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Abstract: This paper presents an extensive investigation of the real testing conditions of plane 
shear tests under quasi-static as well as impact loading. In particular, it aims at analyzing the role 
played by the empirical corrective coefficients commonly used in this kind of tests. For this purpose, 
a complete numerical model including not only specimen but also clamping device is built. 
Compared with usual simulations of only a shear specimen used to establish these corrective 
coefficients, the proposed complete numerical model permits to evaluate the influence of clamping 
device on the distribution of stress and strain fields. It shows that there are only limited effects 
under static loading, except for the early stage of loading (elastic part) where the stiffness of 
clamping device has to be taken into account. Under dynamic loading, a similar conclusion as the 
static case has been made. However, the transient effect due to the wave propagation within 
clamping pieces is rather important before an equilibrium state is reached. Numerical results 
indicate also that the shear loading on the specimen is mainly guided by the compressive wave in 
the massive clamping pieces, and the shear wave propagation inside the shear area is negligible. 
Besides, the way to calculate the equivalent strain from experimentally measured displacement is 
discussed. Eulerian cumulated strain, which is the default large strain definition in most commercial 
codes, should be used instead of the idealized small strain shear assumption. Finally, this work 
indicates that when the average value of equivalent stress in the whole shear area and cumulated 
Eulerian strain are used, commonly used corrective coefficients are no longer needed. 

 
1. Introduction 

 
Plane shear test is a complementary tool to the standard tensile tests for sheet metals. It can be 

used to verify or identify the plastic criterion of sheet metals. The shear test permits also to realize 
large strain loading (till 80%) while the tensile test fails to attain such a strain level because of 
geometric instability. The pioneer work in this domain was due to Iosipescu (1967)[1] who 
introduced the in-plane single shear fixture for sheet metals under quasi-static loading. Such a 
fixture was afterwards applied to polymer testing [2] and composites testing [3]. The well-known 
Arcan fixture [4] to generate in plane combined tension-shear was also quite close to this basic 
concept. A double plane shear test was reported in the literature in order to increase the stability of 



clamps [5]. 
Under dynamic loading, shearing tests were initially performed by Campbell and Ferguson 

(1970)[6]. They put a double-notched specimen directly in contact with an input Hopkinson bar and 

an output Hopkinson tube. However, a small double-notched specimen (gage length of 0.8 mm) was 

used because of the small size of Hopkinson bars. It leads to an important error due to the 

non-homogeneous shear strain and also to the severe plastic deformation of the specimen supports. 

Modifications of the specimen geometry in order to reduce testing error was also reported [7] but 

with a limited improvement because the gage length is fixed.   

In order to overcome this difficulty and to adopt a bigger specimen as used in most quasi-static 

cases, an additional co-axis clamping device is designed and placed in between a large diameter 

Hopkinson bar system. This technique was initially reported by Klepaczko et al.[8] and Gary and 

Nowacki[9] with respectively 30 mm and 40 mm diameter aluminum bar. This new technique 

offered rather good result provided that there is no impedance jump between clamping device and 

the Hopkinson bars and the wave dispersion effect is well taken into account in the data processing. 

Even larger system (60 mm diameter Hopkinson bar+clamping device) was also reported and it is 

proven that the plane wave assumption is still valid in this case[10]. However, with this new 

possibility of shear specimen geometry, it is still necessary to respect the limitation of the 

thickness/width ratio as well as width/length ratio of the shear area to prevent the buckling and 

instabilities [11]. Finally, the specimen geometry with 3 mm shear area was chosen in all 

aforementioned studies but a quasi-homogeneous state is not achieved yet.  

