [5] proposed a tax­
onomy of SQL injection attacks. Depending on the goal,
attackers can append a syntactically correct SQL code to the
original query, or forge their own malicious SQL commands
and introduce them to the DBMS via a vulnerable web appli­
cation inputs. They will use one of these classes: Tautology,

Incorrect Queries, UNION Queries, Piggy-backed Queries,

Stored Procedure, Inference (Blind Injection, Timing Attacks).

In the following, we will present two techniques attackers can
use in order to bypass the WAF rules.

A. SQL injections by code obfuscations

Despite the deployment of SQLi attacks detection systems,
attackers can manage to overcome these systems by trying
to disguise the appearance of their requests. This is due to
both the flexibility of the SQL language and the complexity
of writing security rules wich express all scenarios of a masked
attack. The combined use of ASCII encoding, Hexadecimal,
and trans-coding functions, which are available by the CGIs,
makes the pattern matching inspection process more complex.
Indeed, the pattern matching algorithms are able to detect
variations in the forms but they can't detect trans-coding of
string characters. Thus, attacks detection systems start with the
transformation (sanitization) of the query before submitting
it to the pattern matching engine. Despite these efforts, it
is always possible to bypass filters posed by these systems,
because both the flexibility of DBMS languages and the
semantic content of the query are not known by the detection
systems. More details are shown in the following example :
- Uppercase/lowercase blend: Some filters often ignore the
situation of mixed case, such as the input AND or and which
can be replaced by AnD
- Tautology: (where name = '='), (where false = " "), (OR
true like true)
- SQL keywords: SELECT becomes sel/**/ect , AND becomes
&& or AandND

- The use of trans-coding functions : (char(44) = ') ,
(exec(char(Ox73687574646j776e» is a system shutdown.

B. Headers-level SQL injection

The injection of SQL codes is not only restricted to
GET and POST methods through URLs or request's body.
Unfortunately, other more injection techniques exploit the
open paradigm of the HTTP protocol in order to avoid web
applications' security mechanisms. Attackers exploit HTTP
protocol headers because most defense systems analyze only
few or probably do not analyze HTTP headers due to the
huge resources requirement.

1) User-agent Header: This header is used by web
applications to store information about the client application
(web browser, audit application, etc). Some e-commerce
applications store this information in databases for clients
profiling. An attacker can exploit this header to insert SQL
code that overcome security checks. He can insert a tautology
in order to make the check condition always valid. Example
: user-agent : Firefox' OR 1=1.

2) Referer Header: Referer is another HTTP header which
can be vulnerable to SQL injection once the application is
storing it in database without sanitizing it. An attacker may
inject arbitrary SQL conunands to the database by exploiting
the Referer header. With the same way as in the User-Agent,
the attacker can insert a tautology to make the control over
the completely useless Referer or insert SQL malicious code
after separator:
Referer: 1','0'); SQL

3) X-Forwarded-For Header : This header is used to get
the original IP address of a client who is connected through
a proxy or other load-balancing device. An attacker can also
make the control obsolete by inserting a tautology. Example :
X-Forwarded-For :ip-address or 1=1

4) Cookie Header : Web applications use the cookie
header in order to ease the authentication process of their
clients. It often happens that the application does not validate
the cookie passed by the client and inserts it directly in an
SQL statement that selects the user session. An attacker can
then inject SQL code in this header and completely avert
the application authentication mechanism. He can use tools
such as cookie manager to forge a valid cookie. Cookie
variables sometimes are not properly sanitized before being
used in SQL query. The cookie contains base64 encoded
form identifier, a field that is unknown and a password. If we
use as a cookie 12345 UNION SELECT mypass :: mypass
base64 encoded, the SQL query becomes:
SELECT user-password FROM nk-users WHERE user­
id=12345 UNION SELECT mypass

36 2014 International Conference on Information Assurance and Security (lAS)

IV. PROPOSED SOL UTION

A. H T TP Protocol Dissection

In most security solutions, traffic dissection process is the
first operation before applying any security control. In HAKA
project [10], HTTP stream is divided in two tables, HTTP­
request and HTTP-response, each table is associated with one
hook and each hook contains all security rules declared for
either requests or responses. In this section we introduce an
other manner to dissect HTTP streams.

a) Typical H TTP request: HTTP protocol is expressed
in a human-readable ASCII text. Headers use text to describe
a request from a client (browser) or a response from the
server. An HTTP request begins usually with a GET or POST
method, followed by the URL and the protocol version. The
following headers provide various information about the client,
connection, content, etc. These headers are separated by \r\n
to distinguish each header.

GET! HTTP!l.llr\Host: makioutech.comlrlnUser-Agent:
Mozilla/5.0 (Windows NT 6.1: WOW64: rv:27.0) Gecko!

