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MCA-NMF: Multimodal Concept Acquisition with
Non-Negative Matrix Factorization

Olivier Mangin, David Filliat, and Pierre-Yves Oudeyer

Abstract—In this paper we introduce MCA-NMF, a compu-
tational model of the acquisition of multimodal concepts by an
agent interacting with its environment. We explain how such
computational models are also an answer to the question of
what concepts are and not only of how they can be learnt. We
detail why multimodality is essential to lower the ambiguity of
learnt concepts as well as communicate about them. We then
present a set of experiments that demonstrate the leaning of
such concepts from real non-symbolic data consisting of sounds,
images, and motion acquisitions. Finally we consider structure
in perceptual signals and demonstrate that a detailed knowledge
of this structure, named compositional understanding can emerge
from, instead of being a prerequisite of, global understanding.

I. INTRODUCTION

Whether they are seen as grounding the meaning of words
or giving structure to our high level perception, concepts are
an essential aspect of human cognition as well as a desirable
feature for robots and other artificial cognitive systems. Yet the
exact definition of what concepts are, let alone, the question
of how they may be acquired by an agent in interaction with
its environment are still mostly unanswered.

A. Multimodal concepts

Concepts may be defined as mental representations. What
these mental representations are, would they be forged by a
human or a robot, is however not firmly defined. Thus, before
building models of the acquisition of concepts, and therefore
indirectly of the concepts themselves, some aspects must be
clarified. We propose here a perspective on learning concepts
as patterns in a flow of multimodal perception, a view that
is in line with the embodied cognition principle (see ?) and
perceptual concepts as the ones from ? (see ?, for a more
detailed review).

More precisely we consider the notion of multimodal con-
cepts for several reasons. First, many concepts do not lie in a
single perceptual modality. For example, the emergence of the
concept of dog is not only related to the ability to recognize
pictures of dogs but also to the sound of a dog barking and the
touch of a dog’s fur. Furthermore, many concepts cannot be
completely characterized without grounding them on several
modalities: the concept metallic cannot be characterized with-
out taking into account its perceptual expression on several
modalities (for example visual aspect, sound, touch, or taste),
together with the recognition of the spoken or written word.

Another reason is that concepts often occur in the context
of language and hence involve a linguistic modality. This
aspect is emphasized in particular in the symbol grounding

problem, as introduced by ? and discussed by ?. It points out
that learning language is not only about learning the signs
of communication such as words, but also requires to relate
them to their semantic content, that emerges from and is
grounded in the interaction with the world. A process denoted
as the semiotic association. From that perspective, learning a
concept may involve learning and relating its semantic content
to a given symbol. Natural communication channels however
do not contain such thing as absolute symbols but rather
manifestations of these symbols: the same word is never heard
the same twice and the image of that word written is not
perceived the same depending on the font it is written with,
the angle it is viewed from, as well as the ambient luminosity.
Thus perceiving symbols is by itself an analogous problem
to perceiving their meaning. Hence the symbol grounding
problem becomes a weak instance of the larger problem of
learning meanings in one modality and linguistic symbols in
another modality. Also, human communication is not generally
reduced to one modality such as speaking or writing; instead
full featured communication makes extensive use of facial
expressions, physical contact, and eye gaze. A famous evi-
dence of the multimodal nature of communication was given
by ? and is referred as the McGurk effect: observing lips
pronouncing ‘ga’ while hearing ‘ba’ is most often reported
as perceiving the sound ‘da’ (see also ?). In that perspective
the multimodal character of natural language makes it very
similar to the kind of concepts it may refer to; so that linguistic
elements may be seen as multimodal concepts themselves.
Furthermore we propose to study the learning of multimodal
concepts that span several modalities, including linguistic and
non-linguistic channels. In particular this approach emphasizes
the co-organization of language and meaning, which is in
line with growing evidences of the influence of language in
learning concepts (see ??).

However trying to define what it means to learn multimodal
concepts reveals that this task is prone to many ambiguities.
As pointed out by ?: “The challenge which cross-situational
learning needs to solve is not only one of mapping a word to
a meaning, but of distinguishing that meaning from possible
distractors.” Indeed, Quine’s indeterminacy of reference (?)
states that relating words to meanings when learning a foreign
language is intrinsically ambiguous. On the other hand, many
models of learning semantic components from one modality
also encounter similar ambiguity issues. For exampe, ? draw
a parallel between Quine’s inderterminacy and ambiguity in
imitation learning, that they call the motor gavagai problem.
Another example is encountered with concepts that corre-
sponds to categories. Indeed infants learning categories face
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the alternative possibilities of thematic and taxonomic associa-
tions of concepts as explained in ?: thematic association refers
to the association of concepts that are related because they
interact together, as milk and cow; taxonomic association refers
to concepts that belongs to the same class, such as cow and
pig. Other analogies can be drawn between this phenomenon
and the ambiguity of word segmentation (see ?), but also
with multistability phenomenon in perception as described by
???, and the cocktail party effect (see ?). Many multimodal
problems feature ambiguity in one or several modalities, but,
in a somehow paradoxical manner, integrating information
from several modalities may be efficiently used to overcome
such ambiguity. In other words, considering the problem of
concept learning separately in each modality suffers from the
presence of ambiguities, but looking at the same problem in
several modalities at the same time might help resolving that
ambiguity instead of increasing it. For example the role of
multimodal perceptions relatively to multistability is discussed
by ?. Similarly ? explore the role of vision of the lips for
improving intelligibility of spoken sound and ? present an
algorithms for source separation taking advantage of audio-
visual information. Finally, ? demonstrate, in an other exper-
iment, that a robot can reach better performance on a motor
task when a linguistic guidance is present, even if it does
not initially know the meaning of the symbols composing the
guidance.

B. Learning associations

A central issue toward defining the problem of learning
multimodal concepts is to formalize what it means to learn
a concept. Importantly concepts do not necessarily refer to
an explicit representation; this notion rather targets emerging
behaviors that are interpreted as the mastering of that concept.
For example a child is said to master the concept dog not by
looking into his brain for a neuron spiking each time a dog is
seen but rather by its ability to relate the sight of a dog with
the sound of a barking dog or the sound of the name ‘dog’.
One way of modelling this is to specify a behavioral evaluation
of the learning process. In particular this article focuses on the
ability to classify stimuli in specific way.

From a machine learning perspective, unlike supervised
learning, unsupervised learning, or reinforcement learning,
multimodal learning is not a specific class of algorithms.
Indeed, multimodal data can be treated as unimodal data on
which an unsupervised learning is applied (some examples
provided in this article fall under this category). It can also
be considered a supervised regression problem that consists in
predicting the signal in one modality, knowing the others. The
focus of this work is on learning that occurs in an unsupervised
manner, that is how multimodal perception self-organizes in
a way that can explain the emergence of concepts. The kind
of behaviors under consideration are classification behaviors.
However they do not correspond to supervised classification
in machine learning, that is the association of a symbol to a
given stimuli, but rather to unsupervised association between
stimuli from a same semantic class: in the way a child would
group a car with a truck instead of with a cow.

This article actually only focuses on one type of concepts,
characterized by cross-modal associations, and a model of their
acquisition. An example is the concept dog with its visual,
acoustic, acoustic as language, and tactile manifestations.
Although this notion of concept may seem very limited, we
claim that the purpose of building such model is indeed to
better explore these limits.

In practice, we build experiments that involve two phases:
an unsupervised learning phase where the system observes
raw perception, and a behavioral evaluation where it solves
a task. This separation opens a perspective on the relation
between the properties of the perceptual signal available during
learning and the nature of the learnt concepts that is specified
by the evaluation task. In particular it raises the question
of the drives and cues that enable the self-organization of
multimodal perception. In the case of language learning,
experiments on children performed by ?, and ? demonstrate
that cross-situational learning, which focuses on elements that
are persistent in the environment across different uses of a
word, might be used by children to learn the meaning of
words. Most of this work relies on cross-situational learning to
explain or model the acquisition of lexicons of concepts. Other
mechanisms such as the whole object assumption, mutual
exclusivity (see ?), and conceptual reasoning (?) are also
known to play a role in the process of associating linguistic
labels to concepts, but are out of the scope of this article.

