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MCA-NMF: Multimodal Concept Acquisition with
Non-Negative Matrix Factorization

Olivier Mangin, David Filliat, and Pierre-Yves Oudeyer

Abstract—In this paper we introduce MCA-NMF, a compu-
tational model of the acquisition of multimodal concepts by an
agent grounded in its environment. We propose such computa-
tional models as an answer to the question of what concepts are
and not only of how they can be learnt; more precisely our model
finds patterns that characterizes associations across modalities.
We detail why multimodality is essential to lower the ambiguity
of learnt concepts as well as communicate about them. We then
present a set of experiments that demonstrate the learning of
such concepts from real non-symbolic data consisting of sounds,
images, and motion acquisitions. Finally we consider structure
in perceptual signals and demonstrate that a detailed knowledge
of this structure, named compositional understanding can emerge
from, instead of being a prerequisite of, global understanding. An
open-source implementation of the MCA-NMF learner as well as
scripts to reproduce the experiments are publicly available.

Keywords—multimodal concept acquisition; language acqui-
sition; speech processing; vision; motion; non-negative matrix
factorization; structure learning

I. INTRODUCTION

Whether they are seen as grounding the meaning of words
or giving structure to our high level perception, concepts are
an essential aspect of human cognition as well as a desirable
feature for robots and other artificial cognitive systems. Yet the
exact definition of what concepts are, let alone, the question
of how they may be acquired by an agent in interaction with
its physical environment are still mostly unanswered.

A. Multimodal concepts

Concepts may be defined as mental representations. What
these mental representations are, would they be forged by a
human or a robot, is however not firmly defined. Thus, before
building models of the acquisition of concepts, and therefore
indirectly of the concepts themselves, some aspects must be
clarified. We propose here a perspective on learning concepts
as patterns in a flow of multimodal perception, a view that is in
line with the embodied cognition principle (see Wilson, 2002)
and perceptual concepts as the ones from Barsalou (1999) (for
a more detailed review see Cangelosi, 2010).

More precisely we consider the notion of multimodal con-
cepts for several reasons. First, many concepts do not lie in a
single perceptual modality. For example, the emergence of the
concept of dog is not only related to the ability to recognize
pictures of dogs but also to the sound of a dog barking and the
touch of a dog’s fur. Furthermore, many concepts cannot be
completely characterized without grounding them on several
modalities: the concept metallic cannot be characterized with-
out taking into account its perceptual expression on several

modalities (for example visual aspect, sound, touch, or taste),
together with the recognition of the spoken or written word.

Another reason is that concepts often occur in the context of
language and hence involve a linguistic modality. This aspect
is emphasized in particular in the symbol grounding problem,
as introduced by Harnad (1990) and discussed by Glenberg
& Kaschak (2002). It points out that learning language is not
only about learning the signs of communication such as words,
but also requires to relate them to their semantic content,
that emerges from and is grounded in the interaction with
the world. This process is denoted as the semiotic associa-
tion. From that perspective, learning a concept may involve
learning and relating its semantic content to a given symbol.
Natural communication channels however do not contain such
thing as absolute symbols but rather manifestations of these
symbols: the same word is never heard the same twice and
the image of that word written is not perceived the same
depending on the font it is written with, the angle it is viewed
from, as well as the ambient luminosity. Thus perceiving
symbols is by itself an analogous problem to perceiving their
meaning. Hence the symbol grounding problem becomes a
weak instance of the larger problem of learning meanings
in one modality and linguistic symbols in another modality.
Also, human communication is not generally reduced to one
modality such as speaking or writing; instead full featured
communication makes extensive use of facial expressions,
physical contact, and eye gaze. A famous evidence of the
multimodal nature of communication was given by McGurk
& MacDonald (1976) and is referred as the McGurk effect:
observing lips pronouncing ‘ga’ while hearing ‘ba’ is most
often reported as perceiving the sound ‘da’ (see also Schwartz,
2010). In that perspective the multimodal character of natural
language makes it very similar to the kind of concepts it may
refer to; so that linguistic elements may be seen as multimodal
concepts themselves. Furthermore we propose to study the
learning of multimodal concepts that span several modalities,
including linguistic and non-linguistic channels. In particular
this approach emphasizes the co-organization of language and
meaning, which is in line with growing evidences of the
influence of language in learning concepts (see Lupyan et al.,
2007, Waxman Sandra & Markow Dana, 1995).

However trying to define what it means to learn multimodal
concepts reveals that this task is prone to many ambiguities.
As pointed out by Belpaeme & Morse (2012): “The challenge
which cross-situational learning needs to solve is not only one
of mapping a word to a meaning, but of distinguishing that
meaning from possible distractors.” Indeed, Quine’s indeter-
minacy of reference (Quine, 1960) states that relating words
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to meanings when learning a foreign language is intrinsically
ambiguous. On the other hand, many models of learning se-
mantic components from one modality also encounter similar
ambiguity issues. For exampe, Cederborg & Oudeyer (2013)
draw a parallel between Quine’s inderterminacy and ambi-
guity in imitation learning, that they call the motor gavagai
problem. Another example is encountered with concepts that
corresponds to categories. Indeed infants learning categories
face the alternative possibilities of thematic and taxonomic
associations of concepts as explained in Markman (1990):
thematic association refers to the association of concepts that
are related because they interact together, as milk and cow;
taxonomic association refers to concepts that belongs to the
same class, such as cow and pig. Other analogies can be
drawn between this phenomenon and the ambiguity of word
segmentation (see Brent, 1999), but also with multistability
phenomenon in perception as described by Blake (1989),
Leopold & Logothetis (1999), Schwartz et al. (2012), and
the cocktail party effect (see Cherry, 1953). Many multimodal
problems feature ambiguity in one or several modalities, but,
in a somehow paradoxical manner, integrating information
from several modalities may be efficiently used to overcome
such ambiguity. In other words, considering the problem of
concept learning separately in each modality suffers from the
presence of ambiguities, but looking at the same problem
in several modalities at the same time might help resolving
that ambiguity instead of increasing it. For example the
role of multimodal perceptions relatively to multistability is
discussed by Schwartz et al. (2012). Similarly Schwartz et al.
(2004) explore the role of vision of the lips for improving
intelligibility of spoken sound and Sodoyer et al. (2004)
present an algorithms for source separation taking advantage
of audio-visual information. Finally, Massera et al. (2010)
demonstrate, in an other experiment, that a robot can reach
better performance on a motor task when a linguistic guidance
is present, even if it does not initially know the meaning of
the symbols composing the guidance.

B. Learning associations

A central issue toward defining the problem of learning
multimodal concepts is to formalize what it means to learn
a concept. Importantly concepts do not necessarily refer to
an explicit representation; this notion rather targets emerging
behaviors that are interpreted as the mastering of that concept.
For example a child is said to master the concept dog not by
looking into his brain for a neuron spiking each time a dog is
seen but rather by its ability to relate the sight of a dog with
the sound of a barking dog or the sound of the name ‘dog’.
One way of modelling this is to specify a behavioral evaluation
of the learning process. In particular this article focuses on the
ability to classify stimuli in specific way.

From a machine learning perspective, unlike supervised
learning, unsupervised learning, or reinforcement learning,
multimodal learning is not a specific class of algorithms.
Indeed, multimodal data can be treated as unimodal data on
which an unsupervised learning is applied (some examples
provided in this article fall under this category). It can also

be considered a supervised regression problem that consists in
predicting the signal in one modality, knowing the others. The
focus of this work is on learning that occurs in an unsupervised
manner, that is how multimodal perception self-organizes in
a way that can explain the emergence of concepts. The kind
of behaviors under consideration are classification behaviors.
However they do not correspond to supervised classification
in machine learning, that is the association of a symbol to a
given stimuli, but rather to unsupervised association between
stimuli from a same semantic class: in the way a child would
group a car with a truck instead of with a cow.

This article actually only focuses on one type of concepts,
characterized by cross-modal associations, and a model of their
acquisition. An example is the concept dog with its visual,
acoustic, acoustic as language, and tactile manifestations.
Although this notion of concept may seem very limited, we
claim that the purpose of building such model is indeed to
better explore these limits.

In practice, we build experiments that involve two phases:
an unsupervised learning phase where the system observes
raw perception, and a behavioral evaluation where it solves
a task. This separation opens a perspective on the relation
between the properties of the perceptual signal available during
learning and the nature of the learnt concepts that is specified
by the evaluation task. In particular it raises the question
of the drives and cues that enable the self-organization of
multimodal perception. In the case of language learning, exper-
iments on children performed by Akhtar & Montague (1999),
and Smith & Yu (2008) demonstrate that cross-situational
learning, which focuses on elements that are persistent in the
environment across different uses of a word, might be used
by children to learn the meaning of words. Most of this work
relies on cross-situational learning to explain or model the
acquisition of lexicons of concepts. Other mechanisms such as
the whole object assumption, mutual exclusivity (see Markman,
1990), and conceptual reasoning (Landau et al., 1998) are also
known to play a role in the process of associating linguistic
labels to concepts, but are out of the scope of this article.

