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Introduction and main results

Let (M, g) be a smooth compact connected Riemannian manifold of dimension d-1, without boundary. We denote by Ric the Ricci tensor and by λ M 1 the lowest positive eigenvalue of the Laplace-Beltrami operator -∆ g on M. Let us define the minimum of the Ricci curvature of M by κ := inf M inf ξ∈S d-2 Ric(ξ , ξ) and consider the infinite cylinder C := R × M. We shall denote by x = (s, z) the variable on C, so that the Laplace-Beltrami operator on C can be written as -(∂ 2 s + ∆ g ). For simplicity, we shall assume that vol g (M) = 1, so that V L q (C) = V L q (R) if V is a potential that depends only on s. The goal of this note is to compare

Λ(µ) := sup λ C 1 [V ] : V ∈ L q (C) , V L q (C) = µ and Λ R (µ) := sup λ R 1 [V ] : V ∈ L q (R) , V L q (R) = µ where -λ C 1 [V ] and -λ R 1 [V ]
denote the lowest eigenvalues of the Schrödinger operators -∂ 2 s -∆ g -V and -∂ 2 s -V respectively on C and R. What we aim at is a symmetry result that allows us to characterize the regime in which optimal potentials depend only on s. The expression of Λ R (µ) was found by J.B. Keller in [START_REF] Keller | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF] and later rediscovered by E.H. Lieb and W. Thirring in [START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF]. We refer to this result as the Keller-Lieb-Thirring inequality, and to [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF] for its use in the context of Caffarelli-Kohn-Nirenberg inequalities. Let us define

µ 1 := q (q -1) √ π Γ(q) Γ(q+1/2) 1/q .
Lemma 1 [START_REF] Keller | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF] Assume that q ∈ (1, +∞). Then we have

Λ R (µ) = (q -1) 2 µ/µ 1 β ∀ µ > 0 , with β = 2 q 2 q-1 . As a consequence, if V is a nonnegative real valued potential in L q (R), then we have λ R 1 [V ] ≤ Λ R ( V L q (R)
) and equality holds if and only if, up to scalings, translations and multiplications by a positive constant,

V (s) = q (q -1) (cosh s) 2 =: V 1 (s) ∀ s ∈ R where V 1 L q (R) = µ 1 , λ R 1 [V 1 ] = (q -1) 2 .
Moreover the function ϕ(s) = (cosh s) 1-q generates the corresponding eigenspace.

The classical Keller inequality in

R d asserts that for all γ ≥ 0 if d ≥ 3, γ > 0 if d = 2, and γ > 1/2 if d = 1, the lowest negative eigenvalue, -λ R d 1 [V ], of the operator -∆ -V satisfies λ R d 1 [V ] γ ≤ L 1 γ,d V + γ+d/2 L γ+d/2 (R d ) ∀ V ∈ L q (R d ) where L 1 γ,d = sup ∇u 2 L 2 (R d ) + u 2 L 2 (R d ) -(γ+d/2) : u L p (R d ) = 1
is the best constant in the inequality if q = p/(p -2). See [START_REF] Keller | Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation[END_REF][START_REF] Lieb | Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities[END_REF][START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates[END_REF] for details. In the case of infinite cylinders, with q = γ + d/2 and µ = V + L a (R d ) → +∞, the inequality in R d asymptotically determines the semi-classical regime for Λ(µ), but another regime appears for cylinders when µ > 0 is not too large, as in the case of compact manifolds. This is the content of our main result, Theorem 2, for which we need one more definition. Let us introduce

λ θ := 1 + δ θ d -1 d -2 κ + δ (1 -θ) λ M 1 with δ = n -d (d -1) (n -1)
,

where the dependence on θ will be discussed at the end of this note, and define

λ ⋆ := λ θ⋆ where θ ⋆ := (d -2) (n -1) 3 n + 1 -d (3 n + 5) (d + 1) d (n 2 -n -4) -n 2 + 3 n + 2 .
Theorem 2 Let d ≥ 2 and q ∈ (d/2, +∞). The function µ → Λ(µ) is convex, positive and such that

Λ(µ) q-d/2 ∼ L 1 q-d 2 , d µ q as µ → +∞ . Moreover, there exists a positive µ ⋆ with λ ⋆ 2 (q -1) µ β 1 ≤ µ β ⋆ ≤ λ M 1 2 q -1 µ β 1 (1)
and β = 2 q 2 q-1 , such that

Λ(µ) = Λ R (µ) ∀ µ ∈ (0, µ ⋆ ] and Λ(µ) > Λ R (µ) ∀ µ > µ ⋆ .
As a special case, if M = S d-1 , inequalities in (1) are in fact equalities.

