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Introduction

L'une des opérations essentielles du traitement d'image consiste à segmenter l'espace où l'objet étudié se déploie. Or lorsqu'on partitionne un ensemble, les frontières entre classes n'étant pas matérialisées, on a quelque mal à traiter les opérations qui utilisent ces frontières. Où placer le support des gradients non nuls de la figure 1a par exemple? La frontière entre deux classes doit elle appartenir à l'une seule des deux, partiellement à chacune, ou à aucune? Et aussi: comment fusionner des classes quand on construit une hiérarchie de partitions de plus en plus grandes? Que faire des points frontières entre trois ou quatre classes? Plus généralement, comment exprimer à la fois les classes et leurs frontières dans une hiérarchie de partitions? Tel est l'objet de l'étude qui suit 2 . 1. Remarquons tout d'abord que les frontières, au sens de la topologie, n'ont pas toutes la même importance pour le problème envisagé ici. Quand on s'élève dans une hiérarchie, les seuls éléments de frontière qui disparaissent au cours des regroupements sont ceux qui séparent des classes. Ce sera le cas des quatre demi médianes de la figure 1b, mais pas des barbules de la figure 1c. Quel statut topologique doivent alors avoir les classes d'une hiérarchie de partitions pour que toutes les frontières y jouent le même rôle? Celui d'ouvert ne suffit pas puisque les carrés de la figure 1c sont des ouverts. Cette question fait l'objet de la section 3 (après un bref rappel topologique en section 2), où la réponse est apportée par la notion de tessellation.

2. La connexité aussi peut poser problème. Il arrive souvent que partant d'une partition en classes connexes, on veuille en les regroupant créer une hiérarchie dont les classes restent connexes elles aussi (e.g. les floodings de watersheds). Mais comment fusionner les composantes connexes de la figure 1a? L'objet physique sous-jacent n'a probablement pas quatre composantes connexes qui par chance arriveraient toutes au même point central. Il n'en a pas non plus deux, puisque cet objet est plan. Alors faut-il relier plutôt les "2" ou plutôt les "8"? La réponse à cette question fait l'objet de la section 4.

3. En traitement d'image, l'espace physique est modélisé tantôt par des ensembles euclidiens, tantôt par des graphes planaires. Comment relier entre eux les deux modèles discret et continu? Cette question fait l'objet des sections 5 et 6, où l'on compare plusieurs modèles topologiques discrets, dans le plan et dans l'espace.

4. Mais le monde physique n'est ni un graphe, ni un espace euclidien. Il n'a ni points, ni sommets, ni arêtes, ni directions privilégiées, ni ouverts, ni fermés. Comment alors les deux modèles, discret et continu, se relient-ils au réel? Peut-on attribuer une signification expérimentale aux barbules de la figure 1c? Existe-t-il un pendant, pour les ensembles, du théorème d'échantillonnage de Nyquist-Shannon, qui relie résolution et niveau de détail accessible? Cette question est traitée en section 7.

Le point 1 a fait l'objet de travaux où l'on part de graphes planaires finis, et où l'on combine graphes d'arêtes (les frontières) et graphes de sommets (les intérieurs), selon l'algorithmique de J. Cousty et Al. et les doubles résolutions qui l'accompagnent, [START_REF] Cousty | Some morphological Operators on Graph Spaces in Mathematical Morphlology and its Applications to Signal and Image Processing[END_REF], [START_REF] Kiran | Energetic-Lattice based optimization[END_REF]. Mais comment construire le graphe initial? Quand on décide de relier deux points par une arête, ou trois par une face, parce qu'ils sont voisins, de quel voisinage s'agit-il? Distance? Connexité? Isotropie? Les cristallographes savent bien que Dame Nature apporte plusieurs réponses à cette question.

Relativement au point 2, on trouve dans la littérature la notion d'ensemble "bien-composé", i.e ne présentant pas de configurations diagonales [START_REF] Latecki | Well-Composed Sets CVIU omputer Vision and Image Understanding[END_REF] [START_REF] Boutry | Une généralisation du bien-composé à la dimension n[END_REF]. Il s'agit là d'une notion digitale, alors que le problème se pose autant en euclidien, et qui passe un peu à coté de la question, car il s'agit moins de trouver de bons ensembles que de choisir de bonnes trames digitales (sans compter qu'un ensemble bien-composé peut fort bien s'arrêter de l'être sous l'effet d'une dilatation ou d'une érosion).

Pour aborder le point 3, la topologie de Khalimsky semble un bonne base de départ, puisqu'elle identifie Z n à des pavages euclidiens, et son usage en imagerie digitale est notoire [START_REF] Mazo | Digital imaging: a unified topological framework Journal of Mathematical Imaging and Vision[END_REF], [START_REF] Bertrand | Completions and Simplicial Complexes[END_REF], [5] [6]. Il s'agit d'ailleurs moins de graphes que de cellules de Kovalevsky, ou de complexes simpliciaux, de structure plus riche. Mais sous sa forme usuelle, cette topologie bute devant la question des configurations diagonales de la figure 1a, que certaines topologies voisines, à base de partitions de Voronoï, prennent bien en charge.

Le points 4 enfin, a souvent été débattu [START_REF] Matheron | Random sets and integral geometry[END_REF], [START_REF] Serra | Image analysis and mathematical morphology[END_REF], [START_REF] Ch | Regular open or closed sets[END_REF]. Nous nous contentons ici de relier acquisition d'image et niveau de tessellation accessible.

La littérature sur les points 2 et 3 recourt aussi au théorème de Jordan, euclidien ou digital (cf par exemple [START_REF] Latecki | Well-Composed Sets CVIU omputer Vision and Image Understanding[END_REF], [START_REF] Melin | Digital Surfaces and Boundaries in Khalimsky Spaces[END_REF], [START_REF] Kiran | Fusions of Ground Truths and of Hierarchies of Segmentations[END_REF]). Or le modèle de Jordan est lourd d'hypothèses et reste très bi-dimensionnel [START_REF] Mazo | Paths, homotopy and reduction in digital images[END_REF]. D'ailleurs faut-il réellement que les contours de classes soient des lacets simples? Nous n'avons jamais trouvé dans la littérature d'argument convaincant pour justifier cette contrainte, qui est loin d'être anodine. De plus, le découpage de Jordan divise le plan en deux composantes connexes. Mais a-t-on vraiment besoin de la connexité des classes pour formuler des questions relatives à leurs frontières? C'est pour ces raisons que pour construire le concept de tessellation, qui allie classes et frontières, nous avons choisi de nous concentrer sur les premières, plus faciles à manipuler.

