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Abstract

The paper presents a numerical implementation of the ZM model for shape

memory alloys (Zaki and Moumni, 2007a) that fully accounts for nonpro-

portional loading and its influence on martensite reorientation and phase

transformation. Detailed derivation of the time-discrete implicit integration

algorithm is provided, including an explicit closed-form expression for the

continuous material jacobian. The algorithm is used for finite element simu-

lations using Abaqus, in which the model is implemented by means of a user

material subroutine. Extensive validation of the model is provided against

multiple sets of experimental and numerical simulation data taken from the

literature.

∗Corresponding author. Tel.: +971 2 5018511.
Email addresses: gu.xiaojun@live.cn (Xiaojun Gu), wael.zaki@kustar.ac.ae

(Wael Zaki), claire.morin@emse.fr (Claire Morin), ziad.moumni@ensta-paristech.fr
(Ziad Moumni), zhangwh@nwpu.edu.cn (Weihong Zhang)

Preprint submitted to International Journal of Solids and Structures July 8, 2014

*Manuscript
Click here to view linked References

http://ees.elsevier.com/ijss/viewRCResults.aspx?pdf=1&docID=12279&rev=0&fileID=444840&msid={773D6053-E935-45A2-9584-9638F8CA6580}


Keywords: shape memory alloys; nonproportional loading; multiaxial

loading; phase transformation; martensite reorientation; multisurface

inelasticity.

1. Introduction

Shape memory alloys (SMAs) are capable of sustaining severe inelastic

deformation that can be recovered by heating (Otsuka and Wayman, 1999).

This behavior is explained by the ability of SMAs to undergo transformation

between a higher symmetry austenite phase and a lower symmetry marten-

site phase. The martensite phase can be inelastically deformed by detwin-

ning and reorientation of variants characterized by different crystallographic

orientations (Funakubo, 1987). Starting from the 1970’s, the use of SMAs in

engineering applications has seen significant development (Humbeeck, 1999)

and it now spans a number of important fields ranging from biomedicine to

civil engineering and aeronautics (Stöckel, 2001). A key feature of many

shape memory alloys is superelasticity, which refers to the capacity of these

materials to undergo substantial deformation when subjected to mechanical

loading at temperatures exceeding the so-called “austenite finish” tempera-

ture and to recover their undeformed shape once the load is removed. Finite

element analysis of this superelastic behavior in cases of uniaxial and mul-

tiaxial proportional and nonproportional isothermal loading is the focus of

this paper.

Uniaxial or multiaxial loading of shape memory alloys can induce phase

transformation accompanied by the nucleation or shrinking of martensite

variants (Otsuka and Wayman, 1999; Bodaghi et al., 2013). When the load-

ing direction changes, preferred martensite variants begin to form at the
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expense of others leading to a change in orientation of the inelastic strain

in the martensitic phase. Both phase change and martensite reorientation

can take place at the same time in presence of multiaxial nonproportional

loading, which motivates the need for SMA models capable of accounting

for these processes simultaneously. Numerical integration of the constitutive

equations in this case is particularly challenging because it typically involves

solving highly nonlinear equations while satisfying multiple consistency con-

ditions and intrinsic constraints on the state variables. Proper numerical

integration of SMA models is of special importance in such areas as the me-

chanics of fracture of SMAs, where multiaxial loading conditions and severe

stress gradients are experienced by the material in the neighbourhood of the

crack tip, as well as in analyzing fatigue of SMA structures, where accurate

simulation of the multiaxial behavior of the material is needed for numerical

prediction of fatigue life using appropriate failure criteria.

In the literature, the behavior of SMAs subjected to nonproportional

loading has been the subject of intense investigation. Sittner et al. (1995)

performed biaxial tension-torsion experiments on polycrystalline CuAlZnMn

SMA samples considering rectangular and triangular stress- and strain-

controlled loading cases. In both cases, the inelastic deformation of the

material was found to be fully recoverable by unloading. Lim and McDow-

ell (1999) reported several biaxial proportional and nonproportional loading

experiments for thin-wall tubes of superelastic NiTi SMAs under circular

normal/shear stress- and strain-controlled loading. The material response

was found to exhibit tensile-compressive asymmetry when subjected to cyclic

tensile-compressive loading. Moreover, force- and strain-controlled experi-

ments were conducted at different strain rates, with and without hold times,

and the results were reported including the influence of thermomechanical
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coupling. Bouvet et al. (2002) carried out tension/internal pressure tests

and biaxial compression tests using CuAlBe SMA samples where the au-

thors also observed tensile compressive asymmetry in the material behavior.

A model was later proposed (Bouvet et al., 2004) that takes into account

this asymmetry, as well as the influence of temperature, return point mem-

ory and the nonproportionality of the applied load on SMA behavior. The

model was validated against experimental data obtained under general mul-

tiaxial loading cases. Panico and Brinson (2007) proposed a macroscopic

phenomenological model based on the framework of thermodynamics of ir-

reversible processes. The model accounts for the influence of multiaxial

stress states and non-proportional loading histories and was shown to rea-

sonably agree with the experimental data in (Sittner et al., 1995). Grabe

and Bruhns (2009) reported experimental results for polycrystalline NiTi

subjected to several multiaxial loading cases in a wide temperature range in

order to investigate superelasticity and the one-way shape memory effect of

the material. Based on these experiments, the use of von Mises equivalent

stress in deriving loading functions for phase transformation and marten-

site reorientation was found inappropriate as it failed to capture tensile-

compressive and tensile-torsional asymmetries. Arghavani et al. (2010) pre-

sented a phenomenological constitutive model that accounts for key features

of SMA behavior when the material is subjected to proportional as well as

non-proportional loading. The model was successfully used to simulate a

number of experimental results taken from the literature. (Chemisky et al.,

2011) derived a model for shape memory alloys based on earlier work by

the authors. The model focuses on SMA behavior at lower stress levels

and takes into account several effects associated with SMA behavior such

as tensile-compressive asymmetry and temperature-driven phase transfor-
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mation. Simulation results are reported, without validation, at different

temperatures for a case of multiaxial loading consisting of a square tension-

shear loading path. Another model was developed by Stebner and Brinson

(2013). The model was numerically integrated using an explicit scheme.