C. Structure and complexity

Natural perception generally consists in complex visual or
acoustic scenes rather than in isolated pictures of objects or
isolated sounds of words. In other words, an essential aspect
of these scenes is their structure; and an essential capability
for a learner is to leverage that structure to overcome the
complexity of its perception. Such structure can however take
several forms: for example a visual scene may contain several
objects at various positions; a spoken sentence is composed
of a sequence of words, the words themselves are made from
basic phonemes and the sequence obey to a specific grammar.

A common intuition is that the complexity of the learnt
concepts gradually increases along learning. In particular
cumulative learning consists in gradually acquiring a lexicon
of elements of increasing complexities, such that new elements
can be obtained as the combination of simpler ones (see sec. 3–
4 from Cangelosi et al., 2010). Actually the definition of
what complex and simple mean may by itself be ambiguous;
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therefore we focus in this article on a specific structure that is
the combination of several basic elements in complex scenes
such as objects in an image or words in a sentence.

Motor synergies and motion primitives are other examples
of building blocks that can be combined to model complex
perception and action; they were introduced by both motor
control theorists and roboticists (see Konczak, 2005). For
example Mussa-Ivaldi & Bizzi (2000) interpret a group of
experiments on the control system of frogs and rats as giving
strong evidence that the brain uses a set of primitive force
fields that are combined linearly to generate a diversity of
motor behaviors. Tresch & Jarc (2009) provide a more detailed
review on that subject.

The structure of complex perceptual stimuli also adds more
ambiguity to the problem of the emergence of concepts.
We already mentioned examples of that ambiguity such as
word segmentation (see Brent, 1999). One way to handle that
ambiguity is to frame the learning on multimodal concepts,
thus relating the structure in one modality with the structure
in others. For example Tuci et al. (2011) provides a model of
multimodal learning for symbolic language and real actions.
Their experiment demonstrates that learning a compositional
structure shared between action and language can allow robotic
agents to achieve better generalization of the acquired motor
knowledge. More precisely the linguistic input received by
the system shapes a model of the structure of actions and
makes the system capable of achieving behaviors that were
not encountered in training.

Another interesting question arises from the notion of
structured concepts and their acquisition and challenges the
meanings of the words simple and complex. Wrede et al.
(2012) contrast compositional understanding, that describes an
agent that is aware of the local components and their com-
bination into a global perception or action, and teleological
understanding, that accounts for an agent that understands
perception globally. More precisely the term teleological refers
to a pragmatic emphasis on using the global knowledge toward
a goal, even without refined understanding of its structure.
According to Wrede et al. (2012) the developmental path of
infants goes first through teleological understanding before
reaching compositional understanding. This developmental
path is to contrast to the one stating that compositional
understanding occurs first before any usage of the knowledge
(for example as suggested by Cangelosi et al., 2010).

D. Contribution

In this work we introduce a model named Multimodal
concept acquisition with non-negative matrix factorization
(MCA-NMF), of the learning of cross-modal concepts through
the formation of structure in multimodal low-level signals
(vision, speech sounds, gestural motions). We then present
experiments combining the learning of dance gestures from
human demonstrations, of words from full spoken sentences,
and of visual objects from images.

We demonstrate the acquisition of grounded complex con-
cepts from raw continuous signal only, without relying on
symbols to train the artificial agent. Our learning experiment

exploits cross-situational association in the training perceptual
data. Language learning, and in particular the learning of
words, is in MCA-NMF treated as an instance of multimodal
learning. This means that the linguistic data (here speech)
is not handled in a specific way but rather in a symmetric
manner with respect to other perceptual data. Finally we
explore the question of the structure and (de)composition of
concepts. In particular we show that it is possible for an
artificial system to discover subcomponents of perception,
such as words in spoken sentences, although the system is only
exposed to a task that requires to associate whole sentences
to corresponding scenes.

The next section presents the experimental framework as
well as the datasets used in the experiments. section III details
the algorithms that forms the MCA-NMF learner, including the
low-level processing of sensor data. section IV provides the
results and their analysis for the experiments on learning mul-
timodal concepts as cross-modal associations. It also provides
two additional experiments on the discovery of words inside
sentences and the explicit representation of concepts by the
learner. Finally we discuss our contribution and its articulation
to previous work in section V.

II. MATERIALS

This section presents the experimental framework that we
use to explore the question of learning multimodal concepts
from perception. It first details the kind of concepts we
consider, then explains the experimental setup, and finally
introduces the datasets we use.

A. Target concepts

This article presents a system that learns to discover patterns
that characterize associations in multiple modalities: that are
patterns in some modality that are systematically associated
with other patterns in other modalities. We perform several
experiments that explore how the learner manages to represent
semantic relations between the modalities. In practice we
consider semantic relations that may correspond to either an
essential relation, as the one relating the barking to the image
of the dog, or a conventional relation as the one relating the
name ‘dog’ to images of dogs.

The essential relation arises from the reality of an object that
has manifestations in several modalities. Their exists such a
thing as a dog that has manifestations in the visual modality
as images of the dog, in the touch modality as the touch
of the dog’s fur or its claws, or in the acoustic modality
as the sound of the dog barking. Although not all of these
manifestations occur each time the dog is encountered, they
are often perceived simultaneously since they corresponds
to the actual presence of the dog. On the other side, the
conventional relation characterises language: the word ‘dog’
is often pronounced when a dog is present and is the object of
attention. It is extensively used by parents to teach new words
to children.

Importantly, both relations manifest through the joint oc-
currence of frequent patterns in several modalities; therefore
a mechanism leveraging such cross-situational information
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would be able to learn both. In the following we denote
by semantic concept the set of manifestations of such an
object in perceptual modalities, either related essentially or by
convention. Additionally a semantic concept may have several
manifestations in a single modality. For instance a dog is
associated to both the touch of its fur and claws, or to the
sound of the dog barking and the word ‘dog’. The semantic
relations we consider actually include Peirce’s icon, index, and
symbol (see 3.1 in Steels, 2008). In the following, the only
cue about the semantic relations in the stimuli is that related
elements occur simultaneous in the various modalities; this
corresponds to the cross-situational information.

B. Experimental framework

We consider the situation in which an intelligent system
perceives a scene composed for example of objects or motions
while hearing sentences that describe the scene. Such a setup
is illustrated in fig. 1.

In the experiments we describe below, the modalities that
the system observes can vary from one experiment to the
other and it is not necessary that one modality is linguistic;
however a semantic relation always exists between some
elements of the different modalities. These elements might be
of several natures: gestures in motions, object in visual scenes,
or words in spoken utterances. We consider semantic relations
as mappings between these elements: for example a word is
related to a gesture, or a gesture to an object in a scene.

In the following, each experiment consists in two phase:
one training phase during which the system is exposed to
multimodal data and an evaluation phase in which we test
the success of concept learning.

During its training the learning agent observes examples
of scenes; each example is a set of one observations in each
modality. In each scene only one relevant multimodal concept
is present and is observed in several modalities. For example a
sentence is heard containing the word ‘dog’ and a picture of a
dog is seen. Although only one multimodal concept is present
in each example, not all perceived elements are meaningful,
that is to say related to elements in other modalities. For
instance many words appear in spoken utterances that are
not semantically related to anything in other modalities. For
example in the sentence “Look at the circles I do”, only
the word ‘circle’ is related to the observed gesture. Similarly
several objects may appear in the visual scene while only one
is related to the subject of the sentence.

During its evaluation the learner observes a test example
in only one modality. It then has to chose between several
other examples in another modality, the one that best matches
the test example. For example the system hears a sentence
talking about a dog and has to chose between several pictures
the one containing a dog. We denote this task cross-modal
classification; it forms an evaluation protocol that does not
require one modality to be symbolic.

Interestingly this experiment is very similar to the one
performed by developmental psychologists to study the role
of various heuristics used by children for the acquisition
of words, including cross-situational information, as in the

Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Fig. 2. Dance motions were performed by a human dancer and perceived
through skeleton tracking based on a 3D kinect sensor. The figure illustrates
some of the gestures demonstrated to the learner.

works from Markman (1990), Yurovsky et al. (2012). Unlike
many computational approaches presented in previous works
on multimodal learning, we present an evaluation of the
performance of the learner that is not on a regular machine
learning classification task. Instead the learner is evaluated
on its ability to relate elements from distinct non-symbolic
modalities, similarly to how one would evaluate a children.
In additional experiments presented in section IV-C, we also
evaluate the emergence of the recognition of single words in-
side sentences. More precisely the learner is asked to recognize
parts of sentences instead of full utterances and this enables to
localize the perceived semantics inside the speech sentences.
An experiment also studies the mapping between the internal
representation of the system and the semantics information to
detect the emergence of explicit representations of the learnt
concepts.

C. Datasets

The following experiments involve three raw modalities:
motion, sound, and image.

1) Motions: In the experiments we use a dataset of chore-
ography motions demonstrated by a human and recorded
through a kinect device. More precisely the dataset contains
a total of 1100 records, each presenting one of 10 different
gestures that are spanned over one or two limbs. Figure 2 and
table II illustrate the kind gestures that compose the datasets.
Typical gestures are the walk gestures, involving the two legs,
in which the human demonstrator mimics walking in place,
or the left hello in which the demonstrator moves his left arm
pretending to say ‘hello’. The data is publicly available and
presented in more details at http://flowers.inria.fr/choreo2 and
is used by Mangin & Oudeyer (2012, 2013).