Deux rappels 2.1 Quelques points de topologie

Voici quelques notions de base de topologie qui servent par la suite. Un espace topologique est un ensemble E, plus une famille G de parties de E qui est stable pour la réunion et pour l'intersection finie. Les éléments de G s'appellent les ouverts, et l'on suppose que E et ∅ sont ouverts. Le complémentaire d'un ouvert se nomme un fermé. L'intérieur d'une partie X de E est le plus grand ouvert contenu dans X, on le note ici X • ; de même, l'adhérence de X est le plus petit fermé qui le contient, et on le note X . L'opérateur de complémentation s'écrit ∁.

Réunion et adhérence La adhérence commute avec la réunion finie:

X 1 ∪ X 2 ... ∪ X n = X 1 ∪ X 2 .. ∪ X n .
Complément Le complément de l'intérieur de X ⊆ E est égal à l'adhérence de son complémentaire:

∁(X • ) = (∁X).

Frontière La frontière F r(X) de X ⊆ E est l'ensemble des points communs à l'adhérence de X et à celle de son complémentaire ∁X:

F r(X) = X ∩ ∁X.
Plus généralement, la frontière, éventuellement vide, entre deux ensembles X, Y ⊆ E disjoints se définit de la même manière, en posant:

F r(X, Y ) = X ∩ Y Inclusion, intersections Soit G ouvert, et X ⊆ E. L'ouvert G est inclus dans X ssi il est inclus dans son intérieur, et il rencontre X ssi il rencontre son adhérence: G ⊆ X ⇔ G ⊆ X • G ∩ X = ∅ ⇔ G ∩ X = ∅ G ∩ X = ∅ ⇔ G ∩ X = ∅.

Treillis des ouverts réguliers

Il s'agit des briques qui vont servir à construire les tessellations. Un ouvert B est dit régulier, ou R-ouvert, s'il ne change pas quand on prend son adhérence, puis l'intérieur de celle-ci, i.e. B = (B) • . C'est le cas de la figure 1b par exemple, mais pas de la figure 1c. Les ouverts, et par dualité, les fermés réguliers sont des notions bien classiques en topologie [START_REF] Halmos | Lectures on Boolean Algebras[END_REF]. En morphologie mathématique, les trois sources bibliographiques principales proviennent de G. Matheron, de Ch. Ronse, et de H. Heijmans. La notion d'ouvert (fermé) régulier apparait de manière récurrente dans l'oeuvre du premier, de 1969 à 1996. Dans [START_REF] Matheron | Eléments pour une théorie des mileux poreux[END_REF], p.156-157, G.Matheron construit une σ-algèbre de fermés réguliers et en donne une série de propriétés caractéristiques; dans [START_REF] Matheron | Random sets and integral geometry[END_REF], p.11, il associe un ensemble aléatoire à tout couple (A • , A), A ∈ P(E); dans [START_REF] Matheron | Filters and Lattices[END_REF], p.135, il interprète les régularisations en termes de filtres forts, et bâtit un élément médian entre A • et (A) • ; dans [START_REF] Matheron | les treillis compacts Tech[END_REF], p.175 il redémontre la propriété classique que les ouverts et les fermés réguliers constituent deux treillis isomorphes à des treillis complets booléens (i.e. distributifs et complémentés). De son côté, dans [START_REF] Ch | Regular open or closed sets[END_REF], Ch. Ronse montre la même propriété, mais surtout que réciproquement, tout treillis complet booléen est isomorphe à un treillis d'ouverts réguliers, et indique en filigrane qu'il s'agit d'une topologie d'Alexandrov (présentée en section 5.1 ci-dessous).

Soit E un espace muni d'une topologie quelconque (non nécessairement séparée), F la classe des fermés de E, G celle de ses ouverts. Ce sont des treillis complets, mais non complémentés. Or la notion de complément est indispensable pour les tessellations.

Introduisons la famille R ⊆ G des ouverts réguliers (B) • , égaux à l'intérieur de leur adhérence, et la famille R * ⊆ F celle des fermés (A • ) égaux à l'adhérence de leur intérieur. Ces deux familles sont engendrées par les ouverts et les fermés de E, car

R = {F • , F ∈ F}, R * = {G, G ∈ G} et pour toutes familles B i dans R et A i dans R * on trouve: ∩ • B i = ∩ • (B i ) • = ∩ • (B i ) ; ∪A i = ∪A i = ∪A • i . (1) 
Et voici le résultat principal concernant R et R * :

Theorem 1 R is a complete lattice for the inclusion ordering, where the supremum and the infimum are given by

∨B i = (∪B i ) • ; ∧ B i = (∩B i ) • . (2)
Similarly, R * is a complete lattice, of supremum and infimum

∨A i = (∪A i ) ; ∧ A i = (∩A i ) • . (3) 
B oth lattices R and R * are completely distributive and with unique complement

complA = ∁A ; complB = (∁B) • . (4) 
(démonstrations dans [START_REF] Ch | Regular open or closed sets[END_REF], [START_REF] Heijmans | Morphological image operators[END_REF], [START_REF] Matheron | les treillis compacts Tech[END_REF]). Par exemple, dans les deux figures 7a et b, le complémentaire de chaque classe est le supremum des trois autres dans R. Malgré la dualité de structure entre R et R * , ces deux treillis ne modélisent pas les mêmes hypothèses physiques, et c'est seulement R que nous utilisons ci-dessous.