C. Structure and complexity
Natural perception generally consists in complex visual or

acoustic scenes rather than in isolated pictures of objects or
isolated sounds of words. In other words, an essential aspect
of these scenes is their structure; and an essential capability
for a learner is to leverage that structure to overcome the
complexity of its perception. Such structure can however take
several forms: for example a visual scene may contain several
objects at various positions; a spoken sentence is composed
of a sequence of words, the words themselves are made from
basic phonemes and the sequence obey to a specific grammar.

A common intuition is that the complexity of the learnt
concepts gradually increases along learning. In particular cu-
mulative learning consists in gradually acquiring a lexicon of
elements of increasing complexities, such that new elements
can be obtained as the combination of simpler ones (see ?,
sec. 3–4). Actually the definition of what complex and simple
mean may by itself be ambiguous; therefore we focus in this
article on a specific structure that is the combination of several
basic elements in complex scenes such as objects in an image
or words in a sentence.

Motor synergies and motion primitives are other examples
of building blocks that can be combined to model complex
perception and action; they were introduced by both motor
control theorists and roboticists (see ?). For example ? inter-
pret a group of experiments on the control system of frogs
and rats as giving strong evidence that the brain uses a set
of primitive force fields that are combined linearly into motor
commands. ? provide a more detailed review on that subject.

The structure of complex perceptual stimuli also adds more
ambiguity to the problem of the emergence of concepts. We
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already mentioned examples of that ambiguity such as word
segmentation (see ?). One way to handle that ambiguity is
to frame the learning on multimodal concepts, thus relating
the structure in one modality with the structure in others.
For example ? provides a model of multimodal learning for
symbolic language and real actions. Their experiment demon-
strates that learning a compositional structure shared between
action and language can allow robotic agents to achieve
better generalization of the acquired motor knowledge. More
precisely the linguistic input received by the system shapes a
model of the structure of actions and makes the system capable
of achieving behaviors that were not encountered in training.

Another interesting question arises from the notion of
structured concepts and their acquisition and challenges the
meanings of the words simple and complex’ ? contrast com-
positional understanding, that describes an agent that is aware
of the local components and their combination into a global
perception or action, and teleological understanding, that ac-
counts for an agent that understands perception globally. More
precisely the term teleological refers to a pragmatic emphasis
on using the global knowledge toward a goal, even without
refined understanding of its structure. According to ? the
developmental path of infants goes first through teleological
understanding before reaching compositional understanding.
This developmental path is to contrast to the one stating that
compositional understanding occurs first before any usage of
the knowledge (for example as suggested by ?).

D. Contribution

In this work we introduce a model named Multimodal
concept acquisition with non-negative matrix factorization
(MCA-NMF), of the learning of cross-modal concepts through
the apparition of structure in multimodal perception. We then
present experiments about the learning of dance gestures from
human demonstrations, the learning of words from full spoken
sentences, and the learning of visual objects from images.

We demonstrate the acquisition of grounded complex con-
cepts from raw continuous signal only, without relying on
symbols to train the artificial agent. Our learning experiment
exploits cross-situational association in the training perceptual
data. Language learning, and in particular the learning of
words, is in MCA-NMF treated as an instance of multimodal
learning. This means that linguistic data is not handled in a
specific way but rather in a symmetric manner with respect
to other perceptual data. Finally we explore the question of
the structure and (de)composition of concepts. In particular
we show that it is possible for an artificial system to discover
subcomponents of perception, such as words in spoken sen-
tences, although the system is only exposed to a task that
requires associations of sentences to scenes.

II. MATERIALS

This section presents the learning setup that we use to
explore the question of learning multimodal concepts from
perception. It first details the kind of concepts we consider,
then explains the experimental setup, and finally introduces
the datasets we use.

A. Target concepts

This article presents a system that learns to associate el-
ements from one modality of perception to related elements
in other modalities. We perform several experiments that ex-
plore how the learner manages to represent semantic relations
between the modalities. In practice we consider semantic
relations that may correspond to either an essential relation,
as the one relating the barking to the image of the dog, or
a conventional relation as the one relating the name ‘dog’ to
images of dogs.

The essential relation arises from the reality of an object that
has manifestations in several modalities. Their exists such a
thing as a dog that has manifestations in the visual modality
as images of the dog, in the touch modality as the touch
of the dog’s fur or its claws, or in the acoustic modality
as the sound of the dog barking. Although not all of these
manifestations occur each time the dog is encountered, they
are often perceived simultaneously since they corresponds
to the actual presence of the dog. On the other side, the
conventional relation characterises language: the word ‘dog’
is often pronounced when a dog is present and is the object of
attention. It is extensively used by parents to teach new words
to children.

Importantly, both relations manifest through patterns, there-
fore a mechanism leveraging such cross-situational informa-
tion would be able to learn both. In the following we denote
by semantic concept the set of manifestations of such an
object in perceptual modalities, either related essentially or by
convention. Additionally a semantic concept may have several
manifestations in a single modality. For instance a dog is
associated to both the touch of its fur and claws, or to the
sound of the dog barking and the word ‘dog’. The semantic
relations we consider actually include Peirce’s icon, index, and
symbol (see ?, 3.1). In the following, the only cue about the
semantic relations in the stimuli is that related elements occur
simultaneous in the various modalities; this corresponds to the
cross-situational information.

B. Experimental framework

We consider the situation in which an intelligent system
perceives a scene composed for example of objects or motions
while hearing sentences that describe the scene. Such a setup
is illustrated in ??.

The modalities that the system observes can vary from
one experiment to the other and it is not necessary that one
modality is linguistic; however a semantic relation always
exists between some elements of the different modalities.
These elements might be of several natures: gestures in mo-
tions, object in visual scenes, or words in spoken utterances.
We consider semantic relations as mappings between these
elements: for example a word is related to a gesture, or a
gesture to an object in a scene.

During training the learning agent observes examples of
scenes; each example is a set of one observations in each
modality. In each scene only one relevant multimodal concept
is present and is observed in several modalities. For example a
sentence is heard containing the word ‘dog’ and a picture of a
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a) Training: The learner observes a set of examples of gestures
each of which is paired with a spoken descriptions of the gesture.

I make circles with my arm.

I am clapping!

b) Testing: The learner hears a new spoken description and must
chose its best match among a small set of demonstrated gesture.

Look at the circles I do.

?
The learner choses the
gesture best matching the
sentence.

Fig. 1. Illustration of the cross-modal classification task on which one learner presented in this article is tested. The transcriptions of the spoken utterances
are represented on the figure to illustrate the keyword semantics. However, in the experiments we present the learner does not observe these transcriptions.

dog is seen. Although only one multimodal concept is present
in each example, not all perceived elements are meaningful,
that is to say related to elements in other modalities. For
instance many words appear in spoken utterances that are
not semantically related to anything in other modalities. For
example in the sentence “Look at the circles I do”, only
the word ‘circle’ is related to the observed gesture. Similarly
several objects may appear in the visual scene while only
one is related to the subject of the sentence. In that setting,
denoted as cross-modal classification, we consider an evalu-
ation without requiring one modality to be symbolic. During
evaluation the learner observes a test example in only one
modality. It then has to chose between several other examples
in another modality, the one that best matches the test example.
For example the system hears a sentence talking about a dog
and has to chose between several pictures the one containing
a dog.

Interestingly this experiment is very similar to the one
performed by developmental psychologists to study the role
of various heuristics used by children for the acquisition
of words, including cross-situational information, as in the
works from ??. Unlike many approaches presented in previous
works on multimodal learning, we present an evaluation of the
performance of the learner that is not on a regular machine
learning classification task. Instead the learner is evaluated
on its ability to relate elements from distinct non-symbolic
modalities, similarly to how one would evaluate a children.
We also evaluate the emergence of words recognition as well
as the emergence of a representation of the semantic concepts.

C. Datasets

The following experiments involve three raw modalities:
motion, sound, and image.

1) Motions: In the experiments we use a dataset of chore-
ography motions recorded through a kinect device. More
precisely the dataset contains a total of 1100 records, each

Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5 Gesture 6

Fig. 2. The figure illustrates some of the primitive dance movements
demonstrated to the learner.

presenting one of 10 different gestures that are spanned over
one or two limbs. ?? and ?? illustrate the kind gestures
that compose the datasets. The data is publicly available and
presented in more details at http://flowers.inria.fr/choreo2.