Layer 3 Layer 4 20100101 Firefox/27.OIrlnAccept: texUhlml,application/

Header Header
xhlml+xml,applicalion/xml:q·0.9,·/·:q·0.8Ir1nAccepl-
Language: fr,fr-fr:q·0.8,en-us:q·0.5,en:q·0.3IrlnAccepl-
Encoding: gzip, defialelrlnConnection: keep-alivelr\
nCookie: LivePersonID'-122160192574886r1n

Fig. 1: Raw HTTP Request

b) H T TP Request Dissection: Our dissection module is
able to recognize request's components (headers and the body)
which are separated by \r\n characters. However, before
making the dissection, it has to get information about security
rules. Indeed, users are obliged to declare security rules for
the body and for each header. With the knowledge of headers
involved in the inspection process, the dissector will only
extract and parse these headers,

B. The Hybrid Injection Prevention System (HIPS)

• 1 Request Dissector URL: The information that the URL
must be inspected is known by the dissector, since the user
has declared a security rule on the hook : H T TP URL. The
dissector extracts URL string and passes it to the classifier.
• 2 If legitimate: The result of the classification is negative,
which means that the URL string does not include any
potential SQL injection code,
• 3 If SQLi: The classifier decides to forward the URL
string to the security rules detection engine, because the
URL contains probably an SQL injection code, In the result
section, we will show the minimum threshold for which a
legitimate content is considered suspicious.
• 4 If SQLi: The detection engine loads all the security rules
hooked to the H T TP URL hook
• 5 If matched: The detection engine uses a pattern matching
algorithm to inspect the URL content, if one security rule
matches with a specific pattern, the detection engine rejects
the HTTP request.
• 6 No Rule matched: After applying all security rules, no
rule matches with the analyzed content.

7

HTTP
Request

Dissection
Module

" ' .,,��

Security Rules
Hooks

D.B

Security
Rules

Matching

®
No Rule
matched

®
If matches

Fig, 2: Detection Engine Architecture

• 7 HTTP Next Dissector: The header analyzed above doesn't
contain a malicious code, next headers will be analyzed in
the same way until the end of dissectors,

C. Data Collection and Representation

1) SQL injections data collection framework: Malicious
traffic is collected from an attack platform that includes:
- Specific SQLi attack tools using evasion techniques
- A Web server
- A vulnerable web application with known SQL injection
attacks.

SQLi Attack

tools

Web

server

log

Vulnerable Web
Application

SQLDBMS

Fig, 3: Attack Traces Collection Framework

2) features vector selection: Feature selection plays an
important role in the identification of the potential malicious
data used to escape SQLi filters, Based on our experience with

2014 International Conference on Information Assurance and Security (lAS) 37

SQL injections attacks and evasion techniques, we identify a
limited vector of features. There are several motivating factors
behind limiting the feature set of both the SQL injection
and evading strings for our classifier. A smaller feature set
may result in a significant decrease of both learning and
classification time. The following table shows the result of
our features vector selection.

Variables Tokens (key words)
xl SELECT
x2 UNION
x3 UPDATE
. . Other SQL keywords
xn * (Asterisk)
. . Other Special Symbols
xm UNHEX
. . Other Evasion Keywords
x45 % (percent)

TABLE I: Features Table

3) Request representation: Each request's header is char­
acterized by a vector :t defined by :t = (Xl"", xn)
where Xl," . , Xn are the values taken by the random vari­
ables Xl, . . . , Xn that are assumed conditionally independent
relative to the category c (SQLi, Legitimate). Each random
variable gives an information about a pattern type in a dis­
sected header. In this model, all random variables are binary:
Xi = 1 if pattern of type i noted pai is present, otherwise
Xi = O. Consequently, each random variable Xi = 1 follows
a Bernoulli distribution with parameter Pi = p(pai)'

D. The Machine Learning Model

A naive Bayesian model, which we have adopted in our
classifier, is a simple classification scheme that estimates
the class-conditional probability by assuming that features
are conditionally independent. In fact, we have a binary
classification problem of identifying the normal http stream
as legitimate requests class and malicious stream as SQLi
requests class. According to the Bayes theorem [11] and the
total probabilities theorem, for a vector :t = (Xl"", Xn),
the probability to belong to the class c is defined as follows:

(1)

Using the theorem of the total probabilities, we deduce:

p(C = c)-p(x =:t jC=c)
L p(C=c).p(x =:t jC=c)

(2)

cE{SQLi,Leg}
1) Cost Evaluation: Works of [12] on cost-sensitive evalu­

ation measures consist of evaluating the false positives effect
on the total cost, in term of time wasting by users to delete
spams. But in our case, the cost is the impact of false negatives
on the trust of users granted to our classifier.