Du point de vue des opérateurs, l'application X → X • , X ∈ P(E), est une ouverture algébrique et X → X, une fermeture algébrique. Par conséquent, les deux opérateurs

X → (X • ) et X → (X) • X ∈ P(E)
sont des filtres morphologiques, croissants et idempotents. Il s'agit même de filtres forts, ce qui signifie que si l'on pose

X 1 = X ∩ (X) • et X 2 = X ∪ (X) • il vient ([18], p.135) (X 1 ) • = (X 2 ) • = (X) • .

tessellations

Le terme de "tessellation" a été introduit par R. Miles pour distinguer les plans poissonniens euclidiens des polyèdres ouverts qu'ils découpent [START_REF] Miles | Poisson flats in Euclidean Spaces[END_REF], ouverts évidemment réguliers, car convexes. Nous gardons le terme, et généralisons l'idée de la manière suivante: Definition 2 On appelle tessellation τ d'un espace topologique E toute famille {B i , i ∈ I} d'ouverts disjoints deux à deux, appelés "classes":

τ = {B i , i ∈ I} avec i = j ⇒ B i ∩ B j = ∅ (5)
tels que la réunion des B i et de leurs frontières communes deux à deux recouvre l'espace E:

E = ∪{B i , i ∈ I} ∪ {B i ∩ B j , i, j ∈ E, i = j}, (6) 
On désigne par N (N comme "net") l'ensemble ∪{B i ∩ B j , i, j ∈ E, i = j} constitué des frontières entre les classes. 

Tessellations et R-ouverts

Lemma 4 Pour tout ouvert B ∈ G de E, et S = (B) • , il vient S = (B) • ⇒ S ⊇ B et S = B. (7) 
De plus, la différence ensembliste ∆ coïncide avec la différence entre les frontières F r(B) et F r(S):

∆ = S\B ⇔ F r(S) = F r(B)\∆, (8) 
et la frontière de B contient celle de S.

Proof. Comme B est ouvert, S = (B) • ⊇ (B) • entraîne S ⊇ B. Dautre part S = (B) • ⊆ B, donc S ⊆ B, d'où l'implication (7). Par ailleurs, on a F r(S) = S ∩ [∁B ∩ ∁∆] = B ∩ [∁B ∩ ∁∆] = F r(B)\∆, d'où (8). En particulier, si B = B 1 ∪ B 2 , où B 1 et B 2 sont deux ouverts, alors S = B 1 ∪ B 2 = B 1 ∪ B 2 .
On ne peut pas prendre n'importe quels ouverts pour construire une tessellation, car ils peuvent comporter des lacunes ou des fissures d'intérieur nul qui rendent la tessellation impossible. Le recours consiste ici à partir de R-ouverts. En effet, Theorem 5 Les classes de toute tessellation τ = {B i , i ∈ I} sont nécessairement des Rouverts.

Proof. On raisonnera par la négative, en montrant que si B i = B

• i = S i alors les B i n'engendrent pas de tessellation. Notons d'abord qu'il est équivalent que les B i ou leurs R-ouverts S i soient disjoints. On a

B i ∩ B j = ∅ ⇔ B i ∩ B j = ∅ ⇒ B i ∩ B • j = ∅ = B i ∩ S j ⇒ ∅ = S i ∩ S j ainsi que l'implication inverse, puisque S i ⊇ B i ∀i.
Par ailleurs, d'après la relation [START_REF] Halmos | Lectures on Boolean Algebras[END_REF],

N = ∪{B i ∩ B j , i, j ∈ E, i = j} = ∪{S i ∩ S j , i, j ∈ E, i = j}, et les S i forment une tessellation de E. S'il existe au moins un B i strictement inclus dans S i alors z ∈ S i \B i n'appartient à aucun B i ni à aucune frontière B i ∩ B j , puisque S i est ouvert; les B i ne recouvrent donc pas l'espace.
En somme, de même qu'une partition de E est une famille dans P(E) dont chaque élément est complémentaire de la réunion des autres, de même une tessellation de E est une famille dans R(E) dont chaque élément est complémentaire du supremum des autres, où le complément et supremum sont pris dans R.

De manière imagée, disons que S = (B) • bouche les fissures, les lacunes ponctuelles, et les isthmes très fins qu'on trouve dans B. Certaines séparations toutefois, trop étroites, peuvent ne pas être comblées. Si par exemple B est constitué de deux carrés ouverts de R 2 dont les adhérences partagent uniquement un sommet, l'adhérence B 1 ∪ B 2 rejoint les deux carrés, mais l'ouverture (B 1 ∪ B 2 ) • les disjoint à nouveau. On retrouve entre partition et tessellation le même distinction qu'entre squelette et squelette par zones d'influence de Lantuejoul [START_REF] Lantuejoul | Skeletonization in quantitative metallography[END_REF] [29].

Le théorème 5 fait penser à celui de Jordan, avec cette différence qu'il est vrai dans n'importe quel espace topologique, et qu'il n'est pas centré sur les frontières, mais sur les classes. Toute courbe de Jordan induit une tessellation dans R 2 [START_REF] Kiran | Fusions of Ground Truths and of Hierarchies of Segmentations[END_REF], mais toute tesselation en deux classes ouvertes, même connexes, n'a pas toujours pour frontière une courbe simple (i.e. de Jordan). La figure 7b montre un contour digital séparant des R-ouverts et qui est "épais". On peut noter aussi que la notion de connexité n'intervient en aucune manière dans le thèorème ci-dessus, alors qu'elle est essentielle pour celui de Jordan. En revanche, si l'on suppose les classes d'une tessellation connexes par arc, alors tout point du réseau N du fond est situé entre deux classes, et tout chemin entre classes adjacentes contient au moins un point de N.

Hierarchies de tessellations

Les tessellations rencontrées en analyse d'image apparaissent souvent au travers de hiérarchies, i.e. de familles fermées et totalement ordonnées. Les classes {s i } de la tessellation minimale τ 0 sont appelées "les feuilles" et on les suppose en nombre localement fini. Ces feuilles sont des R-ouverts insécables, c'est à dire que chaque classe d'une tessellation plus grande contient au moins une feuille et est disjointe de celles qu'elle ne contient pas. L'ensemble E lui même, vu comme une classe (et qui est un R-ouvert), clôt la hiérarchie.