Rusinek and klepaczko[12] performed a numerical analysis of the shear area to evaluate the 

homogeneous state level of the strain and stress fields in the shear area and found that they were not 

as homogeneous as expected. The non-homogeneous strain field was also experimentally proven by 

the successive digital image correlation measurement [13]. Besides, this simulation showed a 

significant gap between the prescribed constitutive law and the stress-strain relation obtained from 

simulated forces and displacements. Thus, coefficients (which is a function of the shear strain level) 

based on numerical simulations were proposed to fill in the gaps in stress as well as the strain. Such 

a concept of corrective coefficients is still used nowadays[14]. 

  

Nevertheless, such a ‘state-of-art’ is not satisfactory for many reasons. Actually, the numerical 

reference is a model with only a shear specimen. The stiffness of the clamping device is not taken 

into account, especially for the impact loading where the transient effect in the clamping device is 

not clear at all. Another possible discussion lies in the usual formulas relating forces and 

displacement to the shear stress and strain, especially under large strain. The present paper aims at a 

more complete analysis of the experimental conditions of this plane shear test. After a brief 



description of the plane shear testing arrangement as well as the commonly used formulas for 

stress/strain calculations, a complete numerical model (clamps+specimen) is proposed to evaluate 

the influence of the stiffness of the clamps in quasi-static and impact loading cases. An analysis of 

large strain deformation is also developed and it leads to the natural cancellation of corrective 

coefficients of strain.  

 
2. In-plane double shear tests 
 
2.1 Basic testing arrangement  
 

The double plane shear device is composed of two coaxial pieces made of high strength steel 

with a double-notched specimen. The inner rectangular part of the specimen is clamped by the inner 

coaxial part with griping teeth aligned on the border of the shear area. The two external rectangular 

parts of the specimen are clamped by the external coaxial pieces with griping teeth as well. When 

the two coaxial pieces move relatively, the two rectangular zones (width l) between inner and 

external coaxial pieces are sheared (Fig. 1).  

 

Fig. 1. Double shear specimen and clamping device 

Quasi-static tests can be simply performed by putting the clamped specimen into a classical 

hydraulic testing machine. Dynamic tests can be realized by placing the clamped specimen in 

between the two Hopkinson pressure bars. It is of course necessary to ensure that the inner and 

external clamping pieces have the same acoustical impedance that equals to the pressure bar’s 

impedance to avoid spurious oscillations. In particular, the studied device is designed for aluminum 

bars with a diameter of 60 mm. Thus, the overall specimen size (Fig. 1, left) is of 60 mm long and 

30 mm high. The clamping pieces have a length of 40 mm. Technical details can be found in (Merle, 



2006)[15]. The schematic drawing of the whole system of impact testing is shown in Fig. 2.  

 

Fig. 2. Schematic drawing of Hopkinson bar and clamping device 
 
With Hopkinson pressure bar system, the forces and the velocities are calculated from the recorded 

incident, reflected and transmitted waves profiles )t(iε , )t(rε , )t(tε  by following equation (1) 

[16].  
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where SB, E and C0 are respectively the bar's cross-sectional area, Young's modulus, and the elastic 
wave speed.  
 
 Basic measurements of such a test are then the force F and the relative displacement d (see also 
Fig. 3).   

 
Fig. 3. Simple plane shear test  

 
Idealized shear state is commonly assumed in the treatment of plane shear tests [6-9] and it 

leads to strain and stress states as the following: 
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where γ= d/l is the engineering shear strain and τ is the shear stress. Classical equivalent strain 
and stress can be calculated with the measured displacement d and force F if von Mises criterion is 
assumed (Eqs. 3 & 4 ).  

d=
3eq l

ε                   (3) 

= 3eqσ τ , F
S

τ = .                 (4) 

 Typical testing result can be found in aforementioned studies and in our work on a SMAT 

treated steel sheet in particular [17]. The basic material parameters of specimen and clamps are 

listed in Table 1.   