Care was taken in eliminating the need for user-calibration of the numerical

integration parameters and reducing the sensitivity of the integration algo-

rithm to mass scaling for faster computation. Bodaghi et al. (2013) derived

a simple and robust phenomenological model for SMAs using the framework

of continuum thermodynamics of irreversible processes. The model was used

to simulate SMAs subjected to uniaxial and biaxial loading, including pro-

portional and nonproportional tensile-torsional loading. Good agreement

with experimental data was achieved for these loading cases. Auricchio

et al. (2014) recently proposed a model for SMAs that accounts for sev-

eral aspects of SMA behavior in presence of multiaxial loading. The model

was numerically integrated using Fischer-Burmeister functions to account

for the Kuhn-Tucker conditions governing the evolution of several state vari-

ables, including the volume fractions of single- and multi-variant martensites

and the directional orientation of single-variant martensite. The use of the

Fischer-Burmeister functions allowed the authors to dispense with the con-

ventional search for active loading surfaces by substituting the Kuhn-Tucker

inequalities with a set of equivalent nonlinear equalities. The model is val-

idated against experimental data for several loading cases, including a case

of combined tension-torsion involving a helical SMA spring. A recent model

was also proposed by Mehrabi et al. (2014), which consisted of a thermody-

namically acceptable evolution of the microplane model for SMAs. In the

spirit of the microplane theory, the authors considered different stress projec-

tion methods to resolve the three-dimensional constitutive material behavior
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into a combination of uniaxial models defined in specific spatial directions.

The model was then used to simulate experiments on a thin hollow SMA

cylinder subjected to tension, torsion and combined tension-torsion loading

cases. Only proportional loading was considered for the combined loading

case

Zaki and Moumni (2007b,a) and Moumni et al. (2008) derived a phe-

nomenological model that can simultaneously account for phase transforma-

tion and martensite detwinning and reorientation. The model was improved

to account for tensile-compressive asymmetry (Zaki et al., 2011; Zaki, 2010),

plastic yielding (Zaki et al., 2010), and thermomechanical coupling (Morin

et al., 2011a) including cyclic effects (Morin et al., 2011b; Moumni et al.,

2009; Morin et al., 2011c; Morin, 2011). However, numerical integration

of the model in presence of non-proportional multiaxial loading was only

considered so far in the case of martensitic SMAs (Zaki, 2012a,b).

This paper presents detailed integration for the Zaki-Moumni (ZM) model

for SMAs capable of undergoing combined phase transformation and marten-

site reorientation when subjected to nonproportional multiaxial loading.

Proper numerical integration and extensive validation of the model for such

general loading cases has not been attempted before and therefore consti-

tutes the novelty of this work. The implicit time integration procedure is

implemented by means of a user material subroutine into the finite element

software Abaqus.

The paper provides a brief review of the ZM models in section 2 followed

by a general presentation of the boundary value problem and time-discrete

equations for a SMA subjected to isothermal loading in section 3, including

a closed-form expression for the continuous material Jacobian. Numerical

simulations are then carried out in section 4 for a number of loading cases,
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many of which are taken from the literature and shown to be properly sim-

ulated by the model. A general conclusion and outlook are finally provided

in section 5.

2. Summary of the analytical model

The ZM model for shape memory materials is developed based on the

framework of generalized standard materials (Halphen and Nguyen, 1974)

that was slightly extended to account for constraints on the state variables

(Moumni, 1995; Moumni et al., 2008). Using standard index notation for

tensor representation and implied summation over repeated indices, the

derivation of the model gives the following stress-strain relation:

σij = Kijkl(εkl − zεorikl ) (1)

where σij and εkl are the stress and total strain tensors, z is the volume

fraction of martensite and εorikl is the inelastic strain caused by martensite

detwinning and reorientation. The elastic stiffness tensor Kijkl is a function

of phase composition. It is given by the expression

Kijkl =
[

(1− z)KA,−1
ijkl + zKM,−1

ijkl

]−1
, (2)

in which KA
ijkl and KM

ijkl are the elastic stiffness matrices of austenite and

martensite respectively.

The volume fraction of martensite cannot be less than zero or greater

than one and the recoverable inelastic deformation of martensite is limited

by a maximum ε0 that depends on the material used. These constraints are

mathematically expressed as

z ≥ 0, 1− z ≥ 0, and ε0 − εorieq ≥ 0 (3)
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where εorieq is an equivalent orientation strain taken in this paper to be

εorieq =

√

2

3
εoriij εoriij . (4)

The evolution of the dissipative variables z and εoriij is governed by the

Kuhn-Tucker conditions

F1
z

(

σij , z, ε
ori
ij

)

≤ 0, ż ≥ 0, żF1
z = 0, (5)

for forward transformation, in which 0 ≤ z < 1;

F2
z

(

σij , z, ε
ori
ij

)

≤ 0, −ż ≥ 0, −żF2
z = 0, (6)

for reverse transformation, in which 0 < z ≤ 1;

Fori

(

σij, z, ε
ori
ij

)

≤ 0, η ≥ 0, ηFori = 0, (7)

for martensite detwinning and reorientation, in which η is the inelastic mul-

tiplier and the rate of orientation strain is provided by the normality rule

ε̇oriij = η
∂Fori

∂Xij

=
3

2
η
Xij

Xvm

= ηNij . (8)

In the above equation, Xvm is the von Mises equivalent of the thermody-

namic force Xij , conjugate to the orientation strain εoriij , and Nij =
3
2

Xij

Xvm
is

a vector indicating the direction of the orientation strain rate ε̇oriij in strain

space. To simplify numerical integration, martensite is assumed to be fully

oriented by the applied stress as soon as the phase transformation from

austenite to martensite takes place. This simplification is in accordance

with results in the literature (Patoor et al., 2006). For the ZM model used,

this assumption is equivalent to considering that the stress σrf needed for

complete detwinning of martensite is less than the stress σms required to

initiate forward phase transformation.
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3. Boundary value problem and algorithmic setup