Il n'est pas possible de ramener les classes d'une tessellation τ de la hiérarchie à la réunion de leurs feuilles, car les portions de frontières entre feuilles adjacentes n'appartiendraient alors ni à la classe, ni au réseau N qui sépare les classes entre elles. Il faut trouver une loi de construction pour celles-ci, et c'est ici qu'interviennent à nouveau les R-ouverts.

Partitionnons la totalité des feuilles en J sous ensembles I 1 , ..I j , ..I J , avec

B 1 = ∪{s i , i ∈ I 1 }...; B j = ∪{s i , i ∈ I j }...; B J = ∪{s i , i ∈ I J } (9) 
Le théorème 5 montre qu'on doit remplacer les B j par leurs R-ouverts S j pour retrouver à nouveau une tessellation. De plus, il n'y a pas de tessellation {S ′ j } qui sépare les {S j } et telle que S ′ j ⊃ S j ∀j. Cette inclusion stricte signifierait qu'on peut trouver un ouvert contenant x ∈ F r(S j ) ∩ S ′ j , donc que S ′ j n'est pas séparé d'un S ′ i , ce qui est impossible. Il vient donc:

Proposition 6 Soit τ une tessellation de E à base des feuilles {b i }, et un regroupement des feuilles de type Rel. [START_REF] Khalimsky | Topological structures in computer sciences[END_REF]. L'unique tessellation qui maintient disjoints les groupements B j ,

1 ≤ j ≤ J a pour classes les R-ouverts S j = (B j ) • , 1 ≤ j ≤ J .
Le supremum et l'infimum d'une famille de classes (ou des feuilles contenues dans leur réunion, ou leur intersection) sont donc pris dans le treillis R des ouverts réguliers. Il s'en suit que dans une hiérarchie de tessellations qui se termine par E, tout point du fond de la tessellation {b i } est tôt ou tard absorbé par une classe.

Structure des tessellations

La famille T des tessellations de E est manifestement ordonnée par la relation suivante:

τ ≤ τ ′ ⇔ B(x) ⊆ B ′ (x)
x ∈ E, .τ , τ ′ ∈ T

Lorsqu'on se donne une tessellation minimale τ 0 , il vient de plus:

Proposition 7 L'ensemble T des tessellations τ ≥ τ 0 de E constitue un treillis complet pour l'ordre de la relation [START_REF] Kiran | Energetic-Lattice based optimization[END_REF], d'éléments universels τ 0 et E. l'infimum de la famille {τ p , p ∈ P, τ p ≥ τ 0 } est la tessellation dont la classe au point x est l'infimum dans R des classes des τ p en x, et le supremum la plus petite tessellation dont les classes sont des suprema, dans R, des classes des τ p .

Proof. Soient x et y deux classes de τ 0 , et S p (x) (resp. S p (y)) la classe de τ p en x (resp. en y). Il faut montrer que {[∩S p (x)] • , x ∈ τ 0 } est une tessellation. Si c'est le cas, alors cette tessellation sera la plus grande inférieure des τ p , puisqu'aussi bien on ne peut pas trouver en x de classe R-ouverte plus grande que [∩S p (x)] • et qui soit incluse dans tous les S p (x).

Il est équivalent que y ∈ S p (x) ou que x ∈ S p (y),

donc si y ∈ [∩S p (x)] alors [∩S p (x)] = [∩S p (y)] et les R-infima [∩S p (x)] • et [∩S p (y)] • sont égaux. Si pour une valeur p les S p (x) et S p (y) sont disjoints, alors a fortiori les R-infima [∩S p (x)] • et [∩S p (y)] • le sont aussi. Enfin, comme ∪{x, x ∈ τ 0 } ⊆ ∪{[∩S p (x)] • , x ∈ τ 0 }, et que ∪{x, x ∈ τ 0 } = E, la famille {[∩S p (x)] • , x ∈ τ 0 }
constitue une tessellation de E, et T est un inf-demi treillis complet. Par ailleurs T admet un plus grand élément, à savoir E, donc T est un treillis complet.

Classes connexes et saillance

Nous avons construit un paradigme pour les hiérarchies de tessellations sans faire intervenir la notion de connexité. Il arrive cependant que partant de feuilles connexes, on souhaite établir une hiérarchie de tessellations dont les classes soient elles aussi connexes. Or ce n'est pas toujours possible, ni dans les topologies euclidiennes, ni dans les digitales. Même lorsque les feuilles {b i } sont connexes, les ouverts réguliers S j = (B j ) • de la proposition 6 peuvent très bien ne pas être connexes. Il suffit de voir la figure 2, ou de repenser à l'exemple des deux carrés ouverts de R 2 dont les adhérences ont en commun un sommet uniquement. Ils sont connexes, réguliers et leur adhérence est connexe, mais leur réunion, régulière elle aussi, n'est pas connexe.

En réalité il faut surtout distinguer, dans une tessellation, entre les classes adjacentes, quand l'intersection de leurs adhérences n'est pas vide, et les classes fortement adjacentes, quand on peut loger une petite boule ouverte δ(x) dans la réunion de leurs adhérences, i.e.

S i ∪ S j = ∅ et x ∈ S i ∩ S j ⇒ x ∈ δ(x) ⊆ S i ∪ S j . (11) 
C'est de l'adjacence forte dont on a besoin, dans une hiérarchie, pour transmettre la connexité des feuilles aux classes qui les regroupent: Theorem 8 Soit une tessellation τ dont les classes sont engendrées par les feuilles {s i , i ∈ I}. Il est équivalent que les classes de la tessellation soient connexes par arcs ou que 1/ les s i soient connexes par arcs, 2/ tout couple de feuilles contigües le soit fortement.

Soit une tessellation τ dont les classes sont engendrées par les feuilles {s i , i ∈ I}. Il est équivalent que les classes de la tessellation soient connexes par arcs ou que 1/ les s i soient connexes par arcs, 2/ tout couple de feuilles adjacentes le soit fortement.