2) Sound: The acoustic records used in the following
experiments are taken from the Caregiver dataset (?), provided
by the ACORNS project (?). It is composed of 1000 utterances
containing 13 keywords. Each utterance is spoken by 4 speak-
ers in English adult directed speech. In the experiments we
only use utterances from one speaker. An example of sentences
used in the dataset is Angus is lazy today. where the keyword is
Angus. Other examples of transcriptions from utterances from
the dataset are given in ??.

We take a bath
To put it in the bath isn’t funny either

The shoe is a symbol
Now mummy is losing her patience

Daddy comes closer
Angus takes off her shoe

Daddy never calls
She sits on a nappy

Now everybody is in the car
Where is the nappy

TABLE I
TRANSCRIPTIONS FROM TEN RANDOM EXAMPLES FROM THE ACORNS
CAREGIVER DATASET FROM ?. KEYWORDS ARE IDENTIFIED IN BOLD

FONT.

3) Image and video: Pictures used in the experiments were
acquired as frames from an interaction with an iCub robot,

http://flowers.inria.fr/choreo2
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Fig. 3. Example frames from the image dataset. This frames feature the
following objects: blue whale, yellow car, teddy bear, squirrel, and mouse.

through an RGBD sensor (red, green, and blue camera coupled
with a depth sensor). The acquisition was performed and is
described in more details by ?. Each image contains one
visual object and eventually the hand of the operator. In
the experiments we use images from a subset of 10 objects
each appearing in more than a thousand frames. During the
acquisition, the objects are moved and rotated. Hence they
are presented from distinct points of view and they may be
partially cluttered by the hand of the operator. Examples of
frames from the dataset are presented in ??.

III. METHODS

A. The MCA-NMF model

This section presents the algorithmic tools behind MCA-
NMF. They are based on the nonnegative matrix factorization
algorithm presented by ??, that we use in a very similar way
than in the experiments presented by ???.

The first part of this section presents the learning of a
multimodal dictionary; it is then explained how the learned
dictionary provides a representation of data that is not bound
to any modality; in the following this representation is referred
to as the learner’s internal representation of data. Finally we
explain how the learner can transform data from one or several
modalities to an internal representation or to an expected
representation in unobserved modalities.

In the following we assume that input from the modalities
of perception consist in a set of samples, each of which
is represented by a nonnegative vector. ?? details how we
obtain these representations. We consider a setting in which the
learner observes samples in several modalities. For example,
the system visually observes objects while hearing a spoken
description of the scene. We represent the perception of the
samples in each modality by a vector va, where a denotes
the modality (for example the system observes the objects as
vimage and the sound description as vsound ). Details about
such representations for the modalities used in the experiments
are given in ??.

1) Learning a dictionary of multimodal components: We
call components primitive elements that are mixed together
into observations, in the same way that phonemes combine
together into a word or a sentence. Compared to the common
context of clustering, this notion of component is more gen-
eral: observations are mixtures of several components at the
same time, instead of being just a noisy observation of one
centroid.

The learner implemented by MCA-NMF builds a dictionary
of multimodal components according to the following model:
it searches k components, each represented by a vector wj (j

from 1 to k), such that each observed example vi verifies:

vi ≃
k

j=1

hj
iw

j (1)

where hj
i are coefficients and ≃ denotes a notion of similarity

between matrices that is defined below. This is equivalent to
clustering when the wj are the centroids and for each i only
one hj

i is nonzero and equals 1. We consider a more general
case where wj and hj

i are only constrained to be nonnegative.
In the following, the set of n examples is represented by

a matrix V of shape d × n (each example is a column of
V ), the set of components by a matrix W of shape d × k,
called dictionary, and the coefficients by a matrix H of shape
k×n. The previous equation, that models the objective of our
learner, can thus be re-written for all observations as:

V ≃W ·H (2)

In order to fully define the reconstruction error between V
and W ·H , we use a variant of the Kullback-Leibler divergence
often called generalized Kullback-Leibler or I-divergence. The
Kullback-Leibler divergence is originally an information the-
oretic measure of similarity between probability distributions.
The I-divergence is defined, for two matrices A and B of same
shape, as DI (A∥B) given by equation (??).

DI (A∥B) =

d
i=1

n
j=1


Ai,j ln


Ai,j

Bi,j


−Ai,j +Bi,j


(3)

In this paper in order to minimize DI(V ||W ·H), we use the
algorithm, based on multiplicative updates of W and H , that
was originally presented in Lee and Seung’s paper ?. This
algorithm consists in alternating the two update steps from
equation (??) where ⊛ and / denote Hadamard’s (coefficient-
wise) product and division on matrices.

H ← H ⊛
WT V

W ·H
WT · 1

W ←W ⊛

V

W ·H
HT

1 ·HT
(4)

2) NMF to learn mappings between modalities: Previous
section explains how, for a given set of observations from
several modalities that is represented by a matrix V , the
NMF algorithm can learn a dictionary W and a coefficient H
matrices such that training examples are well approximated by
the product W ·H .

We actually consider the case of data coming from several
modalities (three in the example). More precisely we assume
the data matrix V is composed of column vectors v such that:

v =

 vmod1

vmod2

vmod3

 and thus V =

Vmod1

Vmod2

Vmod3

 .

The minimization of the I divergence induces a trade-
off between error in one modality relatively to others. In
order for the error in each modality to be treated on a fair
level by the algorithm it is important that the average values
in the representations are of similar magnitude. It can be
easily obtained by normalizing data in each modality. In the
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following experiment data from each modality is normalized
according to its average 1-norm.

Since the observations, that is to say the columns of V , are
composed of several modalities, the dictionary W also split
into several parts each corresponding to one modality. In other
words each components can be seen as the concatenation of
several parts: one for each modality. For example if the data is
composed of three modalities: mod1, mod2, and mod3, there
exist matrices Wmod1 , Wmod2 , and Wmod3 such that:

W =

Wmod1

Wmod2

Wmod3

 .

In the following we interpret the columns of the matrix
H , as an internal representation of the data by the learner.
For example, an internal representation h is induced by an
observation in modality one such that vmod1 = Wmod1 · h, or
one in both modalities one and three by:

vmod1

vmod3


=


Wmod1

Wmod3


· h.

Interestingly, it is possible to use the learned dictionary
to compute an internal representation of an example, even if
the example is only observed in a subset of the modalities.
Given an example observed only in one modality, vmod1 , one
can search for an h such that vmod1 is well approximated as
Wmod1 · h. More precisely this is equivalent to finding an h
solution of:

argmin
h

DI(vmod1 ,Wmod1 · h) (5)

h

vmod1 vmod2

argmin
h

DI(vmod1 ,Wmod1 · h)
Wmod2 · h

Actual perception Expected perception

Internal representation

Fig. 4. Once the system has learnt the dictionary (Wmod1 and Wmod2 ), given
an observation vmod1 in one modality it can reconstruct the corresponding
internal representation as well as the expected perception in another modality.

The NMF algorithm used in these experiments actually
alternates steps minimizing DI(V ||W ·H) with respect to W
and H . Solving ?? is equivalent to the NMF problem with
respect to H only; therefore, it can be obtained with the same
algorithm, but only using the steps that update H . In theory
this approach scales to any number of modalities although the
experiments presented here only test it on numbers from two
to four.

Finally it is also possible to reconstruct a representation
of the data that the system would expect in a modality, given

observations in other modalities. For that, from an observation
featuring a subset of the modalities, the system fits an internal
representation h using the method described previously. Then
it can reconstruct the expected representation in an unobserved
modality (for example the third modality, mod3 ) by computing
the product Wmod3 · h. This forms a framework, illustrated
in ??, that uses a learned multimodal dictionary to transform
data from modalities to internal representations or expected
data in other modalities. It enables a large set of experiments
as illustrated in the following.