3.1. Boundary value problem

A superelastic SMA structure occupying a volume Ω ∈ R
3 is subjected

to isothermal loading in the time interval [0, T ]. The load consists of body

forces fi(x, t) acting over Ω × [0, T ] and contact forces T d
i (x, t) acting over

∂ΩT × [0, T ]. Displacement is constrained over the remaining boundary ∂Ωξ

in the time interval [0, T ]. Starting from an initial configuration at time t = 0

in which the state variables are known and using the subscript notation ,i

to indicate differentiation with respect to space coordinate i, the problem

consists in solving the following set of equations over Ω for t ∈ [0, T ]:

• Static equilibrium

σij,j + fi = 0 in Ω,

σijnj = T d
i over ∂ΩT ,

(9)

where nj is an outward unit vector normal to the boundary ∂ΩT ,

• Kinematic boundary conditions

ξi = ξdi over ∂Ωξ, (10)

where ξi is the displacement vector,

• Strain compatibility

εij =
1

2
(ξi,j + ξj,i) in Ω, (11)

• Constitutive equations

σij = Kijkl

(

εkl − zεorikl

)

in Ω (12)

where Kijkl is given by (2), and z and εoriij are governed by the condi-

tions (3) to (8).
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The boundary value problem above is solved using the finite element

method. Time integration of the constitutive equations is done using an im-

plicit algorithm that takes into account the possibility of simultaneous phase

transformation and martensite detwinning and reorientation in presence of

nonproportional multiaxial loading.

The assumption of complete orientation of martensite as soon as it forms

reduces the constraint on the orientation strain to the equality ε0−εorieq = 0.

The loading function Fori governing the orientation of martensite can be

written in this case as

Fori = Xvm − zY where Xij = sij −
2

3ε20

(

sklε
ori
kl

)

εoriij , (13)

in which sij is the stress deviator and Y is a material parameter that defines

the stress onset of martensite detwinning in uniaxial tension. The expres-

sions of the phase transformation functions remain unchanged with respect

to the original ZM model. They are given by

F1
z =

1

2

(

3

2
ElMAsijsij + PMAσ

2
ii

)

− C(T )

+ sijε
ori
ij − (G+ b)z − a(1− z)

−
[

(α− β)z +
β

2

](

2

3
εoriij εoriij

)

,

(14)

F2
z = −1

2

(

3

2
ElMAsijsij + PMAσ

2
ii

)

+ C(T )

− sijε
ori
ij + (G− b)z − a(1− z)

+

[

(α− β)z +
β

2

](

2

3
εoriij εoriij

)

,

(15)

where ElMA, PMA, α, β, a, b, G are material parameters and C(T ) is a

function of temperature.

Considering a discretization of the time interval [0, T ] into N intervals,

the increments of the state variables z and εoriij for load increment n+1, n ∈
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{0, N}, are determined by enforcing the appropriate consistency conditions

assuming z and εoriij are known at load increment n. In the equations below,

the load increments n and n + 1 are indicated in the subscript and the

solution iteration k is indicated in the superscript of the relevant variable.

The incremental equations are solved using a classical predictor-corrector

strategy (Simo and Hughes, 1998) as follows:

• An elastic stress increment is first determined that achieves static equi-

librium:

z
(0)
n+1 = zn and ε

ori,(0)
ij,n+1 = εoriij,n (16)

σ
(0)
ij,n+1 = K

(0)
ijkl,n+1

(

εkl,n+1 − z
(0)
n+1ε

ori,(0)
kl,n+1

)

(17)

• The stress increment is then corrected and the state variables are up-

dated in accordance with the consistency conditions. If Fz is any of

the two loading functions F1
z and F2

z governing phase change, these

conditions must satisfy

Fz

(

σ
(k)
ij , z(k), ε

ori,(k)
ij

)

≤ 0 (18)

Fori

(

σ
(k)
ij , z(k), ε

ori,(k)
ij

)

≤ 0 (19)

where the subscript n + 1 is eliminated for readability and where each

inequality reduces to a strict equality when the relevant process is ac-

tive. The equalities can be approximated using first-order Taylor series

expansions of the loading functions Fz and Fori in the neighbourhood of
(

σ
(k−1)
ij , z(k−1), ε

ori,(k−1)
ij

)

, which can then be solved iteratively. The Taylor

11



series approximations are written explicitly as follows:

F (k−1)
z +

∂Fz

∂σij

(k−1)

∆σ
(k)
ij

+
∂Fz

∂z

(k−1)

∆z(k) +
∂Fz

∂εoriij

(k−1)

∆ε
ori,(k)
ij = 0 (20)

F (k−1)
ori +

∂Fori

∂σij

(k−1)

∆σ
(k)
ij

+
∂Fori

∂z

(k−1)

∆z(k) +
∂Fori

∂εoriij

(k−1)

∆ε
ori,(k)
ij = 0 (21)

where ∆v(k) = v(k) − v(k−1) is the increment of variable v at iteration k.