2) Speech: The acoustic records used in the following ex-
periments are taken from the Caregiver dataset (Altosaar et al.,
2008), provided by the ACORNS project (Boves et al., 2007).
It is composed of 1000 utterances containing 13 keywords.
Each utterance is spoken by 4 speakers in English adult
directed speech. In the experiments we only use utterances
from one speaker. An example of sentences used in the dataset
is Angus is lazy today. where the keyword is Angus. Other
examples of transcriptions from utterances from the dataset
are given in table I.

3) Images: Pictures used in the experiments were acquired
as frames from an interaction with an iCub robot, through
an RGBD sensor (red, green, and blue camera coupled with a
depth sensor). The acquisition was performed and is described
in more details by Lyubova & Filliat (2012). Each image
contains one visual object and possibly the hand of the

http://flowers.inria.fr/choreo2
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a) Training: The learner observes a set
of examples of images each of which is
paired with a spoken descriptions of the
object in the image.

“This is a ball.” “Look at the car!”

. . .
“Do you like fish?”

b) Testing: The learner hears a new spo-
ken description and must chose its best
match among objects in a small set of
images.

“Where is
the ball?” ?

The learner choses the
object best matching the
sentence.

✓

Fig. 1. Illustration of the cross-modal classification task on which one learner presented in this article is tested. The learner perceives multimodal signal,
vision and sound in the figure, and learns the associations between the appearance of objects and the sound of their names. It then has to prove its ability to
chose the right object among a small set when hearing its name. In practice we use images of objects, motion captures, and recorded spoken utterances in
the experiments.

We take a bath
To put it in the bath isn’t funny either

The shoe is a symbol
Now mummy is losing her patience

Daddy comes closer
Angus takes off her shoe

Daddy never calls
She sits on a nappy

Now everybody is in the car
Where is the nappy

TABLE I
TRANSCRIPTIONS FROM TEN RANDOM EXAMPLES FROM THE ACORNS

CAREGIVER DATASET FROM ALTOSAAR ET AL. (2008). KEYWORDS ARE
IDENTIFIED IN BOLD FONT.

Fig. 3. Example frames from the image dataset. This frames feature the
following objects: blue whale, yellow car, teddy bear and moose. Color circles
corresponds to local descriptors detected by the system. Interestingly, the hand
of the operator appears in some pictures as in the last one. The area observed
by the system is actually larger than the one represented in the figure.

operator. In the experiments we use images from a subset of 10
objects each appearing in more than a thousand frames. During
the acquisition, the objects are moved and rotated. Hence they
are presented from distinct points of view and they may be
partially cluttered by the hand of the operator. Examples of
frames from the dataset are presented in fig. 3.

III. METHODS

A. Open-source code to reproduce the experiments

The implementation of the MCA-NMF and the code used
in the experiments presented in this paper are available pub-
licly and openly (BSD license) on http://github.com/omangin/
multimodal. It consists in a set of tools that implement the

MCA-NMF system, including the NMF algorithm and code to
achieve multimodal learning with it, as well as the scripts that
corresponds to the experiments presented here and produce
their results. It includes the methods to process sound and
motion data. Features extracted from the datasets are also
publicly available. The code is meant for the reproduction of
the experiment we presented as well as for the development
of new experiments based on the same framework.

B. The MCA-NMF model

This section presents the algorithmic tools behind MCA-
NMF. They are based on the nonnegative matrix factorization
algorithm presented by Paatero & Tapper (1994), Lee & Seung
(1999), that we use very similarly to ten Bosch et al. (2008),
Driesen et al. (2009), Mangin & Oudeyer (2012).

The first part of this section presents the learning of a
multimodal dictionary; it is then explained how the learned
dictionary provides a representation of data that is not bound
to any modality; in the following this representation is referred
to as the learner’s internal representation of data. Finally we
explain how the learner can transform data from one or several
modalities to an internal representation or to an expected
representation in unobserved modalities. Figure 4 provides an
overview of the transformations from raw data to higher level
internal representation by the learning agent.

We consider a setting in which the learner observes sam-
ples in several modalities. For example, the system visually
observes objects while hearing a spoken description of the
scene. We represent the perception of the samples in each
modality by a vector va, where a denotes the modality (for
example the system observes the objects as vimage and the
sound description as vsound ). Details about such representa-
tions for the modalities used in the experiments are given in
section III-C.

1) Learning a dictionary of multimodal components: We
call components primitive elements that are mixed together
into observations, in the same way that phonemes combine
together into a word or a sentence. Compared to the common

http://github.com/omangin/multimodal
http://github.com/omangin/multimodal
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Fig. 4. The MCA-NMF system processing of data. First raw data from
each modality is transformed into a histogram of local descriptors, that is
a vector of nonnegative values. Then the histograms from each modality are
concatenated into a histogram representation of the multimodal perception.
During its training the MCA-NMF system uses a set of perceived example,
each represented by such an histogram, to learn a multimodal dictionary that
captures multimodal patterns. The system then uses the dictionary to transform
perception into an internal representation. The internal representation can be
obtained with all modalities observed (as on the figure) or with only a subset
of modalities observed as explained further.

context of clustering, this notion of component is more gen-
eral: observations are mixtures of several components at the
same time, instead of being just a noisy observation of one
centroid.

The learner implemented by MCA-NMF builds a dictionary
of multimodal components according to the following model:
it searches k components, each represented by a vector wj (j
from 1 to k), such that each observed example vi verifies:

vi ≃
k

j=1

hj
iw

j (1)

where hj
i are coefficients and ≃ denotes a notion of similarity

between matrices that is defined below. This is equivalent to
clustering when the wj are the centroids and for each i only
one hj

i is nonzero and equals 1. We consider a more general
case where wj and hj

i are only constrained to be nonnegative.
In the following, the set of n examples is represented by

a matrix V of shape d × n (each example is a column of
V ), the set of components by a matrix W of shape d × k,
called dictionary, and the coefficients by a matrix H of shape
k×n. The previous equation, that models the objective of our
learner, can thus be re-written for all observations as:

V ≃W ·H (2)

In order to fully define the reconstruction error between V
and W ·H , we use a variant of the Kullback-Leibler divergence
often called generalized Kullback-Leibler or I-divergence. The
Kullback-Leibler divergence is originally an information the-
oretic measure of similarity between probability distributions.

The I-divergence is defined, for two matrices A and B of same
shape, as DI (A∥B) given by equation (3).

DI (A∥B) =

d
i=1

n
j=1


Ai,j ln


Ai,j

Bi,j


−Ai,j +Bi,j


(3)

In this paper in order to minimize DI(V ||W ·H), we use
the algorithm, based on multiplicative updates of W and H ,
that was originally presented in Lee and Seung’s paper Lee
& Seung (1999). This algorithm consists in alternating the
two update steps from equation (4) where ⊛ and / denote
Hadamard’s (coefficient-wise) product and division on matri-
ces.

H ← H ⊛
WT V

W ·H
WT · 1

W ←W ⊛

V

W ·H
HT

1 ·HT
(4)

2) NMF to learn mappings between modalities: Previous
section explains how, for a given set of observations from
several modalities that is represented by a matrix V , the
NMF algorithm can learn a dictionary W and a coefficient H
matrices such that training examples are well approximated by
the product W ·H .

We actually consider the case of data coming from several
modalities (three in the example). More precisely we assume
the data matrix V is composed of column vectors v such that:

v =

 vmod1

vmod2

vmod3

 and thus V =

Vmod1

Vmod2

Vmod3

 .

The minimization of the I divergence induces a trade-
off between error in one modality relatively to others. In
order for the error in each modality to be treated on a fair
level by the algorithm it is important that the average values
in the representations are of similar magnitude. It can be
easily obtained by normalizing data in each modality. In the
following experiment data from each modality is normalized
according to its average 1-norm.

Since the observations, that is to say the columns of V , are
composed of several modalities, the dictionary W also split
into several parts each corresponding to one modality. In other
words each components can be seen as the concatenation of
several parts: one for each modality. For example if the data is
composed of three modalities: mod1, mod2, and mod3, there
exist matrices Wmod1 , Wmod2 , and Wmod3 such that:

W =

Wmod1

Wmod2

Wmod3

 .

In the following we interpret the columns of the matrix
H , as an internal representation of the data by the learner.
For example, an internal representation h is induced by an
observation in modality one such that vmod1 = Wmod1 · h, or
one in both modalities one and three by:

vmod1

vmod3


=


Wmod1

Wmod3


· h.
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Interestingly, it is possible to use the learned dictionary
to compute an internal representation of an example, even if
the example is only observed in a subset of the modalities.
Given an example observed only in one modality, vmod1 , one
can search for an h such that vmod1 is well approximated as
Wmod1 · h. More precisely this is equivalent to finding an h
solution of:

argmin
h

DI(vmod1 ,Wmod1 · h) (5)

h

vmod1 vmod2

argmin
h

DI(vmod1 ,Wmod1 · h)
Wmod2 · h

Actual perception Expected perception

Internal representation

Fig. 5. Once the system has learnt the dictionary (Wmod1 and Wmod2 ), given
an observation vmod1 in one modality it can reconstruct the corresponding
internal representation as well as the expected perception in another modality.