3) Cross-modal classification without symbols: The system
is trained on various combinations of either two or three
modalities. The modalities might be denoted as Motion or
M, Sound or S, and Image or I. After being exposed to a
set of training multimodal examples, the system is tested as
follows: it observes a new example, called test example in
a subset of its modalities and has to chose the best match
among several examples observed in other modalities, which
are denoted as reference examples. An illustration of that
process is given by ??. For example, the system is trained
on sound and image and tested by hearing a sentence (the
test example) and having to chose among a set of images (the
reference examples) the one that is best described by the heard
sentence. Another possibility is to train the system on motions,
sounds, and images, and test it on its ability to chose from
several sentences the one that best describes a pair of a motion
and an image that it observes. We denote such settings by the
notation: M1 → M2, where M1 represents the modality or
modalities in which the test example is observed, called test
modalities, and M2 the modality or modalities, denoted as
reference modalities, in which a best matching example must
be chosen among a set of reference examples. For example
hearing a sentence and choosing the best matching object from
images is denoted by Sound→ Image or S→ I. Viewing an
object and a gesture and finding the best matching sentence
amongst examples is denoted by M, I→ S. The testing process
is illustrated in ??.

vM1 v
(2)
M2

v
(1)
M2

v
(3)
M2

M2M1

Test modality Reference modality

Reference examplesTest example

Same semantic class as
test example.

Different semantic class.

Different semantic class.

chose best match

Fig. 5. The learner is tested on its ability to relate an observation of a test
example in one modality to the right reference example in another modality.

?? explains how to use NMF on multimodal data, to learn
a dictionary and the associated internal representation and
finally how to transform data either from one modality to
another, or from a modality to the internal representation (see
also ??). We use that mechanism as a basis to implement
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a classification behavior for the learner. More precisely this
refers to the ‘chose best match’ operation illustrated in ??.
In particular the issue is that the data to compare, that is
representations of test and reference examples, are of different
natures. Because it comes from distinct modalities, we use
the ability of the learner to convert perception to its internal
representation as well as to other modalities to achieve that
behavior. To perform the comparison the MCA-NMF system
can either:

• compute an internal representation of the test example,
compute internal representations of the reference exam-
ples, and then compare these internal representations.

h
h(1)

h(2)

vtest

v
(1)
ref v

(2)
ref

Internal coefficients

Test modality

Reference modality

compare

compare

• compute an internal representation of the test example,
use it to generate an expected representation in the refer-
ence modality, and compare it to the reference examples.

h

vtest

vref

v
(1)
ref

v
(2)
ref

Internal coefficients

Test modality

Reference modalitycompare

compare

• compute internal representations of reference examples,
for each of them compute an expected representation in
the test modality, and compare them to the test example.

vtest
v
(1)
test

v
(2)
test

h(1) h(2)

v
(1)
ref v

(2)
ref

Internal coefficients

Test modality

Reference modality

compare

compare

The choice of one of these methods is referred as the modality
of comparison. This is however not sufficient to fully define the
system: in order to be able to chose a best matching reference
example, the system needs a metric to perform the comparison.
Several alternative metric could be chosen to perform the
comparison. More importantly, the choice of the metric and its
efficiency is highly dependant on the modality of comparison,
as shown by the following results. We considered the following
common metrics.

• Euclidean distance
• Kullback-Leibler or I-divergence The Kullback-Leibler

and I-divergences are introduced by ??. In the following
we denote its usage as I-divergence (I-div.). By default the

divergence from the test example to a reference example
is computed; however since it is not symmetrical, we
also experimented with the reversed divergence (that is
to say the divergence from a reference example to the
test example) and a symmetrized divergence obtained as:
Dsym(x∥y) = 1

2


D(x∥y) +D(y∥x)


. None of the three

approaches was systematically better in our experimenta-
tion.

• Cosine similarity1 The cosine similarity is no a metric
but can be used to compare vectors; it ranges between −1
and 1 and the biggest the value is, the most similar the
vectors are. It is defined for two vectors x and y ∈ Rd, ·
denoting the scalar product, as:

cosine similarity(x, y) =
x · y
∥x∥∥y∥

Other choices are possible. In our experiments, many
modalities are represented by histograms, or concatenation of
histograms, that are of high dimension. In these modalities the
Euclidean norm is not necessary meaningful, this is why we
use other measures of similarity such as the I-divergence and
the cosine similarity.

In the following, MCA-NMF is evaluated on its recognition
success rate. It is defined as the proportion of correct recogni-
tion by the system: a recognition is correct when the system
choses a reference example matching semantic concept from
the test example.

B. Signal representation

Each of the three raw modalities used in the experiments is
represented in a specific way. However all the representations
are similar in their approach and share an important property
that ?? describes.

1) Motions : In order to represent the recorded motion
as vectors of nonnegative values in a way that makes it
possible to use the algorithm presented in previous section we
introduced the histograms of motion velocity representation
in ?. In particular this representation consists in a simple
histogram based representation of motion that can be seen as
a rough approximation of the phase diagram of the dynamics
of one body joint.

A kinect device captures the motions of a human demon-
strator as trajectories in angle and angle velocity spaces of
several articulations of the human body. Each trajectory on a
specific body articulation (or degree of freedom) is considered
separately and the entire sequence of angles and velocities is
transformed into a histogram, represented by a fixed length
non-negative vector. Vectors obtained for each degree of
freedom are then concatenated into a larger vector as illustrates
??. The device only captures angles and delayed velocities are
computed to achieve better robustness to noise in the angle
sequences. More precisely ẋt = xt−xt−d is used to compute
the velocities, instead of being restrained to the case where
d = 1.

In ?, we explore and compare various alternative approaches
to transform angles and velocities sequences into histograms.

1http://en.wikipedia.org/wiki/Cosine similarity

http://en.wikipedia.org/wiki/Cosine_similarity
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Fig. 6. Human motions are abstracted as concatenated histograms on joint
position and velocities. In the final histograms, frequencies are represented
through colors, x and y axis correspond respectively to values of angles and
velocities. (Best seen in color)

In the following experiments we use two-dimensional angle-
velocity histograms that is to say histograms built on the joint
space of angle and velocity. Furthermore we build histograms
over a vector quantization that is an adaptive binning process
using a k-means algorithm.

Representing motion data by separate histograms on each
degree of freedom leads to two approximations: 1) for a given
measurement in the trajectory, information about dependency
between different degrees of freedom is dropped; 2) the
sequential information between measures for a given degree of
freedom is dropped. These simplifications are actually similar
to successful ones from other fields, some of which we use
for the sound and visual modalities as detailed further. Indeed
? have demonstrated that, even if sequential information
may appear necessary in language, and especially in speech
utterances, very good word discovery can be achieved without
considering this sequential information. Both in text classi-
fication and in computer vision bag-of-words techniques also
achieve good performances by dropping positional information
of extracted local features (??). Finally using histograms built
on joint angle positions and velocities is similar to represent-
ing transitions in angle space. By representing the sequence
through its transition we approximate it by a Markovian
process. Such an approximation is quite common in the gesture
recognition and motion planning literature (??).

2) Sound: In the following experiments we use the same
representation of sound as in the works of ???. Histograms of
acoustic co-occurrences (HAC) were introduced as a represen-
tation of sound that is based on acoustic events. Similarly to
the motion representation we have presented, it discards most
of the sequential information of the acoustic events; it however
consider co-occurrences of pairs of acoustic events and uses
a static approach to codebook construction.

The outline of the transformation from raw sound to HAC
representation is given in ??. The main steps are explained in

Time signal

Seq. of windows

Seq. of MFCC
vectors

Seq. of acoustic
events

HAC

Windowing

MFCC

Clustering
(codebook)

Count of
co-occurrences

Fig. 7. Sequence of transformations from raw (time sequence) acoustic signal
to histograms of acoustic co-occurrence (HAC) representation.

more details below. The perception mechanism first segments
the acoustic signal into a sequence of short time windows;
it then computes Mel-frequency cepstral coefficients (MFCC)
for each window. This transforms the original signal into a
sequence of MFCC vectors. Additionally we consider dynamic
information on top of the sequence of MFCC vectors of
dimension 22; discrete derivatives are computed as defined by
? and denoted by the ∆ operator to form the ∆MFCC and
∆∆MFCC. This transformation is analogous to the delayed
velocities introduced previously to represent motions.

Then, the system computes three codebooks, for basic
MFCC vectors and their ∆ and ∆∆ transformations, with
a k-means algorithm, on a dataset of spoken language, as
described in ?. Following the implementation of ?, the sizes
of the codebooks are k = 150 for MFCC vectors and ∆ and
k = 100 for the ∆∆ vectors. The codebooks are used to
convert the three sequences of MFCC vectors and their ∆ and
∆∆ transformations into a sequence of acoustic events: each
cluster, that is to say each elements of a codebook defines
an acoustic event; each time window is thus transformed into
three discrete events corresponding to the clusters in which
fall the three vectors associated to that time window.