If phase transformation and martensite orientation are active at the same

time, ∆z(k) and η(k) are obtained by solving the time-discrete equations (20)

and (21) simultaneously, where η(k) is the discrete inelastic multiplier used

to express the discrete normality rule at iteration k as

∆ε
ori,(k)
ij = η(k)N

(k)
ij . (22)

Nij in the previous equation is approximated at iteration k by its value

at the previous iteration, with the initial value corresponding to an elastic

prediction. Substituting (22) into (20) and (21) gives

F (k−1)
z +

∂Fz

∂σij

(k−1)

∆σ
(k)
ij +

∂Fz

∂z

(k−1)

∆z(k)

+ η(k)
∂Fz

∂εoriij

(k−1)

N
(k)
ij = 0, (23)

F (k−1)
ori +

∂Fori

∂σij

(k−1)

∆σ
(k)
ij +

∂Fori

∂z

(k−1)

∆z(k)

+ η(k)
∂Fori

∂εoriij

(k−1)

N
(k)
ij = 0. (24)
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The time-discrete stress-strain relation can then be written as

∆σ
(k)
ij = K

(k−1)
ijkl

[

∆ε
(k)
kl −

(

∆K
−1,(k)
ijkl σ

(k−1)
ij +∆z(k)ε

ori,(k−1)
kl + z(k−1)∆ε

ori,(k)
kl

)]

(25)

where ∆ε
(k)
kl = 0 because εij is not updated in the corrector step and the

increment of the elastic compliance tensor is given by

∆K
−1,(k)
ijkl =

(

KM,−1
ijkl −KA,−1

ijkl

)

∆z(k). (26)

Combining equations (22), (25) and (26) gives

∆σ
(k)
ij = −K

(k−1)
ijkl

[

R
(k−1)
kl ∆z(k) + z(k−1)η(k)N

(k)
kl

]

(27)

where

R
(k−1)
kl =

(

KM,−1
ijkl −KA,−1

ijkl

)

σ
(k−1)
ij + ε

ori,(k−1)
kl (28)

The increments of the martensite volume fraction ∆z(k) and the multiplier

η(k) can now be calculated as

∆z(k) =
A

(k)
oriF

(k−1)
ori −B

(k)
oriF

(k−1)
z

A
(k)
z B

(k)
ori −B

(k)
z A

(k)
ori

, (29)

η(k) =
B

(k)
z F (k−1)

z −A
(k)
z F (k−1)

ori

A
(k)
z B

(k)
ori −B

(k)
z A

(k)
ori

, (30)

where

A(k)
z =

∂Fz

∂z

(k−1)

−K
(k−1)
ijkl

∂Fz

∂σij

(k−1)

R
(k−1)
kl , (31)

A
(k)
ori =

∂Fz

∂εoriij

(k−1)

N
(k)
ij − z(k−1)K

(k−1)
ijkl

∂Fz

∂σij

(k−1)

N
(k)
kl , (32)

B(k)
z =

∂Fori

∂z

(k−1)

−K
(k−1)
ijkl

∂Fori

∂σij

(k−1)

R
(k−1)
kl , (33)

B
(k)
ori =

∂Fori

∂εoriij

(k−1)

N
(k)
ij − z(k−1)K

(k−1)
ijkl

∂Fori

∂σij

(k−1)

N
(k)
kl , (34)
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For phase transformation without martensite reorientation, the incre-

ment of martensite volume fraction at iteration k is given by the simple

equation

∆z(k) = −F (k−1)
z

A
(k)
z

. (35)

Similarly, the inelastic multiplier at iteration k in the case of martensite

reorientation without phase transformation is given by

η(k) = −F (k−1)
ori

B
(k)
ori

(36)

3.2. Derivation of a continuous material Jacobian

For small volume changes, the continuous material Jacobian at the be-

ginning of increment n+ 1 is given by

Jijkl =
dσij
dεkl

(37)

where the right-hand term is evaluated at the end of increment n.

The time-continuous stress-strain relation can be written in differential

form as

dσij = Kijkl [dεkl − (Rkldz + ηzNkl)] (38)

For combined phase transformation and martensite reorientation, substitut-

ing dz and η in the above with the expressions

dz =
AoriKijkl

∂Fori

∂σij
−BoriKijkl

∂Fz

∂σij

AzBori −BzAori

dεkl, (39)

η =
BzKijkl

∂Fz

∂σij
−AzKijkl

∂Fori

∂σij

AzBori −BzAori

dεkl, (40)
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leads to the following closed-form expression of the continuous material Ja-

cobian:

Jijkl =
dσij
dεkl

= Kijkl −KijpqRpq

AoriKrskl
∂Fori

∂σrs
−BoriKrskl

∂Fz

∂σrs
AzBori −BzAori

− zKijpqNpq

BzKrskl
∂Fz

∂σrs
−AzKijrs

∂Fori

∂σrs
AzBori −BzAori

(41)

The same procedure gives the following expressions of the material Jacobian

for the case of phase transformation with no reorientation of martensite and

for the case of martensite reorientation without phase transformation:

Jijkl =
dσij
dεkl

= Kijkl −KijpqRpq

Krskl

∂Fz

∂σrs
Az

(42)

and

Jijkl =
dσij
dεkl

= Kijkl − zKijpqNpq

Krskl

∂Fori

∂σrs
Bori

(43)

respectively.

3.3. Algorithmic setup

A “User Material” subroutine is developed for the simulation of phase

transformation and martensite reorientation in the finite element analysis

software Abaqus. The subroutine uses the implicit integration algorithm

presented below in order to update the stress components and the state

variables at the end of each load increment.

1. Read the parameters of the model,

2. Determine the elastic trial state:

• Calculate the increment of trial stress σ
(0)
ij,n+1 using (17),
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• Calculate initial trial values for the loading functions F (0)
z,n+1,F

(0)
ori,n+1;

3. If F (0)
z,n+1 ≤ 0 and F (0)

ori,n+1 ≤ 0, the trial solution is acceptable:

• Set the stress vector equal to the trial stress vector,

• Set the state variables to their values at the beginning of the

increment,

• Set the material Jacobian Jijkl equal to the elastic stiffness tensor

Kijkl;

4. Else if F (0)
z,n+1 ≤ 0 and F (0)

ori,n+1 > 0, (only martensite reorientation is

active):

• Calculate the increment of the inelastic multiplier ηn+1 using (30)

• Update the state variables,

• Calculate the material Jacobian Jijkl using (43);

5. Else if F (0)
z,n+1 > 0,F (0)

ori,n+1 ≤ 0 (only phase transformation is active):

• Calculate the increment of martensite volume fraction ∆zn+1 us-

ing (29),

• Update the state variables,

• Calculate the material Jacobian Jijkl using (42);

6. Else if F (0)
z,n+1 > 0 and F (0)

ori,n+1 > 0 (martensite reorientation or phase

transformation or both):