The NMF algorithm used in these experiments actually
alternates steps minimizing DI(V ||W ·H) with respect to W
and H . Solving eq. (5) is equivalent to the NMF problem with
respect to H only; therefore, it can be obtained with the same
algorithm, but only using the steps that update H . In theory
this approach scales to any number of modalities although the
experiments presented here only test it on numbers from two
to four.

Finally it is also possible to reconstruct a representation
of the data that the system would expect in a modality, given
observations in other modalities. For that, from an observation
featuring a subset of the modalities, the system fits an internal
representation h using the method described previously. Then
it can reconstruct the expected representation in an unobserved
modality (for example the third modality, mod3 ) by computing
the product Wmod3 ·h. This forms a framework, illustrated in
fig. 5, that uses a learned multimodal dictionary to transform
data from modalities to internal representations or expected
data in other modalities. It enables a large set of experiments
as illustrated in the following.

3) Cross-modal classification without symbols: The system
is trained on various combinations of either two or three
modalities. The modalities might be denoted as Motion or M,
Sound or S, and Image or I. After being exposed to a set of
training multimodal examples, the system is tested as follows:
it observes a new example, called test example in a subset of
its modalities and has to chose the best match among several
examples observed in other modalities, which are denoted as
reference examples. An illustration of that process is given
by fig. 1. For example, the system is trained on sound and
image and tested by hearing a sentence (the test example)
and having to chose among a set of images (the reference

examples) the one that is best described by the heard sentence.
Another possibility is to train the system on motions, sounds,
and images, and test it on its ability to chose from several
sentences the one that best describes a pair of a motion and
an image that it observes. We denote such settings by the
notation: M1 → M2, where M1 represents the modality or
modalities in which the test example is observed, called test
modalities, and M2 the modality or modalities, denoted as
reference modalities, in which a best matching example must
be chosen among a set of reference examples. For example
hearing a sentence and choosing the best matching object from
images is denoted by Sound→ Image or S→ I. Viewing an
object and a gesture and finding the best matching sentence
amongst examples is denoted by M, I→ S. The testing process
is illustrated in fig. 6.

vM1 v
(2)
M2

v
(1)
M2

v
(3)
M2

M2M1

Test modality Reference modality

Reference examplesTest example

Same semantic class as
test example.

Different semantic class.

Different semantic class.

chose best match

Fig. 6. The learner is tested on its ability to relate an observation of a test
example in one modality to the right reference example in another modality.

Section III-B explains how to use NMF on multimodal data,
to learn a dictionary and the associated internal representation
and finally how to transform data either from one modality to
another, or from a modality to the internal representation (see
also fig. 5). We use that mechanism as a basis to implement
a classification behavior for the learner. More precisely this
refers to the ‘chose best match’ operation illustrated in fig. 6.
In particular the issue is that the data to compare, that is
representations of test and reference examples, are of different
natures. Because it comes from distinct modalities, we use
the ability of the learner to convert perception to its internal
representation as well as to other modalities to achieve that
behavior. To perform the comparison the MCA-NMF system
can either:

• compute an internal representation of the test example,
compute internal representations of the reference exam-
ples, and then compare these internal representations.

h
h(1)

h(2)

vtest

v
(1)
ref v

(2)
ref

Internal coefficients

Test modality

Reference modality

compare

compare

• compute an internal representation of the test example,
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use it to generate an expected representation in the refer-
ence modality, and compare it to the reference examples.

h

vtest

vref

v
(1)
ref

v
(2)
ref

Internal coefficients

Test modality

Reference modalitycompare

compare

• compute internal representations of reference examples,
for each of them compute an expected representation in
the test modality, and compare them to the test example.

vtest
v
(1)
test

v
(2)
test

h(1) h(2)

v
(1)
ref v

(2)
ref

Internal coefficients

Test modality

Reference modality

compare

compare

The choice of one of these methods is referred as the modality
of comparison. This is however not sufficient to fully define the
system: in order to be able to chose a best matching reference
example, the system needs a metric to perform the comparison.
Several alternative metric could be chosen to perform the
comparison. More importantly, the choice of the metric and its
efficiency is highly dependent on the modality of comparison,
as shown by the following results. We considered the following
common metrics.

• Euclidean distance
• Kullback-Leibler or I-divergence The Kullback-Leibler

and I-divergences are introduced by eq. (3). In the
following we denote its usage as I-divergence (I-div.).
By default the divergence from the test example to a
reference example is computed; however since it is not
symmetrical, we also experimented with the reversed
divergence (that is to say the divergence from a reference
example to the test example) and a symmetrized diver-
gence obtained as: Dsym(x∥y) = 1

2


D(x∥y)+D(y∥x)


.

None of the three approaches was systematically better
in our experimentation.

• Cosine similarity1 The cosine similarity is not a metric
but can be used to compare vectors; it ranges between −1
and 1 and the biggest the value is, the most similar the
vectors are. It is defined for two vectors x and y ∈ Rd, ·
denoting the scalar product, as:

cosine similarity(x, y) =
x · y
∥x∥∥y∥

Other choices are possible. In our experiments, many
modalities are represented by histograms, or concatenation of
histograms, that are of high dimension. In these modalities the
Euclidean norm is not necessary meaningful, this is why we

1http://en.wikipedia.org/wiki/Cosine similarity

use other measures of similarity such as the I-divergence and
the cosine similarity.

In the following, MCA-NMF is evaluated on its recognition
success rate. It is defined as the proportion of correct recogni-
tion by the system: a recognition is correct when the system
choses a reference example matching semantic concept from
the test example.

C. Signal representation
Each of the three raw modalities used in the experiments is

represented in a specific way. However all the representations
are similar in their approach, all data is thus represented as
nonnegative vectors, and share the important property of being
additive that section III-C1 describes. The nonnegative and
additive properties are required by the NMF algorithms and
are thus limitations to the scope of its applications.

1) Additive property: Importantly, the following represen-
tations have a common additive property, that directly comes
from the use of histograms of local events. For example
in the acoustic modality, if two words which representation
are w1 and w2 are concatenated into an utterance, which
representation is denoted as s, then

s ≃ λw1 + (1− λ)w2

where 0 < λ < 1. The approximation ignores the events
coming from the border between the words. This important
property transforms the sequencing operation into a convex
combination. It therefore transforms a sentence into a mixture
of its words, and similarly a word into a mixture of phonemes.
Similarly the juxtaposition of several parts of an object is
represented as the convex combination of the representations
of each part. Several gestures combined in a motion are also
approximately represented as the convex combination of the
representations of the gestures.

2) Motion: In order to represent the recorded motion as
vectors of nonnegative values in a way that makes it possible to
use the algorithm presented in previous section we introduced
the histograms of motion velocity representation in Mangin &
Oudeyer (2012). In particular this representation consists in a
simple histogram based representation of motion that can be
seen as a rough approximation of the phase diagram of the
dynamics of one body joint.

A kinect device captures the motions of a human demon-
strator as trajectories in angle and angle velocity spaces of
several articulations of the human body. Each trajectory on a
specific body articulation (or degree of freedom) is considered
separately and the entire sequence of angles and velocities is
transformed into a histogram, represented by a fixed length
non-negative vector. Vectors obtained for each degree of
freedom are then concatenated into a larger vector as illustrates
fig. 7. The device only captures angles and delayed velocities
are computed to achieve better robustness to noise in the angle
sequences. More precisely ẋt = xt−xt−d is used to compute
the velocities, instead of being restrained to the case where
d = 1.

In Mangin & Oudeyer (2012), we explore and compare
various alternative approaches to transform angles and veloc-
ities sequences into histograms. In the following experiments

http://en.wikipedia.org/wiki/Cosine_similarity
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(angle, velocity) pairs

Red: high frequency
Blue: low frequency

Fig. 7. Human motions are abstracted as concatenated histograms on joint
position and velocities. In the final histograms, frequencies are represented
through colors, x and y axis correspond respectively to values of angles and
velocities. (Best seen in color)

we use angle-velocity histograms, that is to say histograms
built on the joint space of angle and velocity. Furthermore we
build histograms over a vector quantization that is an adaptive
binning process using a k-means algorithm.

Representing motion data by separate histograms on each
degree of freedom leads to two approximations: 1) for a given
measurement in the trajectory, information about dependency
between different degrees of freedom is dropped; 2) the
sequential information between measures for a given degree
of freedom is dropped. These simplifications are actually
similar to successful ones from other fields, some of which
we use for the sound and visual modalities as detailed further.
Indeed ten Bosch et al. (2008) have demonstrated that, even if
sequential information may appear necessary in language, and
especially in speech utterances, very good word discovery can
be achieved without considering this sequential information.
Both in text classification and in computer vision bag-of-
words techniques also achieve good performances by dropping
positional information of extracted local features (Joachims,
1997, Sivic & Zisserman, 2008). Finally using histograms built
on joint angle positions and velocities is similar to represent-
ing transitions in angle space. By representing the sequence
through its transition we approximate it by a Markovian
process. Such an approximation is quite common in the gesture
recognition and motion planning literature (Calinon & Billard,
2009, Kulic et al., 2009). In the experiments, this process leads
to a representation of motions that is of dimensionality 450.