 

 

Components 

 

Young's 

Modulus (GPa) 

 

Poission's Ratio 

 

 

Yield Stress  

(MPa) 

 

Ultimate stress   

(MPa) 

Specimen 210 0.3 290 810 

clamps 210 0.3 -- -- 

 

Table 1. Material parameters of specimen and clamps 

 

2.2 Difficulties and improvement 

 

Taking our experimental setup as an example where the shear area width is 3 mm, a simple 

numerical simulation of a rectangular shear specimen with 3 mm width and the length varying from 

20 mm to 120 mm is performed to evaluate the plane shear testing condition. The numerical model 

is constructed in ABAQUS/standard code with the 8-node linear brick elements with reduced 

integration and hourglass control (C3D8R). The use of 3D brick element is motived by the small 

element size compared to the thickness of specimen (especially in the complete numerical model 

with clamping devices). Another reason is to avoid simplified large strain treatments in some type 

of shell elements used in explicit version. The clamping boundary condition is applied to one edge 



of rectangular shear specimen, while a velocity of 0.001 mm/s was imposed on the nodes of the 

opposite edge. The constitutive relation used in this simulation is extracted from testing curve of 

SMAT treated steel (Fig. 4) [17].  

  

 

Fig. 4. Schema of the specimen (Left) and prescribed constitutive relation (Right) 

 

 It is noted that the real testing condition is not the idealized shear condition as shown in Eq. 2 

because lateral motion of the coaxial clamping devices is not possible. There are then more and 

more tension components when the strain increases with the commonly used a strain tensor 

definition as that in a FEM code (detailed theoretical analysis can be found in section 4). Fig. 5 

depicts the average value of all the elements of different components of stress and strain tensors 

(noting that stress and strain in x direction is normally in compression but depicted in positive here 

for easier comparison with y direction and the engineering shear strain is used). The tensile 

component is rather small but always exists. 

 

Centre

1.25mm
2.5mm

0



 

Fig. 5. Average value of stress and strain components 

 

It should be also noted that the state of strain and stress is never homogeneous because of the 

free boundary conditions. Fig.6 illustrates the strain and stress contour at two different displacement 

levels.  

             

 

Figure 6  Strain (left) and stress (right) contours at displacements of 1mm and 3mm   

 

More precisely, Fig. 7 shows the average value of the equivalent stress and the equivalent strain 

of all the elements in the lines at the top surface, at a distance of 1.25 mm and 2.5 mm from the top 

free surface and at the center (see Fig. 4a) in the case of a shear area length of 20 mm.  



 

Fig. 7. Equivalent stress and strain at different locations 

 

 

 Such gaps from idealized homogeneous stress/strain fields assumption cannot be avoided 

neither. Even though a long specimen length of 120 mm (6 times) is used, the overall error will not 

be significantly reduced. Fig. 8a provides an overall comparison between the numerically calculated 

force (scaled with length ratio) and the prescribed force obtained by applying the eq. (4) to the 

prescribed constitutive relation. The relative error can be defined and depicted in Fig. 8b, where the 

improvement is rather limited.    

 

 

 

                     (a)           (b) 

Fig. 8 Forces and numerical errors for different lengths of shear zone  

 



Consequently, 20 mm or 30 mm length are often adopted and the corrective coefficients are used 

to fill in the gaps. Fig. 9 depicts respectively the numerical average equivalent stress compared with 

nominal stress calculated by Eq. (4) and the average numerical equivalent strain compared with 

nominal strain (Eq. (3)). It seems that the commonly used corrective coefficient for stress is not 

needed if the average equivalent stress in the whole specimen is used instead of equivalent stress at 

the central part of the specimen (see also Fig. 7 left). However, a multiplying coefficient applied to 

nominal strain seems to be necessary.   

 

Fig. 9. Comparison between numerical results and nominal stress and strain 

 It is interesting to remark that FEM calculated strain has a significant gap from the idealized 

small strain shear assumption (Eqn2 and 3) while the FEM calculated stress fit with Cauchy stress 

(Eqn.4). Besides, simulations with different strain hardening behavior showed the same tendency. It 

is because the stress increase is limited by plastic behavior. Therefore, The studied case in this 

manuscript is rather a conservative one because lower strain hardening will lead to an even small 

difference in stress.   