• Calculate the increment of the inelastic multiplier ηn+1 and the

increment of martensite volume fraction ∆zn+1 using (29) and

(30),

• (a) If (∆zn+1 > 0 and F1,(0)
z,n+1 > 0 and ηn+1 > 0) or (∆z < 0

and F2,(0)
z,n+1 > 0 and ηn+1 > 0), then (simultaneous phase

transformation and martensite reorientation):
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– Update the stress vector and the state variables,

– Calculate the material Jacobian Jijkl using Eq.(41);

(b) Else if (∆zn+1 < 0 and F1,(0)
z,n+1 > 0 and ηn+1 > 0) or

(∆zn+1 > 0 and F2,(0)
z,n+1 > 0 and ηn+1 > 0), then (martensite

reorientation only):

– Reset the state variables to their values at the beginning

of the increment,

– Calculate the inelastic multiplier ηn+1 using (30),

– Update the state variables,

– Calculate the material Jacobian Jijkl using (43);

(c) Else if (∆zn+1 > 0 and F1,(0)
z,n+1 > 0 and ηn+1 < 0) or (∆z < 0

and F2,(0)
z,n+1 > 0 and ηn+1 < 0, then (phase transformation

only):

– Reset the state variables to their values at the beginning

of the increment,

– Calculate the increment of martensite volume fraction

∆zn+1 using (29),

– Update the state variables,

– Calculate the material Jacobian Jijkl using (42).

4. Results and discussions

The problem defined in the previous section is solved by means of the

finite element method for several superelastic SMA structures subjected to

uniaxial and multiaxial proportional and nonproportional loading. The sec-

tion is organized as follows:
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• Proportional loading is considered in section 4.1, which includes nu-

merical simulation results for pure tension, pure torsion, as well as

multiaxial tension-torsion and tension-internal pressure loading that

are compared to experimental data from Bouvet et al. (2004).

• A hypothetical situation involving nonproportional loading is presented

in section 4.2 in order to investigate the ability of the model to account

for multiaxial loading in presence of simultaneous phase transforma-

tion and martensite reorientation.

• In section 4.3, the model is used to simulate a number of numerical

as well as experimental results available in the literature for SMAs

subjected to nonproportional multiaxial loading. The reference data

used for the validation are those reported by Sittner et al. (1995),

Bouvet et al. (2002), Stebner and Brinson (2013), Panico and Brinson

(2007), Arghavani et al. (2010), Grabe and Bruhns (2009). In each

case, the parameters used for the simulations using the ZM model

were obtained by curve fitting to a subset of the reported data.

4.1. Simulation of proportional loading cases

The four loading cases shown in figure 1 are considered in this section,

ranging from pure tension (path 1) to pure shear (path 2). Paths 3 and 4

represent combined tensile-shear loading where tension is dominant for path

3 and shear is dominant for path 4.

The simulations are performed on a single 8-node hexahedral element

with reduced integration. A maximum von Mises equivalent stress of 800 MPa

is achieved in each loading case and a constant temperature T = 340 K is

considered for which the shape memory alloy is superelastic. The parameters
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Figure 1: Stress-controlled proportional loading cases.

used for the simulations are listed in table 1.

Parameter Value Parameter Value

EA 30340 MPa a 5.16 MPa

EM 18000 MPa b 6.36 MPa

ν 0.3 ε0 0.04

Y 30 MPa G 13.17 MPa

α 500 MPa β 1250 MPa

ξ 0.20 MPa κ 4.16 MPa

A0
f 300 K T 340 K

Table 1: Material Parameters used for the finite element simulations in section 4.1

The simulated uniaxial response of the material is shown in figures 2(a)

for tensile loading and 2(b) for shear loading. The obtained superelastic

loops are identical in shape up to a scaling factor of
√
3 along the coordinate

axes.

Simulation results for the combined loading cases corresponding to the

loading paths 3 and 4 on figure 1 are shown in figures 3 and 4. In both
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Figure 2: Simulated stress-strain behavior for pure tension and pure shear loading.

cases, tensile and shear superelasticity is obtained with full inelastic strain

recovery when the load is removed.

0100200300400500600
0 0.02 0.04 0.06 0.08 0.1 0.12A xi alSt ressσ;Sh earSt ress

τ[MP a]
Axial Strain ε; Shear Strain γ Path 3: TensionPath 3: Shear

(a)

00.020.040.060.080.10.12
0 0.01 0.02 0.03 0.04 0.05 0.06Sh earSt rai nγ Axial Strain ε

(b)

Figure 3: Simulated stress-strain behavior and shear versus axial strain for tension-

dominated tensile-shear loading (loading path 3).

The model is now used to simulate the behavior of a thin-wall SMA cylin-

der following Bouvet et al. (2004). The cylinder is subjected to proportional

multiaxial loading consisting of a combination of axial loading and internal

pressure. The material parameters used for the simulation are reported in

table 2.
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Figure 4: Simulated stress-strain behavior and shear versus axial strain for shear-

dominated tensile-shear loading (loading path 4).

Parameter Value Parameter Value

EA 45200 MPa a 0.24 MPa

EM 26400 MPa b 0.096 MPa

ν 0.3 ε0 0.008

Y 30 MPa G 1.92 MPa

α 2500 MPa β 6250 MPa

ξ 0.0145 MPa κ 0.038 MPa

A0
f 300 K T 340 K

Table 2: material parameters obtained using data form Bouvet et al.(2004).

The loading considered in this case corresponds to the hoop versus axial

stress shown in figure 5, in which a constant slope is obtained because of

the proportional nature of the load.

The resulting stress-strain behavior of the material is shown in figure 6 where

two superelastic stress-strain loops are shown representing the material be-

havior in the axial and hoop directions respectively. The simulations are

in good agreement with the experimental data in both cases. In particular,
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Figure 5: Proportional tension-internal pressure loading.