In other words, we have shown the Keller-Lieb-Thirring inequality on the cylinder C:

λ C 1 [V ] ≤ Λ V + L q (C) ∀ V ∈ L q (C) (KLT)
where the function Λ : R + → R + has the properties stated in Theorem 2. If V + L q (C) ≤ µ ⋆ , optimality is achieved, up to scalings, translations and multiplications by a positive constant, by the potential V 1 of Lemma 1. This is based on a rigidity result which, in contrast with results on compact manifolds, involves a non-constant function.

The existence of the function µ → Λ(µ) is an easy consequence of a Hölder estimate:

∂ s u 2 L 2 (C) + ∇ g u 2 L 2 (C) - R V |u| 2 ds ≥ ∂ s u 2 L 2 (C) + ∇ g u 2 L 2 (C) -µ u 2 L p (C)
with µ = V + L q (C) and q = p/(p -2), and of the Gagliardo-Nirenberg-Sobolev inequality

∂ s u 2 L 2 (C) + ∇ g u 2 L 2 (C) + λ u 2 L 2 (C) ≥ µ(λ) u 2 L p (C) ∀ u ∈ H 1 (C) , (GNS) 
where λ > 0 is a parameter and µ(λ) is the corresponding optimal constant. The existence of an optimal function for (GNS) can be argued as in [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF]. Inverting λ → µ(λ) provides us with µ → Λ(µ). See [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF] for details and basic properties in a similar case.

The most important point in Theorem 2 is the issue of symmetry and symmetry breaking. We shall say that there is symmetry if equality in (KLT) is achieved by functions depending only on s, and symmetry breaking otherwise. By the method used in [START_REF] Dolbeault | On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities[END_REF], there is a continuous curve p → µ ⋆ (p) defined on (2, 2 * ) such that symmetry holds if µ ≤ µ ⋆ and symmetry breaking holds if µ > µ ⋆ . It is then clear from the definition of Λ and Λ ⋆ that Λ(µ) ≥ Λ R (µ) with equality if and only µ ≤ µ ⋆ . The main issue is henceforth to estimate µ ⋆ . Our contribution is based on two perturbation methods:

(i) For µ large enough, a non-radial perturbation of an optimal symmetric potential shows symmetry breaking. This is done in the spirit of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF]. The computation gives the upper bound on µ ⋆ and a detailed proof is given in Section 2. (ii) For µ not too large, symmetry holds. A sketch of a proof is given in Section 3. The key idea is to consider an optimal potential, symmetric or not, and perturb it adequately to prove that it has to be symmetric. The perturbation depends nonlinearly on the minimizer. The proof is not done at the level of (KLT), but at the level of the dual (GNS) inequality. This gives the lower bound on µ ⋆ . Details will be given in a forthcoming paper, [START_REF] Dolbeault | Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces[END_REF].

Apart from Euclidean spaces, very little is known on estimates like the ones of Theorem 2. A quantitative but non optimal result has been established in [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF]Corollary 8]. Some results of symmetry for (KLT) type inequalities have been established for compact manifolds without boundary, see [START_REF] Dolbeault | Spectral estimates on the sphere[END_REF][START_REF] Dolbeault | Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates[END_REF], and for bounded convex domains in R d in relation with the Lin-Ni conjecture, see [START_REF] Dolbeault | Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates[END_REF]. To our knowledge, the case of non compact manifolds was open so far, apart from the case of the line which was studied in [START_REF] Dolbeault | One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows[END_REF] and the partial results of [START_REF] Dolbeault | Symmetry of extremals of functional inequalities via spectral estimates for linear operators[END_REF]. Here we give a result which is optimal when M is a sphere. Let us finally notice that various observations connecting the sphere, the Euclidean space and the line have been collected in [START_REF] Dolbeault | One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows[END_REF].