 

3. Numerical analysis of the influence of the clamping device 

From aforementioned analysis, the corrective coefficients include the eventual imprecision of the 

used numerical model. An evident source of numerical errors lies in the ignorance of the clamping 

device. A complete model including grips as well as the specimen is then built. In order to minimize 

the influence of the contact, the fixing bolts in all clamping pieces are not taken into account. An 

overall view of the FEM model is shown in Fig. 10. The convergence study on element size 

indicates that elements of 0.4 mm in the shear area are small enough to achieve the reliable results 



within an acceptable calculation time. 

 

 

Fig. 10. Complete numerical model 

 

3.1 Quasi-static testing 

For the quasi-static simulation, the external clamps are fixed for all nodes situated at the bottom 

surface. A constant velocity of 0.001 mm/s is prescribed on the top surface of the inner clamp. 

Surface-to-surface contact with penalty contact method is used for all the contact faces between the 

specimen and clamps. No slip is allowed between the two grips and the specimen. 

Fig. 11a and Fig. 11b give the contour plots of the equivalent von-Mises stress and the shear 

strain at two nominal strain levels corresponding to a displacement of 1 mm and 3 mm. They can be 

compared with the results obtained with the simple model presented in the section 2 (superimposed 

in the central part of the specimen). One can see that the shapes and values between those two 

models are nearly the same, which indicates a limited influence of the clamps.  

It is worthwhile to notice that the strain contour plot outside the rectangular shear zone is due to 

the deformation of clamping pieces because of the clamping reaction forces. It means that the 

clamping pieces undergo a deformation that results in a less rigid boundary condition.  

 



 
Fig. 11a. von Mises stress comparison between the simple model and complete model  

 

 

Fig. 11b. Shear strain comparison between the simple model and complete model  

γ=1/3 

γ=1 
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The detailed quantitative comparison between the simple rigid model and the complete model are 

also depicted in Fig. 12. At different places in the specimen, all the components seem only have 

negligible difference. 

 

 
 

 

 

 

Fig. 12. Comparison between the simple model and complete model of the stress components 

(a),(c),(e) and strain components (b),(d),(f) of different positions of the shear zone 

(a) (b) 

(c) (d) 

(e) (f) 



 

If we compare the numerical result with the prescribed force, the result of simple model agrees 

well with that of complete model. However, at rather small strain, the two models differ because of 

stiffness exaggeration of clamping pieces in the simple model. This leads naturally to different 

slopes of the elastic stage (see Fig. 13).   

 

 

Fig. 13. Overall comparisons between the simple model and complete model 

 

3.2 Impact testing  

Numerical analysis of the complete model under impact loading is performed with 

Abaqus/explicit. The material parameters (rate insensitive) and element size are the same as that of 

quasi-static case. Input and output velocities measured in a real SHPB test are prescribed at the two 

opposite ends of clamping device (see Fig. 14). The input velocity is under 3 m/s, which is rather 

small for a classical SHPB. However, it leads to a shear strain rate around 1000 s-1 because the gage 

length (width) in the shear configuration is only 3 mm. 

 



 

Figure. 14. The prescribed velocities 

 

 The average value of stress components (Fig. 15a) and strain components (Fig. 15b) under 

impact is compared with these values under quasi-static loading. It indicates that the effect of 

clamps is very small in the shearing area. The detailed comparison at different positions of all the 

components in these two loading cases shows that the stress and strain distributions are nearly the 

same (Fig. 16). 

 

       (a)           (b) 

Figure 15. Stress and strain components for quasi-static and dynamic models   



 
Fig. 16. Comparison between the quasi-static model and dynamic model of the stress components 

(a),(c),(e) and strain components (b),(d),(f) of different positions of the shear zone 

 

Above simulated results imply that the transient effect inside the shear area of the specimen is 

negligible and a somehow equilibrium state has achieved quite quickly. Fig. 17 illustrates this 

process inside the specimen. 

