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A DOUBLE LARGE DEVIATION PRINCIPLE FOR

MONGE-AMPÈRE GRAVITATION

YANN BRENIER,
CNRS UMR 7640,

ECOLE POLYTECHNIQUE, PALAISEAU, FRANCE.

Abstract. Monge-Ampère gravitation is a nonlinear modification of classical
Newtonian gravitation, when the Monge-Ampère equation substitutes for the
Poisson equation. We establish, through two applications of the large devi-
ation principle, that the MA gravitation for a finite number of particles can
be reduced, through a double application of the large deviation principle, to
the simplest possible stochastic model: a collection of independent Brownian
motions with vanishing noise.

This paper is dedicated to Professor Tai-Ping Liu for his seventieth birthday.

Introduction

The purpose of this paper is twofold. We first want to make a short presentation
of the Monge-Ampère gravitational (MAG) model, which has been introduced in
[13], in close connection with earlier works such as [11, 15, 31, 20, 2] as well as with
optimal transport theory (see [38, 3]). This model can be seen as a nonlinear mod-
ification of the classical model of Newtonian gravitation, for which we use the fully
nonlinear Monge-Ampère equation as a substitute for the linear Poisson equation
to derive the gravitational potential from the density field. We also briefly com-
pare the Monge-Ampère and the Newton gravitational models, emphasizing that in
the MAG model there is an absolute control of the acceleration of the gravitating
particles, no matter how concentrated they can be, in sharp contrast with Newto-
nian gravitation, for which some particles may runaway to infinity in finite time.
However, the main purpose of this paper is about deriving the MAG model from
a completely elementary microscopic model in which a finite number of particles
just move as independent Brownian trajectories without any interaction. In order
to get the MAG model, we need two applications of the large deviation principle
(LDP) [25, 21]. (Let us mention the interesting connection between large deviation
principles, gradient flows and optimal transport theory recently made in [29, 32],
which was certainly influential for us.) Through the first application of the LDP,
we get a first order (in time) dynamical system based on the indistinguishability
of the gravitating particles. (In a rather paradoxical way, the indistinguishability
principle leads to a model where particles do interact.) The second application
of the LDP enables us to lift this first order dynamical system to a second order
one which is nothing but the discrete version of the MAG model. Let us emphasize
that this derivation is purely formal and further investigations are clearly needed to
get a complete and rigorous theory. The first section of this paper will be devoted
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to a presentation of both the classical Newtonian and the Monge-Ampère models,
with a suitable formulation of the MAG model relying on ”optimal transport” tools
[9, 10, 38]. The second section is devoted to the double application of the LDP in
order to recover the discrete version of the MAG model.

1. Monge-Ampère and Newton gravitations

1.1. Classical Newtonian gravitation. To describe classical Newton gravita-
tion, let us attach to each gravitating particle a label a, which we suppose to belong
to an abstract Borel measure space (A, λ), and its position at time t, Xt(a) ∈ R

d

(classically d = 3). For each time t, we denote by ρt the image measure of λ by Xt,
defined on R

d by

(1)

∫
Rd

γ(x)ρt(dx) =

∫
A

γ(Xt(a))λ(da) ∀γ ∈ C0
c (R

d).

For the sake of simplicity, we further assume ρt(dx) to be Z
d periodic in x and

of unit mean on the unit cube [0, 1]d, so that we can see ρt(dx) as a probability
measure on the flat torus T

d = R
d/Zd. (This kind of assumption is common in

computational Cosmology [26].) We are now ready to write the Newtonian model:

(2)
d2Xt(a)

dt2
= −∇φt(Xt(a)), △φt = ρt − 1,

where the average density 1 has been subtracted out from the field ρt so that the
”gravitation potential” φt is well defined from the Poisson equation as a zero mean
Z
d−periodic function. (This is a perfectly meaningful assumption: there should be

no resulting force∇φt out of a uniform ρt .) If, at time t, ρt is just a plain probability
measure on T

d, then ∇φt, obtained through the Poisson equation △φt = ρt − 1,
is merely an Lp function for p < (1 − d−1)−1 on T

d. This makes very dubious the
meaning of ODE

d2Xt(a)

dt2
= −∇φt(Xt(a))

in the general case. This is why Newtonian’s gravitation usually splits up into two,
rather unrelated theories, according to the choice of its initial conditions:
1) As A is a discrete set of N particles, then Newtonian gravitation boils down to
an ”N -body problem”, set on the flat torus Td, which is of form

(3)
d2Xt(a)

dt2
= R(Xt(a)) +

∑
b6=a

G(Xt(a), Xt(b)),

where R is a fixed function depending on the torus, and the singular kernel G(x, y),
associated with the operator −∇△−1, behaves as (y− x)/|y− x|d, as x approaches
y. This ”bad” singularity makes the study of the ”N -body problem” very hard,
in particular because of the possibility that particles may collide or runaway at
infinity, in finite time. (See [18] as a recent reference.)
2) As A corresponds to a ”continuum” of particles, it is fruitful to introduce, at
each time t, the nonnegative measure ft defined on the ”phase space” T

d × R
d by

(4)

∫
Td×Rd

γ(x, v)ft(dx, dv) =

∫
A

γ(Xt(a),
dXt(a)

dt
)λ(da), ∀γ ∈ C0

c (T
d × R

d).
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A straightforward calculation shows that f must satisfy, at least formally, the
”Vlasov-Poisson” system [35]

(5) ∂tft +∇x · (vft)−∇v · (∇φtft) = 0, △φt = ρt − 1 =

∫
Rd

ft(dv) − 1.

The meaning of this equation is unclear in the general case, because of the dubious
product of ∇φt by ft. However, it is not hard to see that 0 ≤ ft(dx, dv) ≤ Cdxdv
for some positive constant C is a consistent property for equation (5). It turns out
that this property is sufficient to justify the multiplication of ft by ∇φt at least
when the initial condition f0 vanishes for large values of v, say for |v| ≥ C′ for
some other constant C′. Then, the Newtonian model gets well defined and, at least
for d ≤ 3, global weak solutions can be shown to exist globally in time, as f0 is
given, whatever are constants C and C′. In addition, such solutions are unique and
smooth as long as f0 has a smooth density with respect to the Lebesgue measure.
(See [34, 30, 8] for such results, stated on the whole space R

d rather than on T
d.

See also [35], as well as [22] for the closely related Euler-Poisson system.)

1.2. Monge-Ampère gravitation. We now introduce the Monge-Ampère gravi-
tation (MAG) model which differs from (2) just by the substitution of the Monge-
Ampère equation for the Poisson equation:

(6)
d2Xt(a)

dt2
= −∇φt(Xt(a)), det(I+D2φt) = ρt,

where I denotes the d× d identity matrix and φt is solution to the Monge-Ampère
equation (in a suitable sense), which is Z

d−periodic with zero mean and satisfies
the (weak) ellipticity condition I+D2φt(x) ≥ 0, in the sense of symmetric matrices,
for every x. [Notice that φt is unique and Lipschitz continuous (resp. smooth) as
soon as ρt(dx) has an integrable (resp. smooth and positive) density with respect to
the Lebesgue measure dx, see [19] for example.] We see that Newtonian gravitation
can be formally recovered from the MAG model just by expanding the determinant
about I and retaining only the linear part:

det(I+D2φt) ∼ 1 + TraceD2φt = 1 +△φt.