3) Sound: In the following experiments we use the same
representation of sound as in the works of ten Bosch et al.
(2008), Van Hamme (2008), Driesen et al. (2012). Histograms
of acoustic co-occurrences (HAC) were introduced as a repre-
sentation of sound that is based on acoustic events. Similarly
to the motion representation we have presented, it discards
most of the sequential information of the acoustic events; it
however consider co-occurrences of pairs of acoustic events

and uses a static approach to codebook construction.

Time signal

Seq. of windows

Seq. of MFCC
vectors

Seq. of acoustic
events

HAC

Windowing

MFCC

Clustering
(codebook)

Count of
co-occurrences

Fig. 8. Sequence of transformations from raw (time sequence) acoustic signal
to histograms of acoustic co-occurrence (HAC) representation.

The outline of the transformation from raw sound to HAC
representation is given in fig. 8. The main steps are ex-
plained in more details below. The perception mechanism first
segments the acoustic signal into a sequence of short time
windows; it then computes Mel-frequency cepstral coefficients
(MFCC) for each window. This transforms the original signal
into a sequence of MFCC vectors. Additionally we consider
dynamic information on top of the sequence of MFCC vectors
of dimension 22; discrete derivatives are computed as defined
by Driesen (2012) and denoted by the ∆ operator to form the
∆MFCC and ∆∆MFCC. This transformation is analogous
to the delayed velocities introduced previously to represent
motions.

Then, the system computes three codebooks, for basic
MFCC vectors and their ∆ and ∆∆ transformations, with a k-
means algorithm, on a dataset of spoken language, as described
in Driesen (2012). Following the implementation of ten Bosch
et al. (2008), the sizes of the codebooks are k = 150 for
MFCC vectors and ∆ and k = 100 for the ∆∆ vectors. The
codebooks are used to convert the three sequences of MFCC
vectors and their ∆ and ∆∆ transformations into a sequence
of acoustic events: each cluster, that is to say each elements
of a codebook defines an acoustic event; each time window
is thus transformed into three discrete events corresponding to
the clusters in which fall the three vectors associated to that
time window.

The last step consists in removing most of the temporal
information by building histograms of event occurrences and
co-occurrences. This process happens on top of the three
sequences of discrete acoustic events obtained from vector
quantization. More precisely, co-occurrence histograms are
simply histograms of the successive occurrences of pairs of
events. What is denoted as HAC representation in the follow-
ing is actually the concatenation of co-occurrence histograms
for each one of the events categories, that is to say MFCC,
∆MFCC, and ∆∆MFCC events. The final dimensionality of
the representation is more than 100, 000; more detail on the
HAC representation is given by Driesen (2012), Van Hamme
(2008), Mangin (2014).

4) Image and video: The visual frame are transformed with
the same tools as in Lyubova & Filliat (2012). More precisely,
two types of local features are extracted from the pictures:
SURF descriptors (Bay et al., 2006) and HSV (hue, saturation,
value) of superpixels.

As described by (Bay et al., 2006), SURF features are
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Keyword Object Motion

Limb(s) Description

shoe blue octopus both legs squat
nappy teddy bear walk
book pink octopus right leg raise heel toward left

knee
daddy yellow car both arms clap
mummy blue whale mimic paddling left
Angus blue-eyes-

green-yellow
right arm mimic punching

bath orange fish starts horizontal and
goes from side to front

bottle squirrel left arm starts horizontal, fore-
arm goes down to 90◦

telephone mouse waving arm
car cube hello sign

TABLE II
WE FORM ARBITRARY MULTIMODAL CONCEPTS BY ASSOCIATING AN

OBJECT WITH A KEYWORD AND A GESTURE. THE TABLE PRESENTS A LIST
OF SUCH ASSOCIATIONS. THE LIMBS ON WHICH THE MOTIONS OCCUR

ARE ALSO MENTIONED. THE SYSTEM THEN OBSERVES THE KEYWORDS AS
SPOKEN SENTENCES CONTAINING THE KEYWORD, OBJECTS AS IMAGES,
AND GESTURES AS HUMAN DEMONSTRATIONS PERCEIVED BY A MOTION

CAPTURE SYSTEM.

descriptors computed around points of interest in an image.
They enable to transform an entire image into a set of small
descriptors that are invariant to change in scale and rotation
of the image. To obtain the HSV descriptors, areas with
relatively homogeneous colors are detected into what is called
superpixels (Micusik & Košecka, 2009); then each area is
represented as the triplet of its hue, saturation and value.

Both methods leads to the representation of an image as
a set of local descriptors. Then the descriptors of both type
are quantized by incrementally learning growing dictionaries
of features. This algorithm used is a variant of k-means, very
similar to the one presented in Filliat (2008) and for sound
in Mangin et al. (2010). This process is the analogous to the
grouping of MFCC vectors into acoustic events described in
previous section.

Finally the occurrences of local event are counted and
summarized in a histogram, that is a nonnegative vector of
dimensionality around 50, 000.

IV. EXPERIMENTS

We consider semantic associations between elements of the
acoustic, visual, and motion modalities; more precisely we
define a semantics as an artificial mapping between acoustic
words, visual objects, and gestures. An example of such a
mapping is given in table II. Each triplet of word, gesture,
object forms a semantic concept. The data used to train the
MCA-NMF model is composed of sentences, motions, and
images; each sentence contains one of the keywords, each
motion features one gesture, each image an object. Finally
the gesture, the word, and the object from an example belong
to the same semantic concept, which implements the cross-
situational manifestation of the semantics.

In the testing phase of the following experiments the system
is presented ten potential referrent, each of a different class
among the ten possible semantic classes. Thus a random

Modality Success rate

Test Reference Comparison I-div. Euclidean Cosine

Sound Motion Internal 0.608 0.612 0.646
Motion 0.552 0.379 0.444
Sound 0.238 0.126 0.208

Motion Sound Internal 0.610 0.704 0.830
Sound 0.106 0.090 0.186
Motion 0.676 0.642 0.749

TABLE III
SUCCESS RATES OF RECOGNITION OF THE RIGHT REFERENCE EXAMPLE

FROM A TEST EXAMPLE. THE VALUES ARE GIVEN FOR MANY CHOICES OF
THE REFERENCE TEST AND COMPARISON MODALITIES AND VARIOUS

MEASURES OF SIMILARITY. THE RESULTS ARE OBTAINED BY AVERAGING
ON A TEN FOLD CROSS-VALIDATION, BASELINE RANDOM IS IN THAT CASE

0.11.

choice would lead to a rough 10% success rate. When not
specified otherwise, we use a default value of k = 50 as
the number of elements in the dictionary learnt by the NMF
algorithm with 50 iterations, although a number of 10 is
generally already close to convergence.

A. Motion and spoken utterances

The first experiment compares the various evaluation meth-
ods, that is the alternative modalities of comparison and
metrics. In this experiment the learner is trained on two
modalities: demonstrated motions and spoken utterances. It
also validates the capabilities of the MCA-NMF learner to
acquire multimodal concepts that appear in a cross-situational
way in training data. Table III presents classification success
rate for various combinations of comparison modalities and
metrics. These results demonstrate that the system is capable
of learning aspects of the semantic associations. If the system
is trained on a dataset where no semantic association exists
between the two modalities (such a dataset can be obtained
by choosing a random motion and a random utterance for each
demonstration), it generally scores around 0.112. Additionally
the result show for example that the sound modality, mainly
because of its very high dimension, is not a good choice for the
comparison, specially when the comparison is performed with
the Euclidean metric. Indeed the choice of the metric to use
is highly dependent on the nature of the data in the modality;
therefore, using the internal representation is a way to only
use one metric. Therefore the following experiments focus
on performing the comparison on the internal representations,
using cosine similarity as a metrics. The main interest of
proceeding that way is that the comparison is the same,
regardless of what the test and reference modalities are.

Table IV presents analogous results in the case were sym-
bolic labels are included in the training data. Indeed one
could expect that adding symbols to the training data would
increase its structure and thus ease the learning of the concepts
in comparison to purely non-symbolic data. The labels are
included similarly to the experiments from Mangin & Oudeyer
(2012), Driesen et al. (2010): the label of each example
is transformed to a vector of 10 binary values with zeros

2This is not 0.1 because the distribution of sound examples from the
Caregiver dataset is not exactly uniform.
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Modality Success rate

Test Reference Comparison I-div. Euclidean Cosine

Sound Motion Internal 0.387 0.699 0.721
Motion 0.543 0.261 0.424
Sound 0.136 0.089 0.131

Motion Sound Internal 0.573 0.620 0.702
Sound 0.114 0.090 0.122
Motion 0.519 0.469 0.552

TABLE IV
THERE IS NO SIGNIFICANT IMPROVEMENT OF THE RECOGNITION RATE
WHEN UNAMBIGUOUS SYMBOLS ARE ADDED TO THE TRAINING DATA.