(a) (b) 

(c) (d) 

(e) (f) 



 

Fig. 17. The contour plot of shear stress on the shear zone at different moments 

 

It can be seen in Fig. 17 that at 18 microseconds (a), the specimen is not yet loaded. At 19 

microseconds (b), the shear start from corner in contact with the inner grips propagating not only 

horizontally towards the external grips by the shear wave but also vertically along the inner grips 

because of the compressive wave within the massive inner grips. At 20 microseconds (c), it is clear 

that the compressive wave in inner grips is dominant. At 22 microseconds (d), all the shear area is 

nearly homogeneous. Within 4 microseconds which is the time needed for the compressive wave to 

pass through the 20 mm length of the shear area, the shear area is likely to be loaded 

homogeneously. Such processes repeat during the rising time of prescribed velocity (40 

microseconds, see Fig. 14). This may explain why the stress and strain fields within shear area are 

hardly affected by the impact loading.  

  Unfortunately, such a quick equilibrium state does not mean that the transient effect in the 

clamping pieces is not important. Fig. 18 illustrates the compressive wave propagating in the inner 

(c) 

(a) (b) 

(d) 



grips as an example. The wave needs more than 6 microseconds to go through the clamping pieces.  

 

 
Fig.18. Contour plot of compression wave stress marching on the inner clamp 

 

 

Fig.19. Compression wave stress on four nodes of outer surface of the inner clamp 

 

Fig. 19 depicts the stress time histories at different positions of the inner grips. Point 4 is the 



free surface so that the stress is zero. Point 1 is the place where the input force is calculated. As the 

other points, oscillations are found during all the testing time. There are roughly 7 periods in 200 

microseconds. A round trip is likely to be made in about 28 microseconds. The time delay between 

different points can give a more accurate evaluation of the compressive wave speed. A value of 

5882m/s is found and it matches roughly the waves speed in a short cylinder (Fig. 19). Therefore, a 

round trip of 28 microseconds corresponds to a distance of 164 mm, which is roughly the distance 

of a round trip inside inner and external grips (2x(40+40) mm). 

In order to further prove that this oscillation is due to the wave traveling within the clamps, a 

simulation for the clamps with a Young’s modulus 100 times high at 21000 GPa is performed. The 

wave speed is then 10 times quicker. Fig. 20 shows the comparison of the two simulations as well 

as the prescribed force. One can see that the transient effect could dramatically affect the measured 

force. The input force cannot be used at all because of the wave superimposition. The output force 

is likely to be less affected because there is only a time shift. However, the early stage is more 

questionable. It is noted also that the important spurious oscillations is surely exaggerated in the 

numerical model where all the contact is hard. In the real test, such oscillation is not observed, 

likely to be mechanically absorbed.  

 

 
Fig. 20. Comparison of output force with different young’s modulus defined 

 



The above analysis of transient effect in this plane shear tests provides a guideline for the data 

extracting procedure. Indeed, as the compressive wave in the clamping pieces is dominant and these 

clamping cylinders have the same impedance as the pressure bar, they can be considered as a part of 

the Hopkinson bar. Thus, we considered the case is just like in a common SHPB with additional 

length (length of the clamping device) with a very small specimen.  