020406080
100120140160180

0 0.002 0.004 0.006 0.008 0.01 0.012A xi alSt ressσ zz[MP a] Axial Strain εzz ExperimentPresent ModelBouvet2004
(a)

0102030
40506070
�0.004 �0.003 �0.002 �0.001 0 0.001H oopSt ressσ θθ[MP a] Hoop Strain εθθExperimentPresent ModelBouvet2004

(b)

Figure 6: Stress-strain behavior of the SMA in the axial and hoop directions

the model provides improved prediction of the material behavior in the hoop

direction. Deviation from the experimental data may be due to a number

of reasons, including the use of von Mises equivalent stress in the present

version of the model, which cannot reproduce potential asymmetry in the

material response.

4.2. Multiaxial reorientation tests

A preliminary numerical simulation test is performed in this section in

order to illustrate the ability of the model to simulate simultaneous phase

transformation and martensite reorientation and to account for martensite
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reorientation at saturation, in which case the equivalent orientation strain

reaches its maximum value ε0. In case the loading magnitude continues

to increase beyond the saturation point, the components of the orientation

strain tensor εoriij may continue to evolve to accommodate possible modifica-

tions in the loading direction while the equivalent orientation strain remains

constant.

The parameters used in this section are those listed in table 1. The

proposed simulation involves an axial loading corresponding to a maximum

normal stress of 450 MPa followed by an increase in shear stress from 0 to

200 MPa as shown in figure 7(a). The maximum normal stress is such that

maximum inelastic strain is achieved in tension (complete transformation

of austenite to fully oriented martensite) as shown in figure 7(b). The su-

perposition of shear stress leads to an increase in the yz strain component

at the expense of the normal xx strain in such way that the total equiv-

alent orientation strain remains constant (same figure). The evolution of

the inelastic strain components is an expression of the physical process of

martensite reorientation, in which preferred martensite variants form at the

expense of other variants that are less-favorably oriented with respect to the

applied load. From a phenomenological point of view, within the frame of

the ZM model for shape memory alloys, this behavior is captured through

the use of the loading function for martensite orientation Fori.

Further testing of the model is carried out using the square loading path

shown in figure 8(a), which consists of the following loading steps starting

from an unloaded state:

1. Tensile loading up to a maximum tensile stress of 250 MPa (segment

AB on the figure),
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Figure 7: Simulation of martensite reorientation under multiaxial loading: (a) axial-shear

loading path; (b) evolution of the martensite volume fraction and orientation strain.

2. Shear loading up to a maximum shear stress of 250 MPa (segment

BC),

3. Compression up to a maximum compressive normal stress of 250 MPa

(segment CD),

4. Shear reversal (segment DE),

5. Tensile loading up to a maximum tensile stress of 250 MPa (segment

EF),

6. Unloading of shear stress (segment FG),

7. Unloading of tensile stress (segment GA), leading to complete unload-

ing of the material.

The parameters used are those listed in table 5. The results of the simulation

are reported in figure 8(b) as shear strain in terms of normal strain. An

elastic response is also shown in the same figure for reference.

The evolution with the loading time of the martensite volume fraction

and the orientation strain is shown in figure 9.

It is clear from the figures that the initial tensile loading is not sufficient
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Figure 8: Biaxial non-proportional loading: (a) stress-controlled axial-shear loading, (b)

shear versus axial strain response.
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Figure 9: Evolution of the martensite volume fraction and orientation strain.

to cause inelastic deformation. The material behavior for loading step 1

therefore coincides with the reference elastic behavior. The superposition

of shear in load step 2 increases the values taken by the loading functions

for phase change and martensite reorientation leading to shear-dominated

inelastic deformation as shown in figure 9. The onset of this deformation

corresponds to a deviation from the vertical direction of the portion BC of

the shear versus tensile strain curve in figure 8(b) as shear orientation strain

starts to develop at the expense of normal strain (figure 9, step time 1–2).
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Further tensile/shear loading in load steps 3 to 7 results in the evolution

of the inelastic strain along the elliptic arcs CD, DE, EF and FG in figure

8(b). Complete strain recovery is then obtained upon complete unloading

in load step 8. It can be observed that the strain at point G in in figure

8(b), corresponding to time step 6 in figure 9, still comprises a residual

shear component despite the removal of shear loading. This observation is

a manifestation of martensite reorientation in presence of non-proportional

loading, which results in the inelastic strain not being aligned with the stress.

Despite the total inelastic strain being recoverable by unloading, individual

strain components do not vanish if the corresponding stress components are

unloaded. Rather, the components of the inelastic strain tensor are scaled

down in magnitude when the volume fraction of martensite decreases. This

is consistent with the physics of superelastic deformation in SMAs, where

shape recovery results from the transformation of martensite into austenite,

not from the inelastic deformation being recovered within the martensite

phase.

4.3. Validation of the model

The model is used to simulate a number of cases reported in the liter-

ature involving superelastic shape memory alloys subjected to nonpropor-

tional loading. Both stress- and strain-controlled experiments are consid-

ered using data obtained by several research groups including Sittner et al.

(1995), Bouvet et al. (2002), Stebner and Brinson (2013), Panico and Brin-

son (2007), Arghavani et al. (2010), Grabe and Bruhns (2009).

4.3.1. Strain-controlled tension-shear loading

Following the recently published work of Stebner and Brinson (2013), a

SMA sample modelled as a single hexahedral mesh element, is subjected to
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Parameter Value Parameter Value

EA 82675 MPa a 4.79 MPa

EM 35000 MPa b 5.39 MPa

ν 0.4 ε0 0.038

Y 30 MPa G 4.48 MPa

α 789.5 MPa β 3421 MPa

ξ 0.19 MPa κ 2.32 MPa

A0
f 300 K T 340 K

Table 3: Parameters used for simulating SMA behavior in presence of nonproportional

loading following Stebner and Brinson (2013).

the displacement-driven loading shown in figure 10(a). The loading involves

nonproportional tensile-shear strain in which a maximum tensile strain of

0.04 is achieved. The material parameters used for the simulation, equivalent

to those in Stebner and Brinson (2013), are listed in table 3. The temper-

ature used for the simulation is artificial and is only meant to guarantee

superelastic behavior of the shape memory alloy.