Notice that, as d = 1 (which is a case of limited interest, describing gravitating
“parallel pancakes”), the MAG model coincide with Newtonian gravitation. (As a
consequence, our derivation of the MAG model from a double application of the
large deviation principle, obtained in the second section of the present paper, is also
valid for the Newtonian gravitational model in one space dimension.) However, let
us emphasize that, to the best of our knowledge, MAG has never been considered
by any physicist in dimension larger than one. It has been so far only considered
by mathematicians (see [13] and [15, 31, 20, 2] for closely related topics), mostly
because of its close connection with optimal transport theory (as discussed in the
next subsection). It is easy to describe, as we did for the Newtonian model, the
MAG model through a ”kinetic equation”, the so-called ”Vlasov-Monge-Ampère”
(VMA) system [15, 31]:

(7) ∂tft +∇x · (vft)−∇v · (∇φtft) = 0, det(I+D2φt) = ρt =

∫
Rd

ft(dv).
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As for the Vlasov-Poisson system (5), the existence of global weak solutions can be
shown as soon as

0 ≤ f0(dx, dv) ≤ Cdxdv, f0(T
d × {v ∈ R

d, |v| ≤ C′}) = 0,

for some positive constants C,C′. Existence of a unique smooth solution, but only
for a short time interval, has been proven by Loeper [31] provided f0(dx, dv) (resp.
ρ0(dx)) has a smooth density with respect to dxdv (resp. dx) and is uniformly
compactly supported in v ∈ R

d (resp. is strictly positive). These are still limited
results, due to the full non-linearity of the Monge-Ampère equation that leads to
analytic difficulties, in particular when seeking for smooth solutions. However, the
Monge-Ampère equation enjoys remarkable properties, closely related to the theory
of optimal transportation [10, 38]. This is why we are going to introduce a related
formulation of the MAG model, with interesting geometric features.

1.3. The MAG model written in optimal transportation terms. For the
description of the MAG model in optimal transport terms, it is convenient to discuss
the model in a (slightly) different and more abstract framework. We consider a
metric measure space (A, λ), made of a compact subset A of Rd equipped with a
Borel probability measure λ. Two typical examples are, on one side, the unit cube
with the Lebesgue measure, and, on the other side, any set of N points equipped
with the (normalized) counting measure. In the first case, we will speak of the
”continuous” case, while, in the second case, we will speak of the ”discrete” case.
(Of course many others situations could be also considered, in particular the flat
torus T

d as we did in the previous subsections, but we will focus on these two
cases only.) We introduce the separable Hilbert space H of all λ−square-integrable
maps from A to R

d, H = L2(A, λ;Rd), with norm and inner product respectively
denoted by || · || and ((·, ·)). (Notice that, when A is a finite set of N points in R

d,
then H ∼ R

Nd is of finite dimension.) We crucially consider the subset S of all
measure-preserving maps s of A:

(8) S = {s ∈ H,

∫
A

γ(s(a))λ(da) =

∫
A

γ(a)λ(da), ∀γ ∈ C0(Rd)}.

(Observe, in the discrete case, when A is made of N distinct points A(a) ∈ R
d, for

a = 1, · · · , N , S just reads S = {(A(σ(1)), · · · , A(σ(N)) ∈ H, σ ∈ SN} with N !
elements, where SN denotes the group of all permutations of the first N integers.)

According to Edelstein’s theorem [23, 4], given a separable Hilbert space H and
a closed bounded subset S, there is, in the sense of Baire, a generic set (i.e. con-
taining a countable intersection of dense open subsets of H) of points X for which
there exists a unique closest point π(X) on S. In addition π(X) is nothing but
the gradient, at point X , of the Lipschitz convex function Π defined on the Hilbert
space H by

(9) Π(X) = sup
s∈S

((X, s))−
||s||2

2
, π(X) = ∇Π(X) = Arg inf

s∈S

||X − s||2

2
.