The last step consists in removing most of the temporal
information by building histograms of event occurrences and
co-occurrences. This process happens on top of the three
sequences of discrete acoustic events obtained from vector
quantization. More precisely, co-occurrence histograms are
simply histograms of the successive occurrences of pairs of
events. What is denoted as HAC representation in the follow-
ing is actually the concatenation of co-occurrence histograms
for each one of the events categories, that is to say MFCC,
∆MFCC, and ∆∆MFCC events. The final dimensionality
of the representation is more than 100, 000; more detail on
the HAC representation is given by ???.

3) Image and video: The visual frame are transformed with
the same tools as in ?. More precisely, two types of local
features are extracted from the pictures: SURF descriptors (?)
and HSV (hue, saturation, value) of superpixels.

As described by (?), SURF features are descriptors com-
puted around points of interest in an image. They enable to
transform an entire image into a set of small descriptors that
are invariant to change in scale and rotation of the image. To
obtain the HSV descriptors, areas with relatively homogeneous
colors are detected into what is called superpixels; then each
area is represented as the triplet of its hue, saturation and
value.
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Both methods leads to the representation of an image as
a set of local descriptors. Then the descriptors of both type
are quantized by incrementally learning growing dictionaries
of features. This algorithm used is a variant of k-means, very
similar to the one presented in ? and for sound in ?. This
process is the analogous to the grouping of MFCC vectors
into acoustic events described in previous section.

Finally the occurrences of local event are counted and
summarized in a histogram, that is a nonnegative vector of
dimensionality around 50, 000.

4) Additive property: Importantly, the previous representa-
tions have a common additive property, that directly comes
from the use of histograms of local events. For example in
the acoustic modality, if two words which HAC representation
are w1 and w2 are concatenated into an utterance, which HAC
representation is denoted as s, then

s ≃ λw1 + (1− λ)w2

where 0 < λ < 1. The approximation ignores the events
coming from the border between the words. This important
property transforms the sequencing operation into a convex
combination. It therefore transforms a sentence into a mixture
of its words, and similarly a word into a mixture of phonemes.
Similarly the juxtaposition of several parts of an object is
represented as the convex combination of the representations
of each part. Several gestures combined in a motion are also
approximately represented as the convex combination of the
representations of the gestures.

IV. EXPERIMENTS

We consider semantic associations between elements of the
acoustic, visual, and motion modalities; more precisely we
define a semantics as an artificial mapping between acoustic
words, visual objects, and gestures. An example of such
a mapping is given in ??. Each triplet of word, gesture,
object forms a semantic concept. The data used to train the
MCA-NMF model is composed of sentences, motions, and
images; each sentence contains one of the keywords, each
motion features one gesture, each image an object. Finally
the gesture, the word, and the object from an example belong
to the same semantic concept, which implements the cross-
situational manifestation of the semantics.

In the testing phase of the following experiments the system
is always presented with one reference example per class. We
consider 10 semantic classes; when not specified otherwise,
we use a default value of k = 50 as the number of elements
in the dictionary learnt by the NMF algorithm with 50 itera-
tions, although a number of 10 is generally already close to
convergence.

A. Motion and spoken utterances

The first experiment compares the various evaluation meth-
ods, that is the alternative modalities of comparison and
metrics. It also validates the capabilities of the MCA-NMF
learner to acquire multimodal concepts that appear in a cross-
situational way in training data. ?? presents classification

Keyword Object Motion

Limb(s) Description

shoe blue octopus both legs squat
nappy teddy bear walk
book pink octopus right leg raise heel toward left

knee
daddy yellow car both arms clap
mummy blue whale mimic paddling left
Angus blue-eyes-

green-yellow
right arm mimic punching

bath orange fish starts horizontal and
goes from side to front

bottle squirrel left arm starts horizontal, fore-
arm goes down to 90◦

telephone mouse waving arm
car cube hello sign

TABLE II
LIST OF ASSOCIATIONS BETWEEN KEYWORDS FROM THE ACOUSTIC

DATASET (NAMES) AND GESTURES FROM THE MOTION DATASET. THE
LIMBS ON WHICH THE MOTIONS OCCUR ARE ALSO MENTIONED.

Modality Success rate

Test Reference Comparison I-div. Euclidean Cosine

Sound Motion Internal 0.608 0.612 0.646
Motion 0.552 0.379 0.444
Sound 0.238 0.126 0.208

Motion Sound Internal 0.610 0.704 0.830
Sound 0.106 0.090 0.186
Motion 0.676 0.642 0.749

TABLE III
SUCCESS RATES OF RECOGNITION OF THE RIGHT REFERENCE EXAMPLE

FROM A TEST EXAMPLE. THE VALUES ARE GIVEN FOR MANY CHOICES OF
THE REFERENCE TEST AND COMPARISON MODALITIES AND VARIOUS

MEASURES OF SIMILARITY. THE RESULTS ARE OBTAINED BY AVERAGING
ON A TEN FOLD CROSS-VALIDATION, BASELINE RANDOM IS IN THAT CASE

0.11.

success rate for various combinations of comparison modal-
ities and metrics. These results demonstrate that the system
is capable of learning aspects of the semantic associations.
If the system is trained on a dataset where no semantic
association exists between the two modalities (such a dataset
can be obtained by choosing a random motion and a random
utterance for each demonstration), it generally scores around
0.112. Additionally the result show for example that the
sound modality, mainly because of its very high dimension,
is not a good choice for the comparison, specially when the
comparison is performed with the Euclidean metric. Indeed
the choice of the metric to use is highly dependant on the
nature of the data in the modality; therefore, using the internal
representation is a way to only chose one metric. Therefore
the following experiments focus on comparison on the internal
representation, using cosine similarity as a metrics. The main
interest of proceeding that way is that the comparison is the
same, regardless of what the test and reference modalities are.

?? presents very similar results in the case were symbolic
labels are included in the training data. Indeed one could be
expect that adding symbols to the training data would increase
its structure and thus ease the learning of the concepts in

2This is not 0.1 because the distribution of sound examples from the
Caregiver dataset is not exactly uniform.
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Modality Success rate

Test Reference Comparison I-div. Euclidean Cosine

Sound Motion Internal 0.387 0.699 0.721
Motion 0.543 0.261 0.424
Sound 0.136 0.089 0.131

Motion Sound Internal 0.573 0.620 0.702
Sound 0.114 0.090 0.122
Motion 0.519 0.469 0.552

TABLE IV
THERE IS NO SIGNIFICANT IMPROVEMENT OF THE RECOGNITION RATE
WHEN UNAMBIGUOUS SYMBOLS ARE ADDED TO THE TRAINING DATA.

THE TABLE REPRESENTS THE SAME SUCCESS RATES AS PREVIOUSLY (SEE
??) BUT WITH A LEARNER THAT OBSERVED SYMBOLIC LABELS

REPRESENTING THE SEMANTIC CLASSES DURING TRAINING. THE
RESULTS ARE OBTAINED BY AVERAGING ON A TEN FOLD

CROSS-VALIDATION, BASELINE RANDOM IS IN THAT CASE 0.11.

comparison to purely non-symbolic data. The labels are in-
cluded similarly to the experiments from ??: the label of each
example is transformed to a vector of 10 binary values with
zeros everywhere except for a one at the index corresponding
to the label. This binary vector is concatenated to the vector
representing the example. Thus this setup is equivalent to
adding a third modality, which contains unambiguous symbols,
in order to improve the learning. The symbols are said to be
unambiguous in comparison to utterances that contains several
sounds where only some sequences of specific sounds form
words, and generally only one word per sentence is relevant.
The results from ?? illustrate the fact that the system does
not clearly take advantage of this additional information. An
interpretation of these results is that the system is already
capable of dealing with the ambiguity and is not helped by
such additional symbolic information. However the relevance
of such comments is limited to the current algorithm and
implementation of MCA-NMF.

B. Sound, motion, and image
The experiments in this section compares the performance

of learners trained on various combinations of two or three
modalities among sound, motion and images. In particular it
explores the impact of adding modalities during training that
do not occur during testing. In the following we only use
the comparison on internal representation. The main interest
of proceeding that way is that the comparison is the same,
regardless of what the test and reference modalities are. Re-
sults are presented together with box plots corresponding to 20
repetitions of the experiment with random label associations,
test set, train set, and reference examples.