Proof. Soit S j une classe de τ . D'après la proposition 6, S j est réunion de s i,j plus de toutes les frontières entre {s i,j , s k,j } adjacentes. Par contigüité forte, tout point x de la frontière F r(s i,j , s k,j ) est contenu dans un ouvert δ(x) qui contient des points de s i,j et de s k,j . Donc la réunion s i,j ∪ s k,j ∪ F r(s i,j , s k,j ) est connexe par arcs, ainsi par conséquent que S j . Inversement, les quatre classes de la figure 2 sont connexes par arcs, mais non fortement adjacentes, ce qui induit des regroupements non connexes.

Saillance Considérons maintenant une hiérarchie H de tessellations vérifiant les conditions du théorème 4. H a n niveaux τ p , 1 ≤ p ≤ n. Lorsqu'on passe du niveau p au niveau p + 1 dans la hierarchie, la fusion entre deux classes S j et S k est caractérisée par la disparition de leur frontière commune F r(S j , S k ), qui est un sous-ensemble réseau N 0 des frontières entre feuilles. Comme d'après la proposition 6 la nouvelle classe est S j ∪ S k ∪ F r(S j , S k ), le réseau N p+1 au niveau p + 1 n'est autre que N p \F r(S j , S k ). On engendre ainsi une fonction numérique s de support N 0 et qui prend la valeur p aux points de F r(S j , S k ). Lorsque p parcourt les entiers de 1 à n tous les points de N 0 recoivent une valeur, et lorsqu'on seuille les points où s ≥ p, on obtient le réseau N p de la tessellation τ p de niveau p. On retrouve la fonction de saillance de Najman et Schmitt [START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF], souvent utilisée pour les lignes de partage des eaux dans les graphes (cf. par exemple, [START_REF] Meyer | Segmentation, Minimum Spanning Trees, and Hierarchies[END_REF]). Mais cette fonction est établie ici pour le treillis des ouverts réguliers de n'importe quel espace topologique, et ne met pas en jeu d'hypothèse de Jordan: non seulement il n'est plus besoin d'arcs simples, mais c'est précisément quand on les supprime que disparaissent aussi les configurations diagonales incompatibles avec la hiérarchisation, comme le montre la figure 7b.

Enfin, lorsque les classes ne sont pas connexes, la saillance ne résume plus la hiérarchie de façon exhaustive (cf. figure 3), et l'on doit la remplacer par une labellisation des classes qui apparaissent à chaque niveau hiérarchique.

Tessellations de Z n et espaces de Khalimsky

La notion de tessellation étant topologique (elle repose sur les ouverts réguliers), si l'on veut l'utiliser dans Z n , il faut d'abord doter cet espace d'une topologie.

Rappel sur la topologie de Khalimsky

La topologie de E. Khalimsky est commode pour exprimer les analogies entre les tessellations de R n et de Z n . Publiée en russe dans les années 1960, elle est mieux connue par des articles en anglais plus récents [START_REF] Khalimsky | Topological structures in computer sciences[END_REF]. Le lecteur peut compléter la présentation que nous en faisons, sommaire mais suffisante pour notre propos, par les articles de E. Melin [START_REF] Melin | Continuous extension in topological digital spaces[END_REF], celui de L. Mazo et Al. [START_REF] Mazo | Digital imaging: a unified topological framework Journal of Mathematical Imaging and Vision[END_REF], ou encore les lecture notes de Ch. Kiselman [START_REF] Ch | Kiselman Digital Geometry and Mathematical Morphology Lecture notes Uppsala Univ[END_REF]. P.S. Alexandrov a introduit en 1937 la notion d'espace topologique E à plus petit voisinage, où l'on suppose en plus des axiomes habituels que la classe des ouverts est stable pour l'intersection, donc celle des fermés pour la réunion [1].

La topologie de Khalimsky est de ce type. Elle associe à tout couple d'entiers impairs

m ≤ m ′ l'intervalle ouvert ]m -1 2 , m ′ + 1 2 [ de R, et à tout couple d'entiers pairs n ≤ n ′ l'intervalle fermé [n -1 2 , n ′ + 1 2 ]
. Les réunions d'intervalles ouverts (resp. fermés) engendrent une topologie à plus petit voisinage, et non séparée. Quand m = m ′ et n = n ′ on obtient des intervalles unitaires qui partitionnent la droite R, qui est donc connexe. On passe à R n par la topologie produit de n droites de Khalimsky: Les carrés dont toutes les coordonnées du centre sont impaires sont ouverts, ceux dont toutes les coordonnées sont paires sont fermés, les autres sont dits mixtes. Il est commode de visualiser ces topologies au moyen des cellules de V.Kovalevsky [START_REF] Kovalevsky | Finite topology as applied to image analysis[END_REF], qui leur sont équivalentes. La figure 4 illustre cette représentation dans le cas de R 2 et montre l'intérieur et l'adhérence des trois cellules de base. Il s'agit d'une structure voisine du complexe simplicial, ce dernier se définissant comme un graphe avec des sommets reliés par des arêtes, sur lesquelles on peut rattacher des faces triangulaires. D'après le théorème 5, les tessellations d'un espace de Khaminsky doivent avoir pour classes des ouverts réguliers, ce qui simplifie les éléments de base. Dans R 2 par exemple, les points isolés, et les arêtes pendantes sont eliminés. La tessellation ne fait en définitive intervenir que les deux structures des ouverts réguliers, et, pour le réseau N du fond, des boucles où arêtes ouvertes et points alternent.