In our particular case, we can say much more in the continuous case, when A is the
unit cube with λ as the Lebesgue measure, thanks to ”optimal transport theory”

Theorem 1.1. ([10]) Let X ∈ H be a non degenerate map, in the sense that the
image measure ρ of λ by X is absolutely continuous with respect to the Lebesgue
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measure on R
d. Then, X has a unique closest point π(X) on S. We also have

(10) π(X) = T ◦X,

where T is the unique map (in the ρ a.e. sense) y ∈ R
d → T (y) ∈ A such that:

i) there is a convex Lipschitz function ψ : Rd → R, ρ−a.e. differentiable, with:

(11) T (y) = ∇ψ(y), ρ− a.e. y ∈ R
d

ii) λ is the image of ρ by T :

(12)

∫
R⌈

γ(T (y))ρ(dy) =

∫
A

γ(a)λ(da), ∀γ ∈ C0(Rd).

As a matter of fact, equations (11,12) form a generalized formulation of the
Monge-Ampère problem on R

d

(13) ρ = det(D2
xψ), (∇ψ)(support(ρ)) = A, D2ψ ≥ 0,

with a unique solution ∇ψ (in the ρ−a.e. sense). (See [9, 10, 38] for more details.)
This generalized formulation of the Monge-Ampère equation allows us to write the
MAG model (6) in a much more geometric way. Indeed, (6) just reads

d2Xt(a)

dt2
= Xt(a)−∇ψt(Xt(a)), det(D2ψt) = ρt,

after setting ψt(x) = |x|2/2+φt(x), that we complete with the weak ellipticity con-
dition D2ψt ≥ 0 and the range condition ∇ψt(support(ρt)) = A (which substitutes
for the Z

d-periodicity condition we used in writing (6)). Assume that, at time t,
Xt is non degenerate (or, in other words, ρt is absolutely continuous with respect
to the Lebesgue measure on R

d). Then, using Theorem 1.1, we may write

∇ψt ◦Xt = π(Xt) = ∇Π(Xt)

and finally obtain

(14)
d2Xt

dt2
= Xt − π ◦Xt = Xt −∇Π ◦Xt,

where Π is the Lipschitz convex function defined by (9), π its gradient and S is the
set of measure preserving maps defined by (8). In the rest of this paper, we will
retain (8,9,14) as our definition of the MAG model.

1.4. The discrete Monge-Ampère gravitational model. The geometric for-
mulation (8,9,14) of the MAG model is very convenient to get its discrete version,
as A is just a subset of N points A(a) in R

d, for a = 1, · · · , N , equipped with the
counting measure, in which case, we will speak of the ”discrete MAG model with N
particles”. Indeed, at the discrete level, a time-dependent map Xt can be seen as
a sequence of N ”particles”, with positions Xt(a), moving in R

d, for a = 1, · · · , N .
(Notice that Xt gets degenerate at time t in case of collisions.) In this discrete
setting, the MAG model (8,9,14) reads as the finite dimensional dynamical system:

(15)
d2Xt(a)

dt2
= Xt(a)−A(σt(a)), σt = Arg inf

σ∈SN

N∑
a=1

|Xt(a)−A(σ(a))|2,

where σ ∈ SN denotes the set of all permutations of the first N integers. So we
see that, at the discrete level, the MAG looks both very simple and very different
from the classical Newtonian N body problem (3)! (Similar systems have been
previously studied in [11, 20].)
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The MAG model, as defined by (8,9,14), can be seen as a dynamical system in
a Hilbert space H with a force term F(x) = x − ∇Π(x) with a trivial linear part
and the gradient of a Lipschitz convex function Π. To the best of our knowledge,
there is no theory for such an ODE in infinite dimension. Indeed, we are very far
from the standard Cauchy-Lipschitz setting. This is a challenging open problem.
(See the related theory developed by Ambrosio and Gangbo for some infinite di-
mensional hamiltonian systems [2]. As a matter of fact, their main example is very
similar to the MAG model, written in a different way. See also [15, 27].) However,
for the discrete MAG model with N particles, H ∼ R