2) The False Negatives Effect: A false negative is mistak­
enly classifying an SQLi attack as a legitimate content, and a
false positive is a legitimate content mistakenly classified as
an SQLi attack. In our model, the cost of a false negative is
much higher than the cost of a false positive. Indeed, wasting
time in analyzing legitimate requests is more acceptable than
passing a malicious code to the Web application. The two error
types are defined as such follows:

• Classifying an SQLi attack as legitimate content:
(SQLi -7 Leg)

• Classifying a legitimate content as an SQLi attacks:
(Leg -7 SQLi)

In our classifier model, the first error is more serious than
the second error. To illustrate this idea, we introduce the
parameter A, as its objective is to give more importance to
the first error by assuming that Leg -7 SQ Li is A times more
costly than SQLi -7 Leg.

3) Classification criteria: According to the above two
error types, the selection criteria is as follows:
The content of a header 55 is classified as legitimate if and
only if:

p(C = LeglX = 55) > A.p(C = SQLilX = 55) (3)

given that p(C = LeglX = 55)+p(C = SQLilX = 55) = 1,

the selection criteria becomes as follows:

Where :

p(C = LeglX = 55) > a

A a a=-- A= --I+A' I-a

(4)

(5)

4) Method and parameters evaluation: In this section, we
define the parameters that allow us to evaluate our filter. To
this end, two evaluation parameters are used: accuracy (Acc)
and error (Err = 1 - Acc) [12]. They are defined as follows:

Acc

Err

where:

nsqli--+sqli + nleg--+leg
Nsqli + Nleg

nsqli--+leg + nsqli--+sqli
Nsqli + Nleg

• Nsqli = nsqli--+leg + nsqli--+sqli
• Nleg = nleg--+leg + nleg--+sqli

(6)

• ny--+z denotes the number of patterns of class y that are
mistakenly classified in class z.

The parameters defined above do not take into consideration
the notion of weight for the two error types introduced in the
previous paragraph. This leads us to introduce the weighted
accuracy (Wacc) and weighted error (Werr = 1- Wacc). We
assumed that SQLi -7 Leg is A times more devastating for
our system than Leg -7 SQLi. To make accuracy and error

38 2014 International Conference on Information Assurance and Security (lAS)

rate sensitive to this cost, we should treat each SQL injection
as if it was A inputs; when an SQL injection is misclassified,
this counts as A errors; and when it is classified correctly, this
counts as A successes

W
Ansqli--+sqli + nleg--+leg ace = _----'c_----'c __ ----"_---"-

ANsqli + Nleg
W _A_n..c:. s,,:ql-ci--+:-::-- l e", g,-+_n-:- l-:-e,,-g --+,--,- s,,:ql..:. i err = ANsqli + Nleg

(7)

To have a precise idea of the filter's performance, we
compare it to a non-filtered system in which all requests are
considered as legitimate.
We introduce the definition of the base-line weighted error and
the base-line weighted accuracy (respectively noted Waccb

and Werrb) which are defined as follows:

W b ANleg ace = ��----"-:-::---ANsqli + Nleg
W b Nsqli err = ----'----ANsq1i + N1eg

(8)

The TC R (Total Cost Ratio) value measures the performance
of a machine learning classifier to the same environment
without a classifier. In the case where the TC R value is
negligible, the best approach is to not use a classifier and
to send all requests to the rules based detection engine. An
effective filter which could be used in real environments should
have a TC R value higher than 1.

The TC R formula is defined as follows:

TC R =
Werrb

=
Nsqli

Werr Anleg--+sqli + nsqli--+leg

V. RESULTS EVALUATION

(9)

We have collected a training data set from the framework
previously presented in this paper. The training set is a mixture
of SQIi attacks and legitimate requests shown in the below
table with different proportions (80-20)%,(66-34)%,(50-50)%,
then we varied, for each scenario, the A parameter and finally
calculated values of Wacc, Waccb and TCR.

By increasing the a (threshold) value from 99% to 50%, we
have an increase in number of false positives, which means
that the rules engine will analyze legitimate requests, but at
the same time, the evaluation has shown an increase in TCR
value. However, in practice, false positives (legitimate requests
classified as SQLi attacks) will be forwarded to the rules
engine that will apply all security rules. This will decrease
the overall performances of our system. To find a compromise
between lower number of false positives and false negatives,
the TCR values should be medium values. Acceptable values
of TCR are related to a threshold values higher than 50% and
lower than 90%.