The displacement-controlled loading results in square-shaped shear strain

versus normal strain behavior. The stress curve in figure 10(b) has a more

complicated shape, which underlines the well-established nonlinearity in

SMA behavior. Numerical simulations are in agreement with those ob-

tained by Stebner and Brinson (2013). A better fit can likely be obtained by

fine-tuning the parameters of the ZM model. Some deviation is inevitable

however because of intrinsic differences between the two models.

The time evolution of the equivalent von Mises stress and the marten-

site volume fraction is shown in figure 11. Notable differences between the
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Figure 10: Numerical prediction of the stress and strain behavior of the SMA and com-

parison with numerical simulation results from (Stebner and Brinson, 2013).
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Figure 11: Evolution of the von Mises equivalent stress and martensite volume fraction

with loading time.
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simulation results of the two models include a steeper increase in the vol-

ume fraction of martensite from time step 1 to 2, which indicates that a

more pronounced hardening is predicted by the ZM model leading to higher

maximum value of the martensite volume fraction z at time step 2 that per-

sists in subsequent load steps. In addition, the curve predicted by the ZM

model features flat portions that indicate a delay in martensite reorientation

with respect to changes in the loading direction. The delay is related to the

formulation of the phase transformation function, which decreases slightly

when the shear or tensile strain components decrease at the beginning of

load steps 3, 4 and 8 (time steps 2-3, 3-4 and 7-8 respectively). The flat

portions are indeed accompanied with a decrease of the von Mises equivalent

stress, which strongly influences the phase transformation functions. Such

decrease is not observed in the simulations of Stebner and Brinson (2013),

which results in the absence of flat plateaus.

4.3.2. Strain-controlled tension-torsion loading

Experimental data reported by Grabe and Bruhns (2009) shows a strong

dependence of the material behavior on the loading history. The loading

considered by the authors is the one shown in figure 12(a), which consists in

two strain-controlled butterfly loading paths that start and end at the same

unloaded state. The maximum axial and shear strains reached in each case

are ε = γ
′

= γ/
√
3 = 0.015. Path 2 follows the loading sequence for path 1

in reverse order, such that the same intermediate states of shear and axial

strain are achieved. The resulting material response in figure 12(b) shows a

clear difference in terms of the shear versus axial stress curves corresponding

to the two loading cases.

The experiments by Grabe and Bruhns (2009) are simulated using the
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Parameter Value Parameter Value

EA 46800 MPa a 0.85 MPa

EM 18800 MPa b 0.31 MPa

ν 0.3 ε0 0.01

Y 30 MPa G 2.19 MPa

α 2000MPa β 5000 MPa

ξ 0.22 MPa κ 0.6 MPa

A0
f 300 K T 340 K

Table 4: Parameters used for the simulations following Grabe and Bruhns (2009).

ZM model with the parameters listed in table 4. Since the original ZM

model is used, in which asymmetry in the material behavior is not consid-

ered, the simulations could not predict the tensile-compressive asymmetry

seen in figure 12(b). The overall agreement with the experimental data

remains satisfactory nevertheless and does produce a trend similar to the

one observed in the figure 12(b), where the first load path results in shear

stresses with higher magnitudes in the second and third quadrants and lower

magnitudes in the first and fourth quadrants compared to the shear stresses

obtained with the second load path for extremal values γ
′

= ±0.015 of the

shear strain. A good fit is also achieved for the stress-strain behavior in

shear shown in figure 12(d). The difference between the experimental and

simulation results is more pronounced, however, for the axial stress-strain

curves in figure 12(c).
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Figure 12: Comparison of experimental and simulation results for the butterfly strain-

controlled loading in figure 12(a).
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4.3.3. Stress-controlled tension-torsion loading

Experimental data from Sittner et al. (1995) is used to validate the

model for the case of nonproportional stress-controlled loading in tension

and torsion. The experiments were carried out on thin-walled cylindrical

SMA samples. The authors used the following expressions for the equivalent

stress and strain in reporting their results:

σeq =
√

σ2 + τ2inv τinv = CSτ, (44)

εeq =
√

ε2 + γ2inv γinv =
γ

CE
, (45)

where τinv and γinv are energetically equivalent shear stress and strain and

CS and CE are empirical coefficients. von Mises equivalent stress and strain

are obtained for CS = CE =
√
3. The above expressions for the equivalent

stress and strain do not appear to be frame-invariant for the choice of CS

considered in the referenced paper. Since different expressions are used for

σeq and εeq in the ZM model, two different loading cases are considered for

the finite element simulations:

1. The first loading case is shown in figure 14(a), in which the normal

and shear stress used for the simulation are exactly those reported in

Sittner et al. (1995), but the equivalent stress is not the same.

2. The second loading case is shown in figure 16(a), in which the shear

stress used for the simulation produces an equivalent stress identical

to the one in Sittner et al. (1995).

For the first loading case, the material parameters used for the simula-

tions are listed in table 5.

The parameters provide an acceptable fit of the uniaxial SMA response in

tension and in shear as shown in figure 13. The experimental results of Sit-
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Parameter Value Parameter Value

EA 30340 MPa a 1.84 MPa

EM 18000 MPa b 1.3950 MPa

ν 0.3 ε0 0.02

Y 30 MPa G 11.46 MPa

α 1000 MPa β 2500 MPa

ξ 0.116 MPa κ 1.34 MPa

A0
f 300 K T 340 K

Table 5: Material parameters used for the simulation of nonproportional loading of SMAs

following Sittner et al. (1995).

tner et al. (1995) as well as numerical simulations by Arghavani et al. (2010);

Panico and Brinson (2007) are reported on the same figures for comparison.

The results are in good agreement overall, with the model predictions be-

ing particularly consistent with those of Arghavani et al. (2010). This is

likely because both the ZM model and the model by Arghavani et al. (2010)

propose similar loading functions and evolution rules for the inelastic de-

formation of SMAs. Because of the intrinsically different expressions used

for the equivalent stress and strain, it is not possible to accurately fit the

material behavior in tension and shear simultaneously to those reported by

Sittner et al.