More precisely several setup are presented, including learn-
ing from motion and sound, as well as from image and
sound, as previously, but also learning from motion and image,
and finally learning from the three modalities at the same
time. For each of these choices of learning modalities, several
setup are possible for the test phase, specially when the three
modalities are present during training: these include testing
on the recognition of one modality from another (for example
Image → Sound) but also from two modalities to another
(for example Image,Motion → Sound), or conversely one
modality to two (as in Motion→ Sound, Image).

?? compares various setup of type A → B, for both for
the case where A and B are the only modalities present in
the training and the case and the case where a third modality
was also present during training. The results demonstrate
that MCA-NMF is capable of learning the semantic concepts
event when more than two modalities are present. There is
no significant difference between the cases of two and three
modalities: the system neither benefit noticeably from the third
modality nor does it suffer from the increased dimensionality
of the data. However, since the number k of elements in the
NMF dictionary is fixed, the results could come from the
fact that when the system is trained on three modalities, the
dimension of the dictionary becomes insufficient to encode
non-meaningful aspects of the three modalities. Therefore ??
present the same experiment for various values of k in order to
interpret more precisely the previous result. The comparison
confirms the fact that the system mainly behaves similarly with
two or three modalities.
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Fig. 8. An additional modality during training does not significantly im-
pact result. The box plot represent classification success rates for various
experiments where two or three modalities are used for training. Each plot
corresponds to the use of a subset of modalities during training: the first
three plots use two modalities and the last one use three modalities. Each
plot contains boxes representing the average success as well as quantiles and
extreme values through cross-validation for various testing setups, using only
two modalities. There are only two testing setups when only two modalities
are used for training, and six when three modalities are used for training.

?? present the results on many possible test setups int the
case where all modalities are present during training. The
results demonstrate that the system is capable of using infor-
mation contained in more than one modality in the test or refer-
ence example. Although the results are slightly better when us-
ing more modalities as input (as in Motion, Image→ Sound
in comparison to Motion→ Sound or Image→ Sound), the
improvement in performance is not really significant in the
experiment.

A last experiment leaves the non-symbolic setup considered
previously, in order to compare properties of MCA-NMF with
results obtained in previous works, regular classification with
the symbolic modality. For example ? present a learner that is
trained on multimodal examples of phonemes, either perceived
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value of the number k of elements in the NMF dictionary. The plots
demonstrate that the success rate is quite stable above a minimum value of
k.
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Fig. 10. MCA-NMF is capable of relating information from many modalities
to one. There is however no substantial improvement in performance from
the use of two modalities as input for the recognition. The figure presents
box plots of classification success rates for various experiments where three
modalities are used for training. There are boxes representing the average
success as well as quantiles and extreme values through cross-validation for
various testing setups.

through their acoustic manifestation or through the motions
of the lips that pronounce them. In their experiment they
show that the learner can benefit the observation of several
modalities and improve its recognition success in comparison
to the case where only one modality is observed.

We consider a regular classification setup, similar to the
one presented by ??. More precisely we introduce a symbolic
modality represented by a binary vector as already explained
in ??. The system is trained by observing examples both in
the symbolic modality and in one or several other modalities.
Then results are compared between various testing setups to

explore the ability of the learner to improve its classification
performance in the case where several modalities are observed.
Such an experiment is actually a classification task with
multimodal input unified through sensor fusion.

?? present the results where the sound and motion modal-
ities are combined to a symbolic modality, denoted as L.
Interestingly training with the two modalities (sound and
motion) does not significantly change the performance of the
learner, when tested on sound, motion or both. In that case
the benefit of having two non-symbolic modalities is not an
increase in performance, but rather that the same learner can
use either acoustic perception or motion perception to classify
an example.

Training Testing Success rates

S + L S → L 0.916± 0.034
M+ L M → L 0.906± 0.052

S +M+ L S → L 0.896± 0.043
S +M+ L M → L 0.910± 0.054
S +M+ L S +M → L 0.917± 0.055

TABLE V
SUCCESS RATE FOR THE LABEL RECOGNITION EXPERIMENT. IN THIS
EXPERIMENT AN ADDITIONAL MODALITY CONTAINING LABELS, L, IS

CONSIDERED. THE RESULTS ARE COMPUTED ON AVERAGE FOR A
CROSS-VALIDATION OF THE TRAIN AND TEST SETS; STANDARD

DEVIATIONS ARE ALSO GIVEN.

C. Word acquisition and recognition

The previous experiments demonstrate that the artificial
learner we present is capable of learning the semantic con-
nection between utterances and the objects or motions they
describe. The meaning of the sentences is modelled in our
experiment by the presence of a keyword; more precisely
the association between sentences and images of objects
or motions are based on the presence of keywords in the
utterances. However the learner is not aware of the fact that
all the meaning of the sentence is actually localized in one
word; instead it only exploits cross-situational learning to
discover relations between acoustic and, say, visual features.
The task solved by the learner actually only involve holistic
understanding and classification of the sentences. Therefore it
is not completely clear what information the learner actually
exploits in the sentence and whether the learner discovers
word-like units from the acoustic stream. Indeed the previous
experiments only demonstrate that the learner achieves teleo-
logical understanding of the sentences; however the question
remains to know if it starts to understand compositionally the
sentences. We further explore this question in the experiment
presented in ??, that can be seen as extending the one
presented by ?, 4.C to the multimodal setup. The system’s
behavior also display that the semantic classes have been
encoded in its perception but not how it is encoded. Hence
?? takes a further look at this question.

1) Words’ location in sentences: The experiment presented
in this section explores whether the meaning of sentences is
localized around the keyword that bears this meaning. In this
section the system is trained as in the previous experiments but
we change the evaluation procedure. The system does not have
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to relate full utterances to visual objects any more. Instead we
extract sliding windows of a given length from the utterances
from the test set. The sliding windows extraction process
actually takes two parameters: the width of the windows and
the shift between two windows. In the following we use sliding
windows of width 0.5 s with a 0.05 s shift. Once a sliding
window has been extracted, it is represented using similar
features than regular sound, that is that the subsequence of
sound is extracted and converted to the HAC representation.
Then each sound window is compared by the system to several
examples in another modality, here images of objects. By
evaluating the system on small parts of utterance we can
visualize which part of sentences are associated with each
object, that is with each semantic underlying concept.

In ??, we present five typical behaviors of MCA-NMF on
test sentences. The example have been chosen to illustrates
these typical situations but do not correspond to what four
random examples would look like. All these examples are
taken from the same learner.

The first example (top left), corresponding to the sentence
‘The book is always nice.’, features a high similarity between
the book image and sound windows that intersect the location
of the word book in the sentence (between 0.8 and 1.0s).

In the second sentence (top right), the correct meaning is
guessed buy the system but it is not located specifically in
the sentence. Because the dataset used for training is rather
small in comparison to the variety of word combinations, many
non-keywords appears only or most often together with the
same keyword. In this case the word ‘join’ and the phrase
‘join us’ are always observed together with ‘daddy’, while
the occurrences of ‘does’ are more spread among the various
keywords. The grammar used to generate the utterances is
described quickly by ? and in more details by ?, chap. 2.
This situation is similar to the case of natural sentences
where contexts highly modify the distributions of words
and may explain why such de-localization of the meaning
of sentences. In particular this provides an example where
the system achieves teleological understanding, which here
means guessing the general meaning of a sentence, without
compositional understanding.

The third sentence (bottom left) is very specific because it is
one of the rare ambiguous sentences of the dataset. Indeed the
sentence ‘Angus takes off his shoe.’ features both the keyword
‘Angus’ and the keyword ‘shoe’. Furthermore the learner is
capable in this sentence to recognize both words and localize
them roughly at the start and end of the utterance.

Finally, the fourth sentence illustrates the many cases where
there are false positives for other meanings or (not in the
example) no clear meaning is found by the learner in the
sentence.

2) Emergence of concepts: In previous experiments we
evaluated the learner on concrete tasks that emphasis its ability
to relate information from one modality to another. While this
demonstrates that the internal representation built by MCA-
NMF encodes these concepts, it is however not trivial how it
encodes information. In this section we explore the possibility
that at least some components of the dictionary matrix are
more specialized into some of the semantic classes.