Tessellations digitales de Khalimsky

L'usage de la topologie de Khalimsky en imagerie digitale est bien classique [START_REF] Mazo | Digital imaging: a unified topological framework Journal of Mathematical Imaging and Vision[END_REF], [START_REF] Melin | Continuous extension in topological digital spaces[END_REF]. Nous la rappelons dans cette section pour rapprocher cette notion des ouverts réguliers dans le cas des tessellations, et aussi pour vérifier qu'elle ne résoud pas le problème des configutations diagonales. Partons d'un ensemble X ⊆ Z 2 , et interprétons ses points comme des points de coordonnées impaires dans un plan de Khalimsky K 2 qui contient deux fois plus de lignes et deux fois plus de points par ligne [START_REF] Cousty | Some morphological Operators on Graph Spaces in Mathematical Morphlology and its Applications to Signal and Image Processing[END_REF], [START_REF] Kiran | Energetic-Lattice based optimization[END_REF]. En représentation de Kovalevsky les points initiaux de X ⊆ Z 2 deviennent des carrés et les points supplémentaires des segments et des points, comme indiqué en figure 5a. L'adhérence X → X est la réunion des adhérences de ses éléments de base, et l'intérieur X → (X) • s'obtient par adhérence du complémentaire. La figure 5b montre l'étape X → X pour une des deux classes de X, et la figure 5c X → (X) • de la construction du régularisé (X) • . Les deux classes de la tessellation (X) • sont séparées par le réseau en noir de la figure 5d. Dans le plan K 2 de double résolution, les points du réseau du fond ont tous des coordonnées impaires.

Cet exemple illustre la propriété plus générale suivante: Proposition 9 Soit K n l'espace de Khalimsky de dimension n et Z n le sous-espace formé des points de K n dont toutes les coordonnées sont impaires. Toute partition π de Z n induit dans K n une unique tesselation τ dont chaque classe contient une classe de π, et la correspondance entre π et τ est biunivoque.

Proof. Lorsqu'on plonge Z n dans K n , toute classe B i de π devient un ouvert, puisque toutes ses coordonnées sont impaires. Remplaçons tous les ouverts B i par leurs régularisées S i = (B i ) • , et soit z un point de K n qui n'appartient à aucune classe, i.e. z ∈ [∪ S i ] c . Le point z, qui a au moins une coordonnée paire, est centre d'un cube unité qui rencontre au moins deux classes S i , ce qui revient à dire que les S i couvrent l'espace. L'ensemble {S i } forme donc une tessellation de K n . Inversement, soit τ une tessellation de K n . Les points dont toutes les coordonnées sont impaires sont nécessairement dans des classes, puisqu'ils sont ouverts, donc le passage inverse à Z n forme une partition.

Cette proposition justifie sur le plan théorique la règle classique du double échantillonnage. La maille fine présente l'avantage de visualiser le réseau des frontières, topologiquement fermées dans R n comme K n , et qui enveloppent les classes connexes des ouverts. Les points de coordonnées impaires de K n , i.e. des cubes unité ouverts de base, jouent exactement le rôle des feuilles d'une hiérarchie. Toutefois la topologie de K n ne lève pas l'ambigüité des diagonales, comme on l'a vu à propos de la figure 5a: il faut introduire une autre topologie.

6 Tessellations de Z 2 et Z3 par polyèdres de Voronoï Considérons un ensemble X de points de R n muni de la distance euclidienne. Ces points, en nombre fini ou localement fini sont appelés centres. A tout centre x ∈ X on peut toujours associer le polyèdre Q(x) formé des points y ∈ R n plus près de x que de tout autre centre. On le nomme polyèdre de Voronoï. Q(x) est ouvert et convexe, donc régulier, et l'ensemble {Q(x), x ∈ X} de ces Voronoï constitue une tessellation de l'espace. Dans R en particulier, si l'on prend pour centres les entiers impairs m, on trouve pour Voronoï ]m -1 2 , m + 1 2 [ dont le complément est l'ensemble des entiers pairs: c'est à dire une topologie identique à celle de Khalimsky.

Revenons à R n en imposant deux conditions 3 :

1. tous les polyèdres de Voronoï, sont identiques, et l'on passe de l'un à l'autre par tanslation,

les adhérences de polyèdres adjacents ont tojours une face commune.

La première condition signifie simplement qu'on décide de faire jouer le même rôle à tous les centres, et qu'ils sont disposés aux noeuds d'une grille régulière. Le minéralogiste E.S. Fedorov a montré qu'il n'y a que deux solutions dans le plan, le carré et l'hexagone, et cinq dans l'espace, le cube, le prisme hexagonal, l'octaèdre tronqué, et les dodécaèdres allongé et rhombique.

La seconde condition signifie qu'on décide de s'intéresser aux hiérarchies de tessellations qui préservent la connexité en imposant aux adjacences d'être fortes, ce qui permet d'appliquer le théorème 4. Cette seconde condition réduit les possibilités de Fedorov à une seule dans le plan, l'hexagone, et une seule dans l'espace, l'octaèdre tronqué. Le premier dérive de la grille triangulaire, le second de la grille cubique centrée [START_REF] Serra | Cube, Cube-octahedron or Rhombododecahedron as Bases for 3-D shape Descriptions[END_REF] (cf figure 9a).

Tesselation hexagonale de Z 2

Malgré ses avantages qui ont été étudiés en détail dans [START_REF] Serra | Image analysis and mathematical morphology[END_REF], la trame hexgonale n'est pas la plus utilisée. On la voit toutefois réapparaitre dans la litérature récente à propos de complexes simpliciaux relativement à watersheds digitaux [START_REF] Cousty | Collapses and watersheds in pseudomanifolds of arbitrary dimension[END_REF]. Plaçons nous d'abord dans R 2 et repérons les points par trois axes de coordonnées à 120 • à partir d'une origine O de coordonnées (1, 1, 1). Prenons pour centres les points du plan dont les coordonnées sur chaque axe sont impaires. Les polygones (ouverts dans R 2 ) de Voronoï sont des hexagones. Ceux-ci, plus les deux types de structures combinant les deux et les trois hexagones des figures 6b et c, engendrent par réunions les ouverts d'une topologie à plus petit voisinage qui a les points triples pour fermés. Les ouverts réguliers et les tessellations sont obtenus comme dans la topologie de Khalimsky, mais avec cette différence qu'il n'a plus de configurations diagonales, comme on peut le constater en comparant les deux exemples de la figure 7.