Nd is of finite dimension.
Thus, equation (14), which also reads (15), can be neatly solved globally in time

in the sense of Bouchut and Ambrosio [7, 1], for every initial condition (X0,
dX0

dt ),
except on a negligible subset of the ”phase space” H ×H , of zero 2Nd dimensional
Lebesgue measure. (A more accurate statement can be found in [1].) Indeed, the
force term F(x) = x − ∇Π(x) in the right-hand side of (14) is a smooth pertur-
bation of a ”bounded variation” function, since Π is a Lipschitz convex function
(which implies that D2Π can be seen as a bounded nonnegative measure valued in
the convex cone of nonnegative symmetric matrices, and, therefore, that ∇Π is of
bounded variation). Notice that the exceptional set of bad initial conditions in the
phase space is not empty, as it follows clearly from formulation (15), where we see
that the evolution of the particles becomes ambiguous as different particles depart
from the same position with exactly the same velocity.

1.5. Monge-Ampère versus Newtonian gravitational models. It is now in-
teresting to compare the Monge-Ampère and the Newton gravitational models. We
first observe that, according to the MAG model, particles may never runaway to
infinity in finite time. Indeed, from the optimal transportation formulation (8,9,14),
we immediately get

|
d2Xt

dt2
−Xt| ≤ R = sup

a∈A

|a|

and deduce that

|Xt|+ |
dXt

dt
| ≤ (|X0|+ |

dX0

dt
|+ 1)C cosh t, ∀t ∈ R,

where C depends only on R. Of course, there is nothing similar with Newtonian
gravitation. Indeed, the Poisson equation in (2) does not behave well when particles
concentrate. For instance, if some particles concentrate as a delta measure at some
point y at time t, then ∇φt(x) has a singularity as bad as (x − y)/|x− y|d.
In this way, the MAG model has a lot of similarity with the Born-Infeld (BI) theory
of the electromagnetic field [6, 5, 12, 16], in which any electrostatic field is bounded
by a universal constant. (Notice that the BI model, which goes back to 1934, is no
longer for use in Electrodynamics, but has enjoyed a remarkable revival in String
Theory since the 1990s [33].)
In addition, the MAG model enjoys good properties of approximations by finite
sums of Dirac measures (see [20] for closely related results). In sharp contrast, such
discrete approximations have never been justified, to the best of our knowledge,
in the case of 3D Newtonian gravitation, because of the bad singularities of the
Green function for the Poisson equation [28]. As a matter of fact, the treatment of
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point particles in classical Electrodynamics remains an outstanding open problem
in both Theoretical and Mathematical Physics (see [24, 37] for instance).

2. Formal derivation of the discrete Monge-Ampère gravitation model

from a double application of the large deviation principle

In this second section, we provide a formal derivation of the discrete MAG
model (15) from a double application of the large deviation principle [25, 21].

2.1. A basic model of N independent Brownian particles. We fix a positive
integer N and a finite set A of N distinct points A(a) ∈ R

d, for a = 1, · · · , N .
Using the notations of subsection 1.3, we set H = R

Nd and

(16) S = {(A(σ(1)), · · · , A(σ(N)) ∈ H, σ ∈ SN},

where SN denotes the set of all possible permutations of the first N integers.
Given σ0 ∈ SN , we consider the motion of N ”particles” that move in the Euclidean
space R

d, according to

(17) Xε
t (a) = s0(a) + εBt(a), s0(a) = A(σ0(a)), ∀a = 1, · · · , N.

where (t ∈ R+ → Bt(a) ∈ R
d)a=1,··· ,N denote N independent realizations of the

”standard” (i.e. normalized) Brownian motion in R
d.