In order to validate the model for the case of nonproportional loading,

the loading shown in figure 14(a) is considered. The sample is first subjected

to tensile loading corresponding to an increase in normal stress from 0 to

240 MPa. Shear is then applied up to a maximum shear stress of 195 MPa

and then removed. The material behavior predicted by the model is shown in

terms of shear versus axial strain in figure 14(b). The stress-strain behavior
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Figure 13: Tensile and shear stress-strain curves used to determine the parameters of the

ZM model.

in tension and shear is shown in figures 14(c) and 14(d) respectively. In

these figures, the results of numerical simulations using the ZM model are in

good agreement overall with the experimental data and with the predictions

of the other models considered. From figure 14(b), the material response

appears to remain elastic throughout the tensile loading step and starts to

become inelastic during the subsequent shear loading step where a deviation

from the vertical direction is observed at an approximate shear strain of

0.005. In addition, it is interesting to observe that the predicted axial strain

continues to increase during tensile unloading at constant shear stress, which

is inconsistent with the experimental curve. A similar observation can also

be made for the results obtained by Panico and Brinson (2007). The stress-

strain behavior of the material in tension and in shear is shown in figures

14(c) and 14(d) respectively. In figure 14(c), it is interesting to see that the

experimental curve appears to be nonlinear during the final unloading step,

suggesting either an inelastic or a nonlinear elastic behavior of the material,

which is not predicted by any of the models.
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(d) Stress-strain behavior in shear

Figure 14: Experimental versus simulation results for the square tension-shear loading in

figure 14(a).
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Figure 15: Experimental and simulation results for the triangular tension-shear loading

in figure 15(a).

Further validation is shown in figure 15(b) considering the case of tri-

angular loading in figure 15(a). The model predicts the experimental shear

versus tensile strain curve to good accord. A notable deviation is observed

during the tensile loading step, in which the material appears to develop

shear strain in the absence of shear stress. Such behavior may be caused

by an anisotropic behavior of the material, in which case a full stiffness ten-

sor may result in the dependence of shear strain on normal stress. Another

explanation could be an imprecise experimental setup or inaccurate data ac-

quisition. For the second loading case shown in figure 16(a), the parameters

of the model are those in table 6.

The parameters are chosen to properly fit the equivalent stress-strain curve

in figure 16(e). As shown in figures 16(b) to 16(d), a better agreement with

the experimental data is achieved in this case. Further validation is shown

in figure 17(b) for the triangular loading in figure 17(a).
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Parameter Value Parameter Value

EA 30000 MPa a 0.99 MPa

EM 18000 MPa b 0.25 MPa

ν 0.3 ε0 0.001

Y 30 MPa G 3.5 MPa

α 2000 MPa β 50000 MPa

ξ 0.0028 MPa κ 0.97 MPa

A0
f 300 K T 340 K

Table 6: Material parameters used for simulating the experimental data in Sittner (1995)

for the loading case in figure 16(a).

4.3.4. Stress-controlled tension-internal pressure loading

For this last validation, the reference experimental data are those ob-

tained by Bouvet et al. (2002) for a tubular CuAlBe SMA sample subjected

to nonproportional loading consisting of combined tension and internal pres-

sure. The parameters used for the simulation are listed in table 3. They

are determined using the tensile stress-strain curve in figure 18. The sample

is subjected to the loading shown in figure 19(a), which corresponds to an

increase in axial stress to 140 MPa, followed by an increase in the hoop

stress to 140 MPa as well. The load is then removed in accordance with the

square path shown.

The results are calculated by averaging along the thickness of the sample

of the computed stress and strain for a point far from the two ends of the

cylinder. The predicted strain response is shown in terms of hoop versus

axial strain in figure 19(b). The simulated strain curve is in agreement with

the experimental data and with numerical results from Arghavani et al.

(2010). Strain curves corresponding to the interior and exterior surfaces of
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Figure 16: Experimental versus simulation results for the loading shown in figure 16(a).

the cylinder are shown for reference on the same figure. The simulation

results that better represent the experimental data are those obtained for a
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Figure 17: Experimental versus simulation results for the triangular tension-shear loading

in figure 17(a).
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Figure 18: Uniaxial tensile curve used to determine the parameters of the ZM model.
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Figure 19: Simulation of the experimental data by Bouvet et al. (2002).

point located on the external wall of the sample. The curves present notable

differences that result from the relatively low radius-to-thickness ratio of the

sample used by Bouvet et al. (2002), which is 4.67. The assumption of a

thin-walled cylinder may not therefore be adequate. The stress gradient

across the thickness is indeed not negligible as shown in figure 20.

5. Conclusion

Numerical integration of the ZM model was presented in detail for the

general case of SMAs undergoing phase transformation and martensite de-

twinning and reorientation. The proposed derivations include an analytical
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(a) Radial stress in MPa
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(b) Hoop stress in MPa

Figure 20: Stress variation in the radial direction for the cylinder used for numerical

simulations.

expression for the continuous material Jacobian. The algorithmic aspects

needed to properly detect active loading states for phase transformation

and martensite reorientation, which may potentially take place at the same

time, were properly explained. The algorithm was then implemented for

use in finite element analysis by means of a user-material subroutine. The

model was successfully used in predicting experimental and numerical data

obtained by several research groups for SMA samples subjected to different

types of multiaxial nonproportional loading. The samples ranged from a

simple rectangular brick, meshed with a single linear element, to a Nitinol

thin-wall cylinder. The loading cases considered varied from simple tension

and shear, to combined loading involving tension, shear, and internal pres-

sure leading to complex distributions of stress states within the material. In

all these cases, the predictions of the model were in reasonable agreement

with the reference data.

The proposed developments are part of an effort undertaken by the re-

search team to develop numerical simulation capabilities that can be later

used to analyze crack propagation and failure by fatigue of SMA devices in
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presence of heterogeneous and multiaxial stress states.
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