THE TABLE REPRESENTS THE SAME SUCCESS RATES AS PREVIOUSLY (SEE
TABLE III) BUT WITH A LEARNER THAT OBSERVED SYMBOLIC LABELS

REPRESENTING THE SEMANTIC CLASSES DURING TRAINING. THE
RESULTS ARE OBTAINED BY AVERAGING ON A TEN FOLD

CROSS-VALIDATION, BASELINE RANDOM IS IN THAT CASE 0.11.

everywhere except for a one at the index corresponding to
the label. This binary vector is concatenated to the vector
representing the example. Thus this setup is equivalent to
adding a third modality, which contains unambiguous symbols,
in order to improve the learning. The symbols are said to be
unambiguous in comparison to utterances that contain several
sounds where only some sequences of specific sounds form
words, and generally only one word per sentence is relevant.
The results from table IV illustrate the fact that the system
does not clearly take advantage of this additional information.
An interpretation of these results is that the system is already
capable of dealing with the ambiguity and is not helped by
such additional symbolic information. However the relevance
of such comments is limited to the current algorithm and
implementation of MCA-NMF.

B. Sound, motion, and image

The experiments in this section compare the performance
of learners trained on various combinations of two or three
modalities among sound, motion and images. In particular it
explores the impact of adding modalities during training that
do not occur during testing. In the following we only use
the comparison on internal representation. The main interest
of proceeding that way is that the comparison is the same,
regardless of what the test and reference modalities are. Re-
sults are presented together with box plots corresponding to 20
repetitions of the experiment with random label associations,
test set, train set, and reference examples.

More precisely several setup are presented, including learn-
ing from motion and sound, as well as from image and
sound, as previously, but also learning from motion and image,
and finally learning from the three modalities at the same
time. For each of these choices of learning modalities, several
setup are possible for the test phase, specially when the three
modalities are present during training: these include testing
on the recognition of one modality from another (for example
Image → Sound) but also from two modalities to another
(for example Image,Motion → Sound), or conversely one
modality to two (as in Motion→ Sound, Image).

Figure 9 compares various setup of type A → B, for
both for the case where A and B are the only modalities

present in the training and the case where a third modality
was also present during training. The results demonstrate
that MCA-NMF is capable of learning the semantic concepts
event when more than two modalities are present. There is
no significant difference between the cases of two and three
modalities: the system neither benefit noticeably from the third
modality nor does it suffer from the increased dimensionality
of the data. However, since the number k of elements in the
NMF dictionary is fixed, the results could come from the
fact that when the system is trained on three modalities, the
dimension of the dictionary becomes insufficient to encode
non-meaningful aspects of the three modalities. Therefore
fig. 10 present the same experiment for various values of k
in order to interpret more precisely the previous result. The
comparison confirms the fact that the system mainly behaves
similarly with two or three modalities.
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Fig. 9. An additional modality during training does not significantly im-
pact result. The box plot represent classification success rates for various
experiments where two or three modalities are used for training. Each plot
corresponds to the use of a subset of modalities during training: the first
three plots use two modalities and the last one use three modalities. Each
plot contains boxes representing the average success as well as quantiles and
extreme values through cross-validation for various testing setups, using only
two modalities. There are only two testing setups when only two modalities
are used for training, and six when three modalities are used for training.

Figure 11 present the results on many possible test se-
tups in the case where all modalities are present during
training. The results demonstrate that the system is capable
of using information contained in more than one modality
in the test or reference example. Although the results are
slightly better when using more modalities as input (as in
Motion, Image→ Sound in comparison to Motion→ Sound
or Image→ Sound), the improvement in performance is not
really significant in the experiment.

A last experiment leaves the non-symbolic setup considered
previously, in order to compare properties of MCA-NMF
with results obtained in previous works, regular classification
with the symbolic modality. For example Ngiam et al. (2011)
present a learner that is trained on multimodal examples of
phonemes, either perceived through their acoustic manifesta-
tion or through the motions of the lips that pronounce them. In
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Fig. 10. With both two (full lines) and three (dashed) modalities during
training, the classification success rates are similar and good for high enough
value of the number k of elements in the NMF dictionary. The plots
demonstrate that the success rate is quite stable above a minimum value of
k.

0.0

0.2

0.4

0.6

0.8

1.0

C
ro

ss
-m

o
d

al
as

so
ci

at
io

n
su

cc
es

s
ra

te

motion, sound, image

motion → sound

motion → image

sound → motion

sound → image

image → motion

image → sound

sound, image → motion

motion, image → sound

motion, sound → image

sound, image → motion

motion, image → sound

motion, sound → image

Fig. 11. MCA-NMF is capable of relating information from many modalities
to one. There is however no substantial improvement in performance from
the use of two modalities as input for the recognition. The figure presents
box plots of classification success rates for various experiments where three
modalities are used for training. There are boxes representing the average
success as well as quantiles and extreme values through cross-validation for
various testing setups.

their experiment they show that the learner can benefit from the
observation of several modalities and improve its recognition
success in comparison to the case where only one modality is
observed.

We consider a regular classification setup, similar to the one
presented by Mangin & Oudeyer (2012), Driesen et al. (2010).
More precisely we introduce a symbolic modality represented
by a binary vector as already explained in section IV-A. The
system is trained by observing examples both in the symbolic
modality and in one or several other modalities. Then results
are compared between various testing setups to explore the

ability of the learner to improve its classification performance
in the case where several modalities are observed. Such an
experiment is actually a classification task with multimodal
input unified through sensor fusion.

Table V present the results where the sound and motion
modalities are combined to a symbolic modality, denoted as
L. Interestingly training with the two modalities (sound and
motion) does not significantly change the performance of the
learner, when tested on sound, motion or both. In that case
the benefit of having two non-symbolic modalities is not an
increase in performance, but rather that the same learner can
use either acoustic perception or motion perception to classify
an example.

Training Testing Success rates

S + L S → L 0.916± 0.034
M+ L M → L 0.906± 0.052

S +M+ L S → L 0.896± 0.043
S +M+ L M → L 0.910± 0.054
S +M+ L S +M → L 0.917± 0.055

TABLE V
SUCCESS RATE FOR THE LABEL RECOGNITION EXPERIMENT. IN THIS
EXPERIMENT AN ADDITIONAL MODALITY CONTAINING LABELS, L, IS

CONSIDERED. THE RESULTS ARE COMPUTED ON AVERAGE FOR A
CROSS-VALIDATION OF THE TRAIN AND TEST SETS; STANDARD

DEVIATIONS ARE ALSO GIVEN.

C. Word acquisition and recognition

The previous experiments demonstrate that the artificial
learner we present is capable of learning the semantic con-
nection between utterances and the objects or motions they
describe. The meaning of the sentences is modelled in our
experiment by the presence of a keyword; more precisely
the association between sentences and images of objects
or motions are based on the presence of keywords in the
utterances. However the learner is not aware of the fact that
all the meaning of the sentence is actually localized in one
word; instead it only exploits cross-situational learning to
discover relations between acoustic and, say, visual features.
The task solved by the learner actually only involve holistic
understanding and classification of the sentences. Therefore it
is not completely clear what information the learner actually
exploits in the sentence and whether the learner discovers
word-like units from the acoustic stream. Indeed the previous
experiments only demonstrate that the learner achieves teleo-
logical understanding of the sentences; however the question
remains to know if it starts to understand compositionally the
sentences. We further explore this question in the experiment
presented in section IV-C1, that can be seen as extending the
one presented by Stouten et al. (2008, 4.C) to the multimodal
setup instead of only speech and labels. The system’s behavior
also display that the semantic classes have been encoded in
its perception but not how it is encoded. Hence section IV-C2
takes a further look at this question.

1) Words’ location in sentences: The experiment presented
in this section explores whether the meaning of sentences is
localized around the keyword that bears this meaning. In this
section the system is trained as in the previous experiments but
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we change the evaluation procedure. The system does not have
to relate full utterances to visual objects any more. Instead we
extract sliding windows of a given length from the utterances
from the test set. The sliding windows extraction process
actually takes two parameters: the width of the windows and
the shift between two windows. In the following we use sliding
windows of width 0.5 s with a 0.05 s shift. Once a sliding
window has been extracted, it is represented using similar
features than regular sound, that is that the subsequence of
sound is extracted and converted to the HAC representation.
Then each sound window is compared by the system to several
examples in another modality, here images of objects. By
evaluating the system on small parts of utterance we can
visualize which part of sentences are associated with each
object, that is with each semantic underlying concept.

In fig. 12, we present five typical behaviors of MCA-NMF
on test sentences. The example have been chosen to illustrates
these typical situations but do not correspond to what four
random examples would look like. All these examples are
taken from the same learner.

The first example (top left), corresponding to the sentence
‘The book is always nice.’, features a high similarity between
the book image and sound windows that intersect the location
of the word book in the sentence (between 0.8 and 1.0s).

In the second sentence (top right), the correct meaning is
guessed by the system but it is not located specifically in the
sentence. Because the dataset used for training is rather small
in comparison to the variety of word combinations, many
non-keywords appears only or most often together with the
same keyword. In this case the word ‘join’ and the phrase
‘join us’ are always observed together with ‘daddy’, while
the occurrences of ‘does’ are more spread among the various
keywords. The grammar used to generate the utterances is
described quickly by Altosaar et al. (2008) and in more details
by Driesen (2012, chap. 2). This situation is similar to the case
of natural sentences where contexts highly modify the distri-
butions of words and may explain why such de-localization
of the meaning of sentences. In particular this provides an
example where the system achieves teleological understanding,
which here means guessing the general meaning of a sentence,
without compositional understanding.