Fixing t∗ > 0 and

Y ∗(a) ∈ R
d, ∀a = 1, · · · , N,

it is easy to compute the probability that, at time t∗, each particle occupies the
position given by Y ∗:

Prob(Xε
t∗(a)≈Y

∗(a), ∀a = 1, · · · , N)

≈
N∏

a=1

[exp(
−|Y ∗(a)− s0(a)|2

2εt∗
)(2πεt∗)−d/2],

or, in other words

Prob(Xε
t∗≈Y

∗) ≈ exp(
−||Y ∗ − s0||2

2εt∗
)(2πεt∗)−Nd/2.

Here we have denoted by | · | and || · || the Euclidean distance on respectively R
d and

H = (Rd)N . We have also used symbol ≈ just to make notations lighter. [What
we precisely mean is: for any Borel B subset of (Rd)N , the probability that Xε

t∗

belongs to Y ∗ + B is given by

∫
Y ∈Y ∗+B

exp(
−||Y − s0||2

2εt∗
)(2πεt∗)−Nd/2dY,

but we hope that our simplified notation is acceptable. Indeed, we will use it again,
without further notice.]
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2.2. First application of the large deviation principle. We now want to com-
pute the probability that Xε

t∗ and Y ∗ coincide, up to a permutation, property that
we denote by (Xε

t∗) ≈
perm

(Y ∗). We find

(18) Prob[(Xε
t∗) ≈

perm
(Y ∗)] ≈

1

N !

∑
σ∈SN

exp(
−||Y ∗ ◦ σ − s0||2

2εt∗
)(2πεt∗)−Nd/2.

When the level of noise ε goes to zero, we immediately get

− lim
ε→0

ε log Prob[(Xε
t∗) ≈

perm
(Y ∗)]≈ inf

σ∈SN

||Y ∗ ◦ σ − s0||2

2t∗
,

which is a rather trivial illustration of the Laplace method and the large deviation
principe (LDP) [25]. There is a more sophisticated aspect of the LDP: as the
level of noise goes to zero, the Brownian trajectories of the particles conditioned
by (Xǫ

t∗) ≈
perm

(Y ∗) behave more and more as constant speed minimizing geodesic

curves. More precisely, for all t ∈ [0, t∗],

(19) Xε
t ∼ε→0 Xt = s0 +

t

t∗
(Y ∗ ◦ σ∗ − s0), σ∗ = Arg inf

σ∈SN

||Y ∗ ◦ σ − s0||2

2t∗
.

which implies

(20)
dXt

dt
=
Y ∗ ◦ σ∗ − s0

t∗
=
Xt∗ − s0

t∗
=
Xt − s0

t
, ∀t ∈]0, t∗].

Now, we are going to translate this large deviation principle into a self-consistent
dynamical system for the particles. Let us first denote by π(Y ) (as in subsection
1.3) the unique closest point on S of a ”generic” point Y ∈ H = (Rd)N

(21) π(Y ) = Arg inf
s∈S

||Y − s||2

2
= ∇Π(Y ), Π(Y ) = sup

s∈S
((Y, s))−

||s||2

2

(where ((·, ·)) denotes the inner product attached to || · || on H). Then we state:

Proposition 2.1. Equation (20), that we have derived from (17) (through a large
deviation principle), can be written as a self-consistent ordinary differential equation
for Xt at least for t > 0,

(22) t
dXt

dt
= Xt − π(Xt).

Proof. To get this result, our simple but crucial observation is that, along the
geodesic curve defined by (19), namely

Xt = s0 +
t

t∗
(Y ∗ ◦ σ∗ − s0), σ∗ = Arg inf

σ∈SN

||Y ∗ ◦ σ − s0||,

s0 is the closest point in S not only of the end-point Xt∗ = Y ∗ ◦ σ∗ but also of all
points Xt, ∀t ∈ [0, t∗]. [Then, we can write s0 = π(Xt) in equation (20) which
immediately leads to (22) and completes the proof of our Proposition.]
Although this property is geometrically quite obvious, let us provide a comprehen-
sive proof for the sake of completeness.
By definition (21) of the closest point operator π, it is enough to show that

κ = ||Xt − s0 ◦ σ||
2 − ||Xt − s0||

2 ≥ 0
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for each permutation σ ∈ SN and each t ∈ [0, t∗]. By definition (19),

κ = ||s0 +
t

t∗
(X∗ − s0)− s0 ◦ σ||

2 − ||
t

t∗
(X∗ − s0)||

2

where we set, still according to (19),

(23) X∗ = Xt∗ = Y ∗ ◦ σ∗, σ∗ = Arg inf
σ∈SN

||Y ∗ ◦ σ − s0||.