La version digitale se construit comme précédemment. On représente Z 2 selon une trame triangulaire, et on en double les points le long des parallèles à chacun des trois axes, créant ainsi un nouvel espace, disons H 2 . Les points de tout ensemble X ⊆ Z 2 ont dans H 2 leurs trois coordonnées impaires et sont identifiés aux ouverts de la topologie hexagonale de R 2 , les fermés étant tous les autres points de H 2 . Dans ce nouvel espace topologique, l'ouvert régulier (X) • de X ⊆ Z 2 s'obtient en rajoutant à X tous les points compris entre deux points ouverts de X dans chacune des trois directions. En figure 7b les images des X de Z 2 sont les gros points des quatre figurés, et on rajoute les petits points des mêmes figurés pour avoir les (X) • . Les astérisques forment le réseau des frontières de la tessellation dans H 2 . La comparaison avec la tesselation de Khalimsky en trame carrée (figure 7a) montre deux différences essentielles. D'une part, les frontièes ne sont plus des arcs de Jordan (on y trouve en hexagonal des paquets de pixels); d'autre part; en supprimant les points quadruples, on a du même coup éliminé les situations diagonales ambigües. Par conséquent, si la figure 7b représente les feuilles d'une hiérarchie, chaque point de croisement est affecté d'une valeur unique, celle du niveau où les classes Nord-Est et Sud-Ouest fusionnent.

La meilleure façon de créer une trame hexagonale consiste à agir sur le capteur, comme l'a fait Leitz avec l'analyseur de textures TAS dans les années 70 et 80. On peut aussi procéder par émulation à partir d'une trame carrée (Figure 8); la forme de l'hexagone base dépend de la parité de la ligne centrale, mais visuellement cette irrégularité s'amortit vite avec la taille 

Représentation par graphes

Les résultats de cette section ont été démontrés dans le cadre de topologies à plus petit voisinage, choisies parce qu'elles établissent un pont entre l'espace euclidien et les grilles régulières. Les deux trames triangulaire (2D) et cubique centrée (3D) débouchent sur des graphes du fond assez particuliers, puisqu'ils sont isomorphes à des couronnes circulaires (2D) ou des sphériques (3D), et que, dans la trame cuboctaédrique, les faces n'interviennent plus. Les résultats précédents s'apppliquent donc aux graphes, à condition qu'ils soient planaires (section 6.1), ou qu'aucune face en croise une autre (section 6.2), ou sans restriction (section 6.3).

Digitalisation

Bien que la modélisation de l'espace physique par des ensembles digitaux s'apparente à ces serpents de mer qui resurgissent périodiquement, nous prions le lecteur d'accepter encore une contribution supplémentaire.

La modélisation repose sur deux hypothèses, puisqu'aussi bien les dispositifs expérimentaux comprennent les deux étapes de la création d'une image analogique, et de son échantillonnage discret.

Première hypothèse: la résolution finie

Au départ, un détecteur capte des rayonnements et les focalise sur un plan. Qu'il s'agisse caméra TV, d'appareillage optique, ou d'échographie, le dispositif reste toujours tributaire de son pouvoir de résolution λ, qui n'a de sens qu'à l'intérieur d'une certaine plage de valeurs. En microscopie optique, les résolutions vont de 0, 2µ à 1mm, et en optique satellitaire de 50cm à 30m. Au delà, l'appareillage perd son intérêt, et en decà le phénomène change souvent de nature. En microscopie optique, par exemple, les grosses moélcules font leur apparition.

Dans son domaine de validité, le dispositif fournit des petites taches élémentaires aux contours indécis, a priori isotropes, dont la réunion constitue les objets détectés. En imagerie binaire, on peut classer les taches en trois catégories, selon qu'on décide qu'elles sont incluses dans l'objet d'étude, dans le fond, ou qu'on n'en décide rien. Et l'on interprète les trois catégories comme des familles d'ensembles du plan R 2 .

Parallèlement, on associe au pouvoir de résolution λ l'homothétique λB 0 d'un disque ouvert convexe B 0 de R 2 qui modélise la tache élémentaire. Il s'agit là d'une hypothèse constitutive de l'objet d'étude, c'est à dire non vérifiable, mais dont les conséquences ont du sens 4 . Dans la plage où les λ sont significatifs, la valeur λ diminue avec la finesse de résolution, mais le statut topologique de B 0 ne change pas. Il se peut qu'on se trompe en attribuant à l'objet telle ou telle petite tache, mais l'erreur se corrige d'elle même lorsqu'on passe à des résolutions plus fines.

Dire alors qu'on modélise l'objet étudié par un ensemble S(λ) ⊆ R 2 formé de la réunion de taches élémentaires λB 0 revient à dire que S(λ) est identique à son ouverture morphologique

S(λ) = [S(λ) ⊖ λB 0 ] ⊕ λB 0 . (12) 
Or quel que soit l'ensemble X ∈ P(R 2 ), si B 0 est ouvert, X ⊖ λB 0 est fermé et X ⊕ λB 0 ouvert. S(λ) est donc un R-ouvert et s'écrit S(λ) = S(X, λ) = (X ⊖ λB 0 ) ⊕ λB 0 pour un X ∈ P(R 2 ) convenable. X représente en quelque sorte l'objet idéal, en amont de tout dispositif electro-optique qui le lisse. Qui plus est, quand la résolution s'affine, comme B est convexe, S(λ) tend vers X • :

λ ↓ 0 ⇒ S(X, λ) ↑ X • i.e. ∪ λ>0 S(X, λ) = X • = (X) • (13) [l'ouvert S(X, λ) ⊆ X donc ⊆ X • , inversement, si x ∈ X • , ∃λ > 0 : λB 0 (x) ⊆ X • , donc
x ∈ ∪ λ>0 S(X, λ)]. Au mieux on ne connaitra donc jamais de "l'objet idéal " X que sa régularisée (X) • . Quand X décrit P(E), ou aussi bien quand (X) • décrit R, les transformés S(λ) génèrent l'ensemble R λ des invariants de l'ouverture [START_REF] Ch | Kiselman Digital Geometry and Mathematical Morphology Lecture notes Uppsala Univ[END_REF], et l'on a

λ ≥ µ ⇒ R λ ⊆ R µ ⊆ R.
Se placer dans le treillis des ouverts réguliers R, comme nous l'avons fait, signifie donc qu'on y trouve les modèles de tous les objets expérimentalement accessibles, quelle que soit la résolution (encore une fois, dans sa plage de signification).