The third sentence (bottom left) is very specific because it is
one of the rare ambiguous sentences of the dataset. Indeed the
sentence ‘Angus takes off his shoe.’ features both the keyword
‘Angus’ and the keyword ‘shoe’. Furthermore the learner is
capable in this sentence to recognize both words and localize
them roughly at the start and end of the utterance.

Finally, the fourth sentence illustrates the many cases where
there are false positives for other meanings or (not in the
example) no clear meaning is found by the learner in the
sentence.

2) Emergence of localized representations of concepts: In
previous experiments we evaluated the learner on concrete
tasks that emphasizes its ability to relate information from
one modality to another. While this demonstrates that the
internal representation built by MCA-NMF encodes these
concepts, it is however not trivial how it encodes information.
In this section we explore the possibility that at least some

components of the dictionary matrix are more specialized into
some of the semantic classes.

In order to investigate that aspect we quantified the mutual
information between the semantic concepts and the coefficients
of the internal representations of samples featuring the con-
cepts. For each semantic concept l and sample i we consider
the random variables Xl such that Xi

l = 1 if and only if
the concept l appears in sample i. For each dimension j
of the internal representation and each sample i we define
the random variable Yj = hi

j . We then assume that (Xi
l )i

are independent and identically distributed, as well as the
(Y i

j )i. In the following we quantify the dependency between
these two variables by looking at the mutual information
between them. In information theory, the mutual information
I is an information theoretic measure defined for two random
variables X and Y as “the relative entropy [or Kullback-
Leibler divergence] between the joint distribution [p(x, y)] and
the product distribution p(x)p(y)” by Cover & Thomas (1991).

I(X;Y ) = DKL (p(x, y)∥p(x)p(y))

The Xl variables takes binary values but the Yj are continuous.
Therefore we use a quantization of each coefficients of h
into 10 discrete values in order to estimate the probability
distributions p(Xl), p(Yj), and p(Xl, Yj) by using the samples
for 1 ≤ i ≤ N . Then we compute the mutual information
between the discrete, approximated, probability distributions.
From this process we obtain a value I(Xl;Yj) for each pair
(l, j) that quantifies how much information the coefficient j
captures from the concept l.
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Fig. 13. Some components are more associated with some semantic labels.
The figure represents the mutual information between (vertically) semantic
classes (that are not observed by the learner) and (horizontally) each internal
coefficient used by the learner to represent pairs of motion demonstration and
acoustic descriptions from the training set. A value of k = 15 was used in
this experiment.

Figure 13 represents, for each semantic class and each
coefficient of the internal representation, the mutual infor-
mation between the belonging of examples to that class and
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Fig. 12. These examples illustrates various distributions of meaning in utterances, in the learner’s point of view. More precisely the horizontal axis represents
time: the dots correspond to the mean time of sound windows, which width are materialized by an horizontal grey bar. Thus each plot represents the similarity
between the small sound windows and various pictures which semantic class correspond to colors. The four sentences were chosen because they illustrate
typical situations. Each record of utterance starts and ends with approximately half a second of silence. Importantly the similarities are taken between sound
and images, that is, when a chunk of sound is similar to ‘mummy’, it actually means that the learner’s associates it strongly with an image of the object
representing the mummy concept. The location of key words, in grey areas, have been indicated by manually detecting their boundaries in the utterance.

the value of a given coefficient of the internal representations
of these examples. To emphasize the specialisation of some
internal coefficients we re-ordered internal coefficients so that
classes and coefficients that have high mutual information
are on the diagonal. More precisely, the best alignment was
computed by a Kuhn-Munkres algorithm (Munkres, 1957) and
we plotted first the coefficients that are highly associated to
one class and then the one that are less meaningful. The
figure shows that some coefficients are highly specialized in
one label. However, it does not display a perfect one to one
relationship between labels and coefficients: the information
about other labels is spread over several coefficients, and some
information is also not clearly localized. For comparison with
these results, random labels with uniform probability and a
deterministic value of a coefficient knowing the label yields a
mutual information of approximately 0.325.

V. DISCUSSION AND PERSPECTIVE

In this paper we present MCA-NMF, a framework for
learning multimodal concepts from sensorimotor data, that
is based on nonnegative matrix factorization. This algorithm
builds a compressed representation of the sensor signals. This
representation is used as an internal representation of the
multimodal perception and allows to reconstruct any whole

or part of modalities given information on other parts or other
modalities.

The experiments demonstrates that this procedure is capable
of learning concepts from sub-symbolic input only. It can
overcome several forms of ambiguity such as discriminat-
ing between relevant and non-relevant patterns to encode
(for example relevant and non-relevant speech words). It
also discusses the association between patterns from distinct
modalities into multimodal concepts.

We then explain how the structure learnt from the observa-
tion of full, unsegmented, sentences can be used to localize
a posteriori the semantics of the concepts into areas of the
sentences such as words. Finally the last experiment explores
how the system internally represent semantic classes. It shows
that constraining the representation to be highly compressed
leads to a relative specialisation of encoding units in semantic
concepts.

A. Relation to previous work

Several previous works have addressed similar questions to
the ones discussed here. As detailed below, the main novelty
of our work consists in the facts that 1) we do not rely on
symbols for the learning or evaluation phases, 2) the utterances
are not segmented into words or phonemes using a priori or
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expert knowledge, 3) more generally the acoustic modality
that contains language is treated symmetrically to the others
modalities, 4) the concepts co-organize across modalities, in
particular words and their semantics shape each others.

In their seminal work, Roy (1999), Roy & Pentland (2002)
introduce a learning architecture called Cross-channel early
lexical learning (CELL), together with an example imple-
mentation, that demonstrates how the problems of learning
linguistic units, semantic categories, and their relations (in
the form of lexical units) can be achieved at the same time.
CELL involves three stages. It first segments both linguistic
information and contextual information, each of which may
come from several sensory channels, according to saliency
cues such as utterance boundaries or changes in motions.
In a second stage, a model of short term memory filters
pairs of recurrent co-occurring linguistic and contextual events.
Finally a clustering algorithm builds models of linguistic units
and semantic categories; they combine clustering of similar
language stimuli as well as contextual stimuli and optimize the
mutual information between language and context. The pairs
of linguistic units and semantic categories with the highest
mutual information are kept as lexical units, that correspond
to concepts. Thus, in comparison to MCA-NMF, the CELL
system first segments sentences in word-like units and thus
words and semantics concepts are first formed independently
and then matched, without modelling co-organization of words
and their meanings.

Yu & Ballard (2004) have presented work addressing a
similar problem but focusing more precisely on user-centric
and multimodal information. They present a learning archi-
tecture that is capable of forming semantic models of both
actions and observed objects by using unsupervised learning
techniques. First, models of actions are formed by fitting a
mixture of hidden Markov models on the observations and
models of objects result from an agglomerative clustering
algorithm. The models of objects and actions define con-
cepts and together form the contextual information. Then,
this contextual information is used to extract word-like units
related to these concepts from phoneme transcriptions of the
recorded utterances. More precisely longest common phonetic
sequences are extracted from all utterances related to the same
object or action. Then an alignment techniques, that comes
from the field of automatic translation, is used to form the
lexical units composed of words and concepts. This approach
differs from MCA-NMF since concepts are formed beforehand
and the model thus do not take into account the shaping of
semantics by the linguistic modality. Furthermore their model
relies on mechanisms specific for the linguistic modality.

In Iwahashi (2003) the studied language is related to an
(object, action, position) semantics which appears to be closely
related to the language grammar. More precisely a lexicon is
built from data: the lexicon actually represents a mixture of
word and meaning pairs, where meanings can either be objects
or actions. Specific probability models are implemented to
represent the acoustic modality as well as the modality of
visual objects and the one of visual actions. The number
of elements in the lexicon is automatically chosen in order
to maximize the mutual information between the speech and

contextual modalities. Because the acoustic pattern and object
recognitions abilities are separately acquired in a preliminary
stage, this model does not take into account mutual shaping
of linguistic and semantics patterns as MCA-NMF. It however
features the acquisition of a grammar of the language, learnt
by identifying in which order the linguistic elements corre-
sponding to the eventual object, action, and landmark appear.

Sugita & Tani (2005) introduce a recurrent neural network
architecture that learns to relate a basic language to corre-
sponding behaviors of a robot. The system is capable of both
understanding the words composing the language, that in their
experiment are represented by symbols, and their composition,
that is to say the syntactic structure of the language. As already
mentioned in introduction, another aspect of learning action
related to language is explored by Tuci et al. (2011) who
demonstrates that learning a compositional structure shared
between action and language can allow better generalization
of the motor knowledge. Furthermore Massera et al. (2010)
have demonstrated that providing linguistic instructions can
facilitate the acquisition of a behavioral skill, in comparison
to pure motor learning. Although these experiments are lim-
ited to symbolic language, they are good illustrations of the
implication of learning multimodal actions and grammars.