One-dimensional potentials: proof of Lemma 1 and non-symmetric instability

We start by a short proof of Lemma 1 for the sake of completeness. Notations will be reused in the proof of Lemma 3.

Proof of Lemma 1. By applying Hölder's inequality, we get that

R |∂ s u| 2 ds - R V |u| 2 ds ≥ ∂ s u 2 L 2 (R) -µ u 2 L p (R) ≥ -λ u 2 L 2 (R)
,

where µ = V L q (R) and q = p/(p -2). With V = V 1 , λ is chosen such that µ(λ) = µ 1 := V 1 L q (R)
where µ(λ) is the optimal constant in the inequality

∂ s u 2 L 2 (R) + λ u 2 L 2 (R) ≥ µ(λ) u 2 L p (R) ∀ u ∈ H 1 (R) .
It is standard (see for instance [START_REF] Dolbeault | One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows[END_REF]) that the function ϕ(s) = (cosh s) -2/(p-2) is optimal for the inequality written with µ = µ 1 and solves

-(p -2) 2 ∂ 2 s ϕ + 4 ϕ -2 p ϕ p-1 = 0 . Altogether, this proves Lemma 1 when µ = µ 1 and λ 1 [V 1 ] = 4 (p-2) 2 = (q -1) 2 because u = ϕ and V = V 1 = 2 p
(p-2) 2 ϕ p-2 = q (q -1) ϕ p-2 corresponds to the equality case in Hölder's inequality. More details can be found in [START_REF] Dolbeault | Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations[END_REF].

If

µ = µ 1 , we can use scalings. Let V ν (s) = ν 2 V (ν s). If u 1 = 0 solves -∂ 2 s u 1 -V u 1 + λ 1 [V ] u 1 = 0 , then u ν (s) = u 1 (ν s) is an eigenfunction associated with λ 1 [V ν ] = ν 2 λ 1 [V ]. A change of variables shows that V ν L q (R) = ν 2-1/q V L q (R) . Optimality is therefore achieved for V ν ∈ L q (R) with V ν L q (R) = µ > 0 if and only if ν 2-1/q = µ/µ 1 and V (s) = V 1 (s -s 0 ) for some s 0 ∈ R, where V 1,µ (s) = ν 2 V 1 (ν s) ∀ s ∈ R with ν = µ/µ 1 q 2 q-1 .
The corresponding eigenfunction is, up to a multiplication by a constant, ϕ µ (s) = ϕ(ν s). The lowest eigenvalue for V ∈ L q (R) such that V L q (R) = µ, which realizes the equality in the Keller-Lieb-Thirring inequality, is

λ 1 [V 1,µ ] = λ 1 [V 1 ] ν 2 = Λ R (µ)
. This completes the proof of Lemma 1.
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Next let us consider a function V of x = (s, z) ∈ C. Inspired by the results of [START_REF] Catrina | On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions[END_REF][START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] for Caffarelli-Kohn-Nirenberg inequalities, we can prove that V 1,µ , considered as a function on C, cannot be optimal for the Keller-Lieb-Thirring inequality on C if µ is large enough.

Lemma 3 With the above notations and assumptions, let V = V (s, z) be a nonnegative real valued potential in L q (C) for some q > d/2 and let -λ C 1 [V ] be the lowest eigenvalue of the Schrödinger operator