In order to investigate that aspect we quantified the mutual
information between the semantic concepts and the coefficients
of the internal representations of samples featuring the con-
cepts. For each semantic concept l and sample i we consider
the random variables Xl such that Xi

l = 1 if and only if
the concept l appears in sample i. For each dimension j
of the internal representation and each sample i we define
the random variable Yj = hi

j . We then assume that (Xi
l )i

are independent and identically distributed, as well as the
(Y i

j )i. In the following we quantify the dependency between
these two variables by looking at the mutual information
between them. In information theory, the mutual information
I is an information theoretic measure defined for two random
variables X and Y as “the relative entropy [or Kullback-
Leibler divergence] between the joint distribution [p(x, y)] and
the product distribution p(x)p(y)” by ?.

I(X;Y ) = DKL (p(x, y)∥p(x)p(y))

The Xl variables takes binary values but the Yj are continuous.
Therefore we use a quantization of each coefficients of h
into 10 discrete values in order to estimate the probability
distributions p(Xl), p(Yj), and p(Xl, Yj) by using the samples
for 1 ≤ i ≤ N . Then we compute the mutual information
between the discrete, approximated, probability distributions.
From this process we obtain a value I(Xl;Yj) for each pair
(l, j) that quantifies how much information the coefficient j
captures from the concept l.

Fig. 12. Some components are more associated with some semantic labels.
The figure represents the mutual information between (vertically) semantic
classes (that are not observed by the learner) and (horizontally) each internal
coefficient used by the learner to represent pairs of motion demonstration and
acoustic descriptions from the training set. A value of k = 15 was used in
this experiment.

?? represents, for each semantic class and each coefficient
of the internal representation, the mutual information between
the belonging of examples to that class and the value of
a given coefficient of the internal representations of these
examples. To emphasis the specialisation of some internal
coefficients we re-ordered internal coefficients so that classes
and coefficients that have high mutual information are on the
diagonal. More precisely, the best alignment was computed
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Fig. 11. These examples illustrates various distributions of meaning in utterances, in the learner’s point of view. More precisely the horizontal axis represents
time: the dots correspond to the mean time of sound windows, which width are materialized by an horizontal grey bar. Thus each plot represents the similarity
between the small sound windows and various pictures which semantic class correspond to colors. The four sentences were chosen because they illustrate
typical situations. Each record of utterance starts and ends with approximately half a second of silence. Importantly the similarities are taken between sound
and images, that is, when a chunk of sound is similar to ‘mummy’, it actually means that the learner’s associates it strongly with an image of the object
representing the mummy concept. The location of key words, in grey areas, have been indicated by manually detecting their boundaries in the utterance.

by a Kuhn-Munkres algorithm (?) and we plotted first the
coefficients that are highly associated to one class and then
the one that are less meaningful. The figure shows that some
coefficients are highly specialized in one label. However, it
does not display a perfect one to one relationship between
labels and coefficients: the information about other labels
is spread over several coefficients, and some information is
also not clearly localized. For comparison with these results,
random labels with uniform probability and a deterministic
value of a coefficient knowing the label yields a mutual
information of approximately 0.325.

D. MCA-NMF implementation

The implementation of the MCA-NMF and the code used
in the experiments presented in this paper are available pub-
licly and openly (BSD license) on http://github.com/omangin/
multimodal. It consists in a set of tools that implement the
MCA-NMF system, including the NMF algorithm and code to
achieve multimodal learning with it, as well as the scripts that
corresponds to the experiments presented here and produce
their results. The code is meant for the reproduction of the
experiment we presented as well as for the development of
new experiments based on the same framework.

V. DISCUSSION AND PERSPECTIVE

In this paper we present MCA-NMF, a framework for
learning multimodal concepts from sensorimotor data, that is
based on the nonnegative matrix factorization. This algorithm
builds a compressed representation of the sensori signal, that
representation is used as an internal representation of the
multimodal input data.

The experiments demonstrates that this procedure is capable
of learning concepts from sub-symbolic input only. It can
overcome several forms of ambiguity such as discriminating
between relevant and non-relevant patterns to encode (for
example relevant and non-relevant words). It also discusses
the association between patterns from distinct modalities into
multimodal concepts.

We then explain how the structure learnt from the observa-
tion of full, unsegmented, sentences can be used to localize
a posteriori the semantics of the concepts into areas of the
sentences such as words. Finally the last experiment explores
how the system internally represent semantic classes. It shows
that constraining the representation to be highly compressed
leads to a relative specialisation of encoding units in semantic
concepts.

http://github.com/omangin/multimodal
http://github.com/omangin/multimodal
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A. Relation to previous work

Several previous works have addressed similar questions to
the ones discussed here. As detailed below, the main novelty
of our work consists in the facts that 1) we do not rely on
symbols for the learning or evaluation phases, 2) the utterances
are not segmented into words or phonemes using a priori or
expert knowledge, 3) more generally the acoustic modality
that contains language is treated symmetrically to the others
modalities, 4) the concepts co-organize across modalities, in
particular words and their semantics shapes each others.

In their seminal work, ?? introduce a learning architecture
called Cross-channel early lexical learning (CELL), together
with an example implementation, that demonstrates how the
problems of learning linguistic units, semantic categories, and
their relations (in the form of lexical units) can be achieved at
the same time. CELL involves three stages. It first segments
both linguistic information and contextual information, each
of which may come from several sensory channels, according
to saliency cues such as utterance boundaries or changes in
motions. In a second stage, a model of short term memory
filters pairs of recurrent co-occurring linguistic and contextual
events are filtered. Finally a clustering algorithm builds models
of linguistic units and semantic categories; they combine clus-
tering of similar language stimuli as well as contextual stimuli
and optimize the mutual information between language and
context. The pairs of linguistic units and semantic categories
with the highest mutual information are kept as lexical units,
that correspond to concepts. Thus, in comparison to MCA-
NMF, the CELL system first segments sentences in word-
like units and thus words and semantics concepts are first
formed independently and then matched, without modelling
co-organization of words and their meanings.

? have presented work addressing a similar problem but
focusing more precisely on user-centric and multimodal infor-
mation. They present a learning architecture that is capable of
forming semantic models of both actions and observed objects
by using unsupervised learning techniques. First, models of
actions are formed by fitting a mixture of hidden Markov
models on the observations and models of objects result
from an agglomerative clustering algorithm. The models of
objects and actions define concepts and together form the
contextual information. Then, this contextual information is
used to extract word-like units related to these concepts
from phoneme transcriptions of the recorded utterances. More
precisely longest common phonetic sequences are extracted
from all utterances related to the same object or action.
Then an alignment techniques, that comes from the field
of automatic translation, is used to form the lexical units
composed of words and concepts. This approach differs from
MCA-NMF since concepts are formed beforehand and the
model thus do not take into account the shaping of semantics
by the linguistic modality. Furthermore their model relies on
mechanisms specific for the linguistic modality.

In ? the studied language is related to an (object, action,
position) semantics which appears to be closely related to the
language grammar. More precisely a lexicon is built from data:
the lexicon actually represents a mixture of word and meaning

pairs, where meanings can either be objects or actions. Specific
probability models are implemented to represent the acoustic
modality as well as the modality of visual objects and the
one of visual actions. The number of elements in the lexicon
is automatically chosen in order to maximize the mutual
information between the speech and contextual modalities.
Because the acoustic pattern and object recognitions abilities
are separately acquired in a preliminary stage, this model
does not take into account mutual shaping of linguistic and
semantics patterns as MCA-NMF. It however features the
acquisition of a grammar of the language, learnt by identifying
in which order the linguistic elements corresponding to the
eventual object, action, and landmark appear.

? introduce a recurrent neural network architecture that
learns to relate a basic language to corresponding behaviors
of a robot. The system is capable of both understanding
the words composing the language, that in their experiment
are represented by symbols, and their composition, that is
to say the syntactic structure of the language. As already
mentioned in introduction, another aspect of learning action
related to language is explored by ? who demonstrates that
learning a compositional structure shared between action and
language can allow better generalization of the motor knowl-
edge. Furthermore ? have demonstrated that providing linguis-
tic instructions can facilitate the acquisition of a behavioral
skill, in comparison to pure motor learning. Although these
experiments are limited to symbolic language, they are good
illustrations of the implication of learning multimodal actions
and grammars.