In our previous work (Mangin & Oudeyer, 2012), we
use the MCA-NMF framework in a multi-label classification
experiment. More precisely, instead of observing several con-
tinuous modalities, the learner observes human demonstra-
tions of motions and a symbolic linguistic modality. However
each demonstration mixes several motions together, forming
a complex choreography. Each motion demonstration is thus
described in the linguistic modality by several symbols; in
other word there is a joint grammar between the motion
and the symbolic modalities. In that experiment, the MCA-
NMF system learns the relation between the symbols and the
gestures. This relation is initially ambiguous since the gestures
are always observed mixed together as well as the symbols
that describe them. The experiment then demonstrates that
the learner is able to provide correct linguistic descriptions
of combinations of gestures that were not observed during
training. This result is thus an example of joint grammar
acquisition in two modalities, similar to the ones from Sugita
& Tani (2005), Tuci et al. (2011), Massera et al. (2010).

Ten Bosch et al. (2008), Driesen et al. (2009) have presented
a similar experiment where the contextual modality is the one
that is symbolic and the linguistic one is continuous. Similarly
Lienhart et al. (2009), Akata et al. (2011), BenAbdallah et al.
(2010), Srivastava & Salakhutdinov (2012) use the NMF,
probabilistic latent semantic association (PLSA), or deep
Boltzmann machine algorithms to learn from a continuous
and a symbolic modality. Driesen et al. (2010) have also used
the NMF algorithm to learn from two continuous modalities.
Their model is very close to MCA-NMF and directly inspired
it; however they only evaluate it on the reconstruction of a
symbolic modality. An interesting aspect of these approaches
is that they all use feature learning algorithms, that are some
kind of unsupervised algorithms, instead of relying on explicit
models of the lexical units and their relations to language and
context.
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Another example of the use of feature learning techniques is
given by Ngiam et al. (2011) who also present an experiment
based on a similar multimodal setup. They introduce an
architecture based on sparse restricted Boltzmann machines
that learns from two continuous modalities: one is acoustic
and the other corresponds to the observation of the speaker’s
lips. They demonstrate how in certain conditions the algorithm
reproduces the McGurk effect. Their algorithm actually learns
a new representation of the input in an unsupervised setup
and is then evaluated combined with a standard supervised
classifier trained on top of this representation. Their work
can also be described as a sensor-level multimodal fusion:
several modalities are used to build a common representation
that is later used to solve a classification problem. Actually
multimodal fusion has already been used to improve super-
vised classification: Potamianos et al. (2003) discuss the use
of both sensor-level fusion and decision-level fusion for speech
recognition. Saenko & Darrell (2007) also implement decision-
level fusion and demonstrate that it improves the recognition
of objects. Although closely related to the one of Driesen et al.
(2010) and similar to the one from Ngiam et al. (2011) the
setting of the last experiments we presented differs. Indeed, we
do not evaluate the learning through a standard classification
task: instead of testing the reconstruction of symbolic labels,
the system is tested on a behavior based classification task,
as encountered by children. We show with MCA-NMF that
fitting an explicit representation of a lexicon is not necessary to
produce behaviors that are considered on children as evidence
of the mastering of lexicons understanding. That aspect is
an important novelty in comparison of the aforementioned
previous work.

The interactions mechanism between the learning agent
implemented by MCA-NMF and its caregiver, who provides
the demonstration, actually shares many similarities with the
one from the Talking Heads experiment as described by Steels
(1999), Steels & Kaplan (2002). More precisely the agent
we present in this chapter plays the role of the hearer from
the talking heads, while the caregiver takes the role of the
speaker. There are however important differences between
our setup and the one from Steels (1999). First, there is no
turn in the role taken in our experiment: the learner only
plays the hearer and the caregiver only plays the speaker.
Importantly this means that the language is taught to the
learner by the caregiver, instead of evolving and emerging
from their interaction. Also, in our experiments, the naming
game, that consists for the hearer in guessing which object the
speaker is talking about, is only played during the evaluation
stage. During the training the learner passively observes the
caregiver teaching and does not receive any other feedback.
However, this makes MCA-NMF an alternate implementation
of a naming game hearer, that does not rely on the success
of the naming to update its knowledge, but rather uses cross-
modal information to do so. This means here that the cross-
modal heuristics may be an alternative to feedback on the
game success.

B. Interpretations and limitations

In this paper we demonstrate, with MCA-NMF, the pos-
sibility of multimodal learning from a flow of non-symbolic
sensory input by using variations of the non-negative matrix
factorization. The idea we present are however not restricted to
this specific algorithm and its implementation. For examples
algorithms based on deep belief networks have been shown
to perform well on problems similar to the one addressed
here, though only on symbolic language, by Srivastava &
Salakhutdinov (2012). It is thus an interesting subject for
future work to investigate the behavior of these algorithms
or other feature learning algorithms on setups similar to this
one, as started by Droniou et al. (2014).

In particular we propose a focus shift in the notion of
perceptual decomposition. Regarding the structure of speech,
we do not consider a preliminary segmentation of utterances
into words in order to learn their meaning. Similarly, in our
previous work on learning composite choreographies (Mangin
& Oudeyer, 2012), the MCA-NMF framework does not target
the representation of individual gestures. Instead, it builds a
representation of full body motions and simultaneously learns
its correspondence to a linguistic modality. This approach
achieves the recognition of composed gestures thanks to a key
property: the internal representation and the mapping between
the internal representation and the modalities are compatible
with the target structure. Furthermore the strong structure in
the symbolic modality that describes the motions is sufficient
to shape the learnt representation of motions so that it encodes
the same structure. Here we demonstrate similarly that the
structure in a non-symbolic modality containing images of
objects is sufficient to shape the perception of speech in
order to recognizing individual words that correspond to the
objects. Thus, in both the speech and motion cases the explicit
representation of combination is not set as a feature of the
algorithm. It is instead induced by the data.

This idea is also largely in line with the position that Wrede
et al. (2012) expose: accuracy of decomposition is often a
complicated objective to target at first. In contrast, simpler
goals, such as understanding the broad meaning of a sentence,
can first be achieved that later enable to improve on the decom-
position capabilities. Results from section IV-C1 are actually
in line with this perspective. This is also coherent with the fact
that the apparent evidence of decomposition in perception is
often illusory as revealed by many perceptual experiments (see
for example Brent, 1999, Blake, 1989, Leopold & Logothetis,
1999).

In terms of learning the grammars of motion and language,
a top down approach would consist in a strong a priori on
the structure to be learned that the algorithms must encode.
The question would be: ‘What is the best algorithm to learn
or encode the grammar from the data?’ Instead we propose
to explore another question: ‘Which learning mechanism can
lead to the emergence of which grammatical structure?’ In
MCA-NMF, the operations of word or image juxtaposition
or motion combination are translated into nonnegative linear
combinations of words or images representations. The results
from Mangin & Oudeyer (2012) demonstrate that this property
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enables MCA-NMF to learn the grammar of simultaneous
motion. However, this form of grammar is obviously limited;
thus future work includes the investigation of the ability of
this mechanism to represent and let emerge other types of
motion or word grammars. From this investigation follows
the question of the data that can lead to the learning of
new grammars. In particular which grammatical structure are
common to several modalities such as speech, vision, or
motion perception. Similar future work must also investigate
the same question with other combination mechanisms and
learning algorithms.

In this paper we show that MCA-NMF is able to acquire
word knowledge from cross-situational information. The ex-
periment we present are however limited to data that has been
artificially forged to encode cross-situational information. It is
thus an essential extension to experiment this learner on realis-
tic data. This constitutes a way to assert the strength of cross-
situational information in infant-like perception, and hence to
investigate that hypothesis. Another important extension is to
develop experiments on realistic data that use other similar
computational models to better delimit what cross-situational
information can and cannot explain in word learning. Indeed
many classes of words and meanings may be impossible to
learn solely from that information. Finally, the exploration of
other word learning heuristics is also a major subject for future
work. Indeed, other rules such as mutual exclusivity or whole
object assumption have been identified to play an important
role in the process of learning words Markman (1990). Their
study raises new challenges such as building computational
models of learners sensible to this information and experiment
their capabilities.

The MCA-NMF model we present in this paper also suffers
important limitations. First in its current state it does not
consider the developmental dimensions of concept acquisition.
For example it is based on a batch learning algorithm; al-
though incremental versions can be implemented the present
article does not cover this aspect. In particular, we illustrated
various behaviors of the learners in the experiments with
sliding windows and interpret them as teleological understand-
ing potentially enabling compositional understanding. Further
analysis of the occurrences of such behaviors may benefit
from being performed in a dynamical setting, in order to
focus on the evolution of the learner through its development.
There no limitation in principle to implement the MCA-NMF
learner incrementally, which would enable new experimental
possibilities. As an example it would enable to study the
evolution and refinement of a concept. In our approach to
learning from speech, we do not address the question of
attention. More precisely we implicitly consider two basic
models of attention: full utterances and sliding windows. Such
restriction on time scales may prevent to account for several
aspects of human speech perception and further investigation
in this direction also opens perspectives for future work.
Finally the sensorimotor aspect of perception and other aspects
of the interplay between action and perception are out of the
scope of this article but of great interest (Cangelosi et al.,
2010). In particular attention mechanisms play an important
role in perception, at different time scales, to shape the

data perceived by the learner. While such aspects are not
explored in this study the proposed MCA-NMF framework
or its implementation may further be used as a building block
to study these questions.
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