Expanding the squares, we obtain

κ = ||s0 − s0 ◦ σ||
2 +

2t

t∗
((X∗ − s0, s0 − s0 ◦ σ)).

By definition of X∗ = Y ∗ ◦ σ∗ and σ∗, we get from (23)

||X∗ − s0|| = ||Y ∗ ◦ σ∗ − s0|| ≤ ||Y ∗ ◦ σ∗ ◦ σ−1 − s0|| = ||X∗ − s0 ◦ σ||.

Thus ((X∗, s0 − s0 ◦ σ)) ≥ 0. So, we deduce

κ ≥ ||s0 − s0 ◦ σ||
2 −

2t

t∗
((s0, s0 − s0 ◦ σ)) = 2(1−

t

t∗
)[||s0||

2 − ((s0, s0 ◦ σ))] ≥ 0

(using ||s0|| = ||s0 ◦ σ|| and the Cauchy-Schwarz inequality), which is the desired
inequality and completes the proof of Proposition 2.1.

Equation (22) is clearly singular at time t = 0. We can lift this singularity with an
exponential rescaling of time t = exp(θ), θ ∈ R, and finally obtain:

(24)
dXθ

dθ
= Xθ − π(Xθ) = Xθ −∇Π(Xθ).

So we have obtained a first order (in time) dynamical system, of ”gradient type”.

Miscellaneous remarks. i) Since π is the gradient of a Lipschitz convex function
(namely Π defined by (9)), equation (24) is uniquely solvable in the framework of
”maximal monotone operator theory” [17]. As already discussed in [13], this is a
way to introduce a dissipative mechanism in the motion of particles, such as sticky
collisions when particles stick to each other while conserving their momentum (but
not their kinetic energy which decreases). At the level of the present paper, we do
not want to enter such considerations and leave (24) just as a formal equation.
ii) Notice that (24) is a gradient flow in the variable X , valued in the Hilbert space
H , which is the counterpart of the gradient flow in the variable Law(X), in the
so-called ”Wasserstein space” of half the negative squared ”Wasserstein distance”,
as discussed in [3]. For us, it is important to keep a formulation in terms of X ∈ H
and not in terms of Law(X), because, in the sequel of our discussion, it is crucial
to restore the ”individuality” of the gravitating particles during their motion, in
order to get a second order dynamical system for them.
iii) Quite remarkably, as explained in [13], equation (22) is nothing but the Zeldovich
model used in Cosmology [39, 36, 26, 14] as an approximation of semi-Newtonian
gravitation in an Einstein-de Sitter space!
iv) Let us finally provide a possible interpretation of equation (24), vaguely related
to the so-called ”anthropic principle”: What is observed at out “present” time
t∗ is just a random output of the independent Brownian trajectories of a large
number N of indistinguishable particles initially located on the set A. As the
noise vanishes, the motion of these particles, conditioned by what we can observe
now, just looks driven by the deterministic law (24). Of course, this is a highly
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speculative and questionable interpretation coming from a mathematician and not
from an authorized physicist.