-∂ 2 s -∆ g -V . If Λ R (µ) > 4 λ M 1 /(p 2 -4), then sup λ C 1 [V ] : V ∈ L q (C) , V L q (C) = µ > Λ R (µ)
, that is, the above maximization problem cannot be achieved by a potential V depending only on the variable s. The condition Λ R (µ) > 4 λ M 1 /(p 2 -4) is explicit and equivalent to µ β > µ β 1 λ M 1 /(2 q -1). Proof. Let ϕ µ be as in the proof of Lemma 1. We argue by contradiction and consider To any potential V ≥ 0 we associate the pressure function

p V (r) := r V (s) -1 2 ∀ r = e -αs . With α = 1 q-1 Λ R (µ), let us define K[p] := 2q -1 2 q α 4 R + ×M p ′′ - p ′ r - ∆ g p α 2 (2q -1) r 2 2 p 1-2q dµ + 2 α 2 R + ×M 1 r 2 ∇ g p ′ - ∇ g p r 2 p 1-2q dµ + λ ⋆ - 2 q -1 Λ R (µ) R + ×M |∇ g p| 2 r 4 p 1-2q dµ ,
where dµ is the measure on R + × M with density r 2q-1 , and ′ denotes the derivative with respect to r.

Lemma 5 There exists a positive constant c such that, with the above notations, if V is a critical point of J under the constraint

V L q (C) = µ, then K[p V ] = 0.
The sketch of the proof is as follows. Because V is critical point, we know that

0 = J ′ [V ] • V 1-q ∂ s e -2(q-1)αs ∂ s e (2q-1)αs V 2q-1 2 + e αs ∆ g V 2q-1 2
.

On the other hand, it has been shown in [START_REF] Dolbeault | Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces[END_REF] that the r.h.s. is greater or equal than a positive constant times

K[p V ].
Sketch of the proof of Theorem 2. If µ < µ ⋆ , then λ ⋆ -2 q-1 Λ R (µ) is positive and we read from the expression of K[p V ] that p V depends only on r or, equivalently, V depends only on s. Up to scalings, translations and multiplications by a positive constant, we get that V = V 1 as defined in Lemma 1. 2 Note that the constant λ ⋆ is an estimate of the largest constant λ such that

M 1 2 ∆ g (|∇ g f | 2 ) -∇ g (∆ g f ) • ∇ g f -1 2q-1 (∆ g f ) 2 -λ |∇ g f | 2 f 1-2q dv g ≥ 0 ,
for any positive function f ∈ C 3 (M). It is estimated by λ θ with θ ∈ [θ ⋆ , 1], according to [START_REF] Dolbeault | Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces[END_REF]. In the case of the sphere, that is, M = S d-1 , we have that d-1 d-2 κ = λ M 1 and λ θ = 1 + δ d-1 d-2 κ = d-2 d-1 + δ λ M 1 is independent of θ. Otherwise, by Lichnerowicz' theorem, we know that d-1 d-2 κ ≤ λ M 1 . Hence θ → λ θ is a non-increasing function, and since θ ⋆ is always negative, we have a simple lower bound for λ ⋆ :

λ ⋆ ≥ λ 0 = κ + δ λ M 1 .
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.

Here ψ 1 denotes an eigenfunction of -∆ g on M such that ψ 1 L 2 (M) = 1 and -

and since (p -1) q (q -1) = 2 p (p-1) (p-2) 2 , we get that

According to [5, Appendix A], we see that

Hence we finally find that

The condition found by V. Felli and M. Schneider in [START_REF] Felli | Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type[END_REF] can be recovered by noticing that λ S d-1 1 = d -1, when M = S d-1 . In that case, the above computation are exactly equivalent to the computations for Caffarelli-Kohn-Nirenberg inequalities: see [START_REF] Dolbeault | One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows[END_REF] for details.

Symmetry: a rigidity result

In this section we get a lower bound on µ ⋆ and complete the proof of Theorem 2. Let us define

.

We shall consider a critical point of J and prove that it is symmetric using a well chosen perturbation.

Lemma 4 With the notations of Section 1 and under the assumptions of Theorem 2, we have

Sketch of the proof of Lemma 4. There exists a nonnegative potential V ∈ L q ∩ C ∞ (C) such that J[V ] = Λ(µ). Lemma 4 is based on the equivalence of (KLT) and (GNS), which can also be seen by using u = V (q-1)/2 and considering the equality case in Hölder's inequality. See [START_REF] Dolbeault | Rigidity versus symmetry breaking via nonlinear flows on cylinders and euclidean spaces[END_REF] for more details. 2