Data (%) .\ a False False TCR
SQLi-Leg Num (%) Pos.(%) Neg.(%) Value

80-20 1 50 4.6 0.6 15.38
66-34 1 50 2.0 0.3 28.57
50-50 1 50 3.0 0.5 14.29
80-20 2 66.67 6.0 0.5 8.16
66-34 2 66.67 2.0 0.3 15.38
50-50 2 66.67 3.0 0.5 7.69
80-20 5 83.33 5.6 0.4 3.39
66-34 5 83.33 2.9 0.3 6.45
50-50 5 83.33 4.0 0.6 3.23
80-20 9 90 5.8 0.6 1.90
66-34 9 90 4.0 0.3 3.54
50-50 9 90 5.0 0.5 1.82
80-20 99 99 6.6 0.4 0.18
66-34 99 99 4.0 0.3 0.34
50-50 99 99 5.0 0.4 0.17

TABLE II: Costs Table

TCR

30,00

25,00

20,00

15,00
• 50-SO

10,00 .66-34
5,00

0,00

99 "

Fig. 4: Total Cost Ratio

VI. COMPARATIV E ANALYSIS

Security Rules based WAFs do not have a module that
predicts SQL injection attacks. In this case, our approach
will improve the inspection performance because the classifier
module will not forward legitimate traffic to the detection
engine. Only suspected requests are deeply inspected by apply­
ing pattern matching algorithms. In [13], Authors worked on
Classification of Malicious Web Code by Machine Learning.

They implemented and evaluated two classifiers both SQLIAs
and XSS which can use TF-IDF method for weight calculation,
and three machine learning approach among SVM, Naive­
Bayes, k-Nearest Neighbor Algorithm. They obtain good pre­
cision values for their classifier (99.16 %) by using SVM
with Gaussian Kernel. Our classifiers obtains 97.6% by using
Bayesian algorithm. However, they do not provide a solution
to handle false negatives and false positives. On the other
hand, the use of SVM algorithms with Gaussian Kernel may
require significant CPU resources and decreases the classifier
performances in multi-gigabits rates networks.

20i4 international Conference on information Assurance and Security (iAS) 39

VII. CONCLUSION

In this paper, we focused on the problem of detecting com­
plex SQL injections. We proposed a novel approach to dissect
HTTP requests in order to cover most evasion techniques and
improve security rules management process. We also provided
an Injection Prevention System architecture which includes a
machine learning classifier. Based on the TCR results, we have
shown the effectiveness of the classifier by tuning its values
in order to reduce false negatives. We were also able to show
that false positives did not impact the overall performances of
our system.
A key element of future work is to apply the same approach
in order to develop an anti XSS and SQL attacks solution.

REFERENCES

[1] The Open Web Application Security Project (OWASP) considers, in its
2013 top ten list. Available:
https: / /www.owasp.org/index.php/ToPI02013 - TOPIO

[2] Sid Ansari et al. SQL Injection in Oracle: An exploration of vulnerabilities
International Journal on Computer Science and Engineering (IJCSE), pp.
522-531, April 2012

[3] A.Tajpour, M. Massrum and M.Z. Heydari, Comparison of SQL Injection
Detection and Prevention Techniques, 2nd International Conforence on
Education Technology and Computer (ICETC), 2010

[4] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. 10th
ACM Conference on Computer and Communication Security (CCS 03),
pages 251261. ACM Press, October 2003

[5] w.G. Halfond and A. Orso, AMNESIA: Analysis and Monitoring for
NEutralizing SQL-Injection Attacks, Proc. 20th IEEE and ACM Inti Conf.
Automated Software Eng., pp. 174-183, Nov. 2005

[6] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Proceedings of the 2nd Applied Cryptography and Network
Security (ACNS) Conference, pages 292-302. June 2004

[7] Ivan Ristic : ModSecurity Handbook: The Complete Guide to the Popular
Open Source Web Application Firewall, 2010 Feisty Duck Ltd Edition
ISBN: 1907117024

[8] The IronBee Project May 2014. Available: http/ /www.ironbee.com/
[9] Naxsi project (Nginx Anti Xss Sqllnjection) May 2014. Available:

https: / /www.owasp.org/index.php/OWASPNAXSlproject

[l0] Kevin Denis, Pierre Sylvain Desse et Mehdi Taibi (Arkoon Network
Security), un langage orient rseaux et scurit, Symposium sur la scurit des
technologies de l'information et des communications,Confrence franco­
phone sur Ie thme de la scurit de I'information, 2014.

[11] C.P.Robert,Le choix Baysien. Principes et pratiques, Ed. Springer,2006
[l2] Androutsopoulos l., J. Koutsias, K.Y. Chandrinos, G. Paliouras, and

C.D. Spyropoulos.2000a. An Evaluation of Naive Bayesian Anti-Spam
Filtering. Proceedings of the Workshop on Machine Learning in the
New Information Age, 11th European Conference on Machine Learning,
Barcelona, Spain, pages 917.

[13] Komiya, R. Incheon Paik Hisada, M.CJassification of malicious
web code by machine learning.Awareness Science and Technology
(iCAST),OII 3rd International Conference. Sept 2011.

40 20i4 international Conference on information Assurance and Security (iAS)