2.3. Second application of the large deviation principle. Equation (24) is
a first order dynamical system, a so-called ”gradient flow” since (24) can also be
written

dXθ = ∇Φ(Xθ)dθ,

where Φ is half of the squared distance function to S:

(25) Φ(Y ) =
||Y ||2

2
−Π(Y ) = inf

s∈S

||Y − s||2

2
,

where Π is defined by (9). Describing a gravitational theory by a gradient flow does
not sound reasonable. We would rather like to get a second order, conservative,
dynamical system. Here again, the large deviation principle turns out to be useful
to get such a second order system out of (24). Fixing η > 0, we introduce the
”noisy” version of (25) defined by:

(26) dXη
θ = ∇Φ(Xη

θ )dθ + η dBθ,

where Bθ (again) denotes a Brownian process in (Rd)N . Given two points Y0 and
Y1 in (Rd)N , we expect from the LDP (or, more precisely, the Freidlin-Wentzell
theorem [25, 21]) that, as the level of noise η goes to zero,

−η log Prob[Xη
θ0
≈Y0 and Xη

θ1
≈Y1] ∼η→0 A(θ0, Y0, θ1, Y1)

(27) A(θ0, Y0, θ1, Y1) = inf{

∫ θ1

θ0

1

2
||
dXθ

dθ
−∇Φ(Xθ)||

2dθ, Xθ0 = Y0, Xθ1 = Y1}.

In addition, as η goes to zero,

Xη
θ ∼ Xθ, ∀θ ∈ [θ0, θ1],

where

X = Arg inf{

∫ θ1

θ0

1

2
||
dXθ

dθ
−∇Φ(Xθ)||

2dθ, Xθ0 = Y0, Xθ1 = Y1}.

Strictly speaking, this is correct when ∇Φ is Lipschitz continuous, which is not true
in our case (where ∇Φ is not even continuous), without further assumptions on the
data. However, from the pure modeling viewpoint, it is very tempting to find the
second order dynamical system linked to the least action principle (27). Since Φ,
as defined by (25), is half of a squared distance function, we have

(28)
1

2
||∇Φ(Y )||2 = Φ(Y ),

for every Y ∈ H \ N , where N is the set on which Φ is not differentiable, which is
a negligible subset of H , both in the Lebesgue almost everywhere sense and in the
Baire category sense. Thus, at least for each curve X that stays away from N for
Lebesgue almost every θ ∈ [θ0, θ1], we have∫ θ1

θ0

1

2
||
dXθ

dθ
−∇Φ(Xθ)||

2dθ

=

∫ θ1

θ0

(
1

2
||
dXθ

dθ
||2 + ||∇Φ(Xθ)||

2)dθ −

∫ θ1

θ0

∇Φ(Xθ) ·
dXθ

dθ
dθ
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=

∫ θ1

θ0

(
1

2
||
dXθ

dθ
||2 +Φ(Xθ))dθ − Φ(Xθ1) + Φ(Xθ0).

Therefore, the action principle (27) is equivalent to

(29) Ã(θ0, Y0, θ1, Y1) = inf{

∫ θ1

θ0

(
1

2
||
dXθ

dθ
||2 +Φ(Xθ))dθ, Xθ0 = Y0, Xθ1 = Y1}.

From this equivalent LAP, we find as optimality equation

(30)
d2Xθ

dθ2
= ∇Φ(Xθ) = Xθ − π(Xθ),

which is just the second order version of the gradient flow equation (24). More
explicitly, we have obtained

(31)
d2Xθ(a)

dθ2
= Xθ(a)−A(σθ(a)),

where

σθ = Arg inf
σ∈SN

N∑
a=1

|Xθ(a)−A(σ(a))|2,

which is nothing but the discrete version (15) of the Monge-Ampère model of grav-
itation discussed in the first section.
So we have achieved, at least at a formal level, the main goal of our paper which
was, through a double application of the large deviation principle, the derivation of
the (discrete) Monge-Ampère gravitational model from one of the simplest think-
able model of particles: N independent Brownian trajectories, with an intriguing
interplay between their indistinguishability (for the first application of the LDP)
and their individuality (for the second application of the LDP).
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