Les mêmes arguments portent aussi bien sur le fond, modélisé par un R-ouvert Y disjoint de X, et il reste des zones, ni X ni Y , indécidables à la résolution de travail. Lorsque cette résolution s'affine, les zones indécises rétrécissent (aux erreurs près, mais qui sont rattrapées aux résolutions plus fines) et tendent vers la frontière de S(X, λ), qui est aussi celle de S(Y, λ). On aboutit donc à la limite à la tessellation de R 2 en X et son complémentaire, au sens du treillis R.

Deuxième hypothèse: l'échantillonnage

Supposons maintenant que l'objet X soit suffisamment régulier pour qu'en dessous d'un certain λ l'ouvert S(X, λ) ne change plus, c'est à dire que

λ ≥ µ ⇒ R λ = R µ = R. ( 14 
)
Pour µ ≤ λ tous les S(X, µ) sont homéomorphes à (X) • , dont par ailleurs ils se rapprochent de plus en plus d'après l'équation [START_REF] Kovalevsky | Finite topology as applied to image analysis[END_REF]. Ils deviennent échantillonnables. On voit aussi que lorsque l'hypothèse [START_REF] Lantuejoul | Skeletonization in quantitative metallography[END_REF] est vérifiée, la forme exacte de la tache B 0 n'a plus d'importance: carré, cercle, triangle ou hexagone deviennent équivalents. L'opération d'échantillonnage consiste à intégrer et binariser le signal analogique sur un support z, plus petit que λB 0 et implanté aux noeuds d'une maille régulière. A deux dimensions on prend souvent une maille carrée. Comme λB 0 est convexe, si les quatre échantillons situés aux sommets d'un carré élémentaire de la maille sont inclus dans l'ouvert S(λ) alors les quatre côtés et tout le carré élémentaire sont eux aussi inclus dans un λB 0 , donc dans S(λ).

L'hypothèse [START_REF] Lantuejoul | Skeletonization in quantitative metallography[END_REF] signifie alors que l'échantillonnage produit un objet topologiquement équivalent à (X) • . On peut aussi formuler la même idée en sens inverse, à la Shannon, et dire que le l'objet le plus fin reconnu par une maille carrée de pas a est l'ouvert morphologique de X par le carré ouvert élémentaire a × a de la maille. Le commentaire s'étend, mutatis mutandis, aux mailles triangulaire et rectangulaire à deux dimensions, et cubique et cubique centrée à trois dimensions.

Conclusion

Nous nous sommes posé le problème de partitionner un ensemble de telle sorte que les séparations entre classes soient matérialisées correctement, avec pour application la segmentation des fonctions numériques de Z 2 et Z 3 . Nous l'avons résolu au moyen de hiérarchies de tesselations dont les classes sont des ouverts réguliers. Dans le cas des espaces discrets du traitement d'image, le passage partition→tessellation s'est traduit par le jeu de doubles résolutions dans certaines directions. Comme il conduisait à des situations ambigues pour les trames carrées ou cubiques, nous avons proposé de remplacer celles-ci par des trames hexagonales dans Z 2 ou d'octaèdres tronqués dans Z 3 . Dans le cas de classes connexes, ces trames non ambigües préservent la connexité des classes dans les hiérarchies, et l'on peut alors introduire des fonctions de saillance. Nous avons enfin monté que lorsque les résolutions de systèmes optiques s'affinent, et que l'on souhaite une modélisation euclidienne, il devient idispensable de remplacer les partitions par des tessellations. Sur le plan théorique, cette étude montre en détail comment interfèrent les trois notions de tessellation, de topologie d'Alexandrov, et de double résolution. Au niveau expérimental elle aboutit à privilégier les trames triangulaire, à deux dimensions, et cubique centrée, à trois, qui seules permettent de construire des hiérarchies digitales cohérentes.

Figure 1 :

 1 Figure 1: a) partition où les classes sont les régions de valeur identique; b) quatre carrés ouverts; c) dans la médiane verticale on a étiré vers la gauche tous les points d'ordonnée irrationnelle, et tous les autres vers la droite. Les quatre ouverts de la figure b forment une tessellation, pas ceux de la figure c.

  Dans ce qui suit, S = (B) • désigne le R-ouvert associé à l'ouvert B de E. Proposition 3 L'opération B → S = (B) • est une fermeture algébrique sur l'espace G des ouverts de E, fermeture dont l'image de G est R Proof. L'opération est croissante et idempotente comme produit d'une adhérence par un intérieur, et elle est aussi extensive car B ⊇ B entraine (B) • ⊇ (B) • = B. Si l'on prend pour B la figure 1c, elle a pour transformée S la figure 1b. Cette fermeture signifie que S est le plus petit R-ouvert qui contienne B. En effet, si un autre R-ouvert S ′ contient B, alors par idempotence S ′ = (S ′ ) • ⊇ (B) • = S. En ce qui concerne la différence ensembliste ∆ = S\B entre les ouverts S et B, i.e. S = B ∪ ∆, avec B ∩ ∆ = ∅, on a le résultat suivant:

Figure 2 :

 2 Figure 2: Tesselation; level 1: tessellation dont les feuilles connexes reprennent l'exemple de la figure 1a; levels 2 et 3: fusion des classes nord-est/sud-ouest, puis nord-ouest/sud-est. Si la première fusion est connexe la seconde ne peut pas l'être, et inversement.

Figure 3 :

 3 Figure 3: L'espace est formé de 10 points de Z. La fonction de saillance x, y, z ne detecte pas la classe non connexe (en noir) qui apparait au niveau 3 de cette hiérarchie.

Figure 4 :

 4 Figure 4: Cellules de Kovalevsky de R 2 . Première colonne: les trois types de cellules, colonnes 2 et 3: leurs ouvertures et leurs fermetures.

Figure 5 :

 5 Figure 5: Simple résolution: a) deux classes d'une partition de Z 2 . Double résolution: b) fermé de Khaminsky de la première classe; c) ouverts réguliers des deux