 

4. Large strain definition used in FEM codes and strain corrective coefficient  

As mentioned in the introduction, the corrective coefficients include not only the error of 

numerical model but also the error in the way that the nominal stress and strain are calculated. It is 

natural to ask whether the Eqs. (3 and 4) are the best way to calculate the nominal strain and stress, 

especially at high strain levels? Actually, the default strain definition in most FEM codes and in all 

the explicit codes (at least for 3D brick elements) is the cumulated Eulerian strain obtained by 

integrating the symmetric part of velocity gradient. If there is a rotation or precisely vorticity, which 

is the case of plane shear testing, this integration should be made in a corotational frame where the 

vorticity is zero to ensure the objectivity of the cumulated strain [18]. As the constitutive relation 

are naturally used in the FEM code, it is important to formulate and experimentally identify such a 

relation using the same stress and strain definition. The following theoretical analysis provides the 

formulas to calculated this Eulerian cumulated strain from displacement d (Fig. 3) directly 

measured during testing. Besides, this analysis demonstrates also why the tension part becomes 

more and more important (shown in Fig.5). 

 

Actually, if we take a fixed reference frame R ( x1,
x2,
x3 ) as shown in Fig. 3, the velocity field in 

plane shear testing reads: 
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where γ= d/l is engineering shear strain. 

The velocity gradient can be expressed as a sum of its symmetric part, the rate of deformation 

D, and its anti-symmetric part, the vorticity Ω: 
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The vorticity in this frame is then not zero. The cumulated Eulerian strain can not be calculated 

in this frame. In order to find the needed frame without vorticity, we rotate R ( x1,
x2,
x3 ) around x3

with an angle θ(t) to define a new reference frame R '(xi,
x j,
x3) . Thus, the velocity field in this new 

frame can be expressed in the coordinate system (xi,
x j,
x3)  as : 
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The rate of deformation D and vorticity Ω in this rotating frame is calculated by: 
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As we aim at finding a reference frame where the vorticity should be zero, this angle θ(t) should 

satisfy  

0 2
γ

θ θ= +
 

Thus, the rate of deformation and vorticity are calculated in this specific reference frame .  
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By integrating D Rs with time t, the strain tensors in  can be found: 
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The projection of strain tensor to the coordinate system ( x1,
x2,
x3 ) it leads to 
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Thus, for the simple plane shear test, the von-Mises equivalent strain for this Eulerian 

cumulated strain tensor will be the following: 

  

2 (1 cos )
3eqε γ= −

                                                              (12) 

 

Fig. 21 shows the comparison of the nominal equivalent strain calculated by (Eq. 12) with the 

numerical average equivalent strain. There is nearly no gap and this implies that the main gap is 

actually due to a misunderstanding of the strain definition in the FEM codes in the large strain 

configuration. It implies that the non-homogeneous state of strain is not the main factor of the gaps 

found in previous works.  

sR



 

Figure.21. Numerical results compared with nominal strain 

 

  Finally, if the Euleiran cumulated strain is used to calculate nominal strain from experimental 

displacement data and the average equivalent stress in all the shear area is used, the corrective 

coefficients are no longer needed. Fig. 22 depicts the comparison between the prescribed 

force/displacement relation used to calculate prescribed stress-strain relation and the calculated 

force/displacement curve from the numerical model and they agree very well.  

 
Fig. 22. Comparison of modified numerical result and experiment result 

 

5. Summary 



The double shear tests for sheet metals are investigated numerically and analytically in this paper 

in order to understand and improve actual data extracting method. The main points are the 

following: 

i) The clamping device has been added in the numerical model devoted to find commonly 

used corrective coefficients to extract stress-strain relation in such test. Under quasi-static 

loading, Taking account of the clamps leads to a less rigid boundary condition on the 

shear area. It leads to an additional error on the early stage of the test (elastic part).  

ii) Under impact loading, the shear loading in the shear area is mainly guided by the 

compressive wave within the massive clamping pieces. The equilibrium within the shear 

area is quickly attained. However, the transient effect due to wave propagating between 

the clamping pieces leads to important oscillations.  

iii) The cumulated Eulerian strain should be used to calculate the nominal strain in such test. 

With this cumulated Eulerian strain and Cauchy stress derived from experimental 

displacement/force recording, it is possible to repeat numerically the test. It implies that 

all the corrective coefficients commonly used for this test is no longer needed.     
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