In our previous work (?), we use the MCA-NMF framework
in a multi-label classification experiment. More precisely,
instead of observing several continuous modalities, the learner
observes human demonstrations of motions and a symbolic
linguistic modality. However each demonstration mixes several
motions together, forming a complex choreography. Each mo-
tion demonstration is thus described in the linguistic modality
by several symbols; in other word there is a joint grammar
between the motion and the symbolic modalities. In that
experiment, the MCA-NMF system learns the relation between
the symbols and the gestures. This relation is initially ambigu-
ous since the gestures are always observed mixed together
as well as the symbols that describe them. The experiment
then demonstrates that the learner is able to provide correct
linguistic descriptions of combinations of gestures that were
not observed during training. This result is thus an example
of joint grammar acquisition in two modalities, similar to the
ones from ???.

?? have presented a similar experiment where the contextual
modality is the one that is symbolic and the linguistic one is
continuous. Similarly ???? use the NMF, probabilistic latent
semantic association (PLSA), or deep Boltzmann machine
algorithms to learn from a continuous and a symbolic modality.
? have also used the NMF algorithm to learn from two
continuous modalities. Their model is very close to MCA-
NMF and directly inspired it; however they only evaluate it
on the reconstruction of a symbolic modality. An interesting
aspect of these approaches is that they all use feature learning
algorithms, that are some kind of unsupervised algorithms,
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instead of relying on explicit models of the lexical units and
their relations to language and context.

Another example of the use of feature learning techniques
is given by ? who also present an experiment based on
a similar multimodal setup. They introduce an architecture
based on sparse restricted Boltzmann machines that learns
from two continuous modalities: one is acoustic and the
other corresponds to the observation of the speaker’s lips.
They demonstrate how in certain conditions the algorithm
reproduces the McGurk effect. Their algorithm actually learns
a new representation of the input in an unsupervised setup
and is then evaluated combined with a standard supervised
classifier trained on top of this representation. Their work
can also be described as a sensor-level multimodal fusion:
several modalities are used to build a common representation
that is later used to solve a classification problem. Actually
multimodal fusion has already been used to improve super-
vised classification: ? discuss the use of both sensor-level
fusion and decision-level fusion for speech recognition. ?
also implement decision-level fusion and demonstrate that it
improves the recognition of objects. Although closely related
to the one of ? and similar to the one from ? the setting of
the last experiments we presented differs. Indeed, we do not
evaluate the learning through a standard classification task:
instead of testing the reconstruction of symbolic labels, the
system is tested on a behavior based classification task, as
encountered by children. We show with MCA-NMF that fitting
an explicit representation of a lexicon is not necessary to
produce behaviors that are considered on children as evidence
of the mastering of lexicons understanding. That aspect is
an important novelty in comparison of the aforementioned
previous work.

The interactions mechanism between the learning agent
implemented by MCA-NMF and its caregiver, who provides
the demonstration, actually shares many similarities with the
one from the talking heads experiment as described by ??.
More precisely the agent we present in this chapter plays the
role of the hearer from the talking heads, while the caregiver
takes the role of the speaker. There are however important
differences between our setup and the one from ?. First, there
is no turn in the role taken in our experiment: the learner
only plays the hearer and the caregiver only plays the speaker.
Importantly this means that the language is taught to the
learner by the caregiver, instead of evolving and emerging
from their interaction. Also, in our experiments, the naming
game, that consists for the hearer in guessing which object the
speaker is talking about, is only played during the evaluation
stage. During the training the learner passively observes the
caregiver teaching and does not receive any other feedback.
However, this makes MCA-NMF an alternate implementation
of a naming game hearer, that does not rely on the success
of the naming to update its knowledge, but rather uses cross-
modal information to do so. This means here that the cross-
modal heuristics may be an alternative to feedback on the
game success.

B. Interpretations and limitations

In this paper we demonstrate, with MCA-NMF, the pos-
sibility of multimodal learning from a flow of non-symbolic
sensory input by using variations of the non-negative matrix
factorization. The idea we present are however not restricted to
this specific algorithm and its implementation. For examples
algorithms based on deep belief networks have been shown
to perform well on problems similar to the one addressed
here, though only on symbolic language, by ?. It is thus an
interesting subject for future work to investigate the behavior
of these algorithms or other feature learning algorithms on
setups similar to this one.

In particular we propose a focus shift in the notion of
perceptual decomposition. Regarding the structure of speech,
we do not consider a preliminary segmentation of utterances
into words in order to learn their meaning. Similarly, in our
previous work on learning composite choreographies (?), the
MCA-NMF framework does not target the representation of
individual gestures. Instead, it builds a representation of full
body motions and simultaneously learns its correspondence to
a linguistic modality. This approach achieves the recognition
of composed gestures thanks to a key property: the internal
representation and the mapping between the internal repre-
sentation and the modalities are compatible with the target
structure. Furthermore the strong structure in the symbolic
modality that describes the motions is sufficient to shape the
learnt representation of motions so that it encodes the same
structure. Here we demonstrate similarly that the structure
in a non-symbolic modality containing images of objects is
sufficient to to shape the perception of speech so toward rec-
ognizing individual words that correspond to the objects. Thus,
in both the speech and motion cases the explicit representation
of combination is not set as a feature of the algorithm. It is
instead induced by the data.

This idea is also largely in line with the position that ?
expose: accuracy of decomposition is often a complicated
objective to target at first. In contrast, simpler goals, such as
understanding the broad meaning of a sentence, can first be
achieved that later enable to improve on the decomposition
capabilities. Results from ?? are actually in line with this per-
spective. This is also coherent with the fact that the apparent
evidence of decomposition in perception is often illusory as
revealed by many perceptual experiments ???.

In terms of learning the grammars of motion and language,
a top down approach would consist in a strong a priori on
the structure to be learned that the algorithms must encode.
The question would be: ‘What is the best algorithm to learn
or encode the grammar from the data?’ Instead we propose
to explore another question: ‘Which learning mechanism can
lead to the emergence of which grammatical structure?’ In
MCA-NMF, the operations of word or image juxtaposition
or motion combination are translated into nonnegative linear
combinations of words or images representations. The results
from ? demonstrate that this property enables MCA-NMF to
learn the grammar of simultaneous motion. However, this form
of grammar is obviously limited; thus future work includes the
investigation of the ability of this mechanism to represent and
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let emerge other types of motion or word grammars. From
this investigation follows the question of the data that can
lead to the learning of new grammars. In particular which
grammatical structure are common to several modalities such
as speech, vision, or motion perception. Similar future work
must also investigate the same question with other combination
mechanisms and learning algorithms.

In this paper we present MCA-NMF and shows that it is able
to acquire word knowledge from cross-situational information.
The experiment we present are however limited to data that has
been artificially forged to encode cross-situational information.
It is thus an essential extension to experiment this learner on
realistic data. This constitutes a way to assert the strength
of cross-situational information in infant-like perception, and
hence to investigate that hypothesis. Another important ex-
tension is to develop experiments on realistic data that use
other similar computational models to better delimit what
cross-situational information can and cannot explain in word
learning. Indeed many classes of words and meanings may be
impossible to learn solely from that information. Finally, the
exploration of other word learning heuristics is also a major
subject for future work. Indeed, other rules such as mutual
exclusivity or whole object assumption have been identified to
play an important role in the process of learning words ?. Their
study raises new challenges such as building computational
models of learners sensible to this information and experiment
their capabilities.

The MCA-NMF model we present in this paper also suffer
major limitations, in particular if presented as a developmental
model of concept learning. For example it is based on a
batch learning algorithm; although incremental versions can
be implemented the present article does not cover this aspect.
In particular, we illustrated various behaviors of the learners
in the experiments with sliding windows and interpret them as
teleological understanding potentially enabling compositional
understanding. Further analysis of the occurrences of such
behaviors may benefit from being performed in a dynamical
setting, in order to focus on the evolution of the learner through
its development. As an example it would enable to study
the evolution and refinement of a concept. In our approach
to learning from speech, we do not address the question
of attention. More precisely we implicitly consider to basic
models of attention: full utterances and sliding windows. Such
restriction on time scales may prevent to account for several
aspects of human speech perception and further investigation
in this direction also opens perspectives for future work.
Finally the sensorimotor aspect of perception and other aspects
of the interplay between action and perception are out of the
scope of this article but of great interest. In particular attention
mechanisms play an important role in perception, at different
time scales, to shape the data perceived by the learner. While
such aspects are not explored in this study the proposed MCA-
NMF framework or its implementation may further be used as
a building block to study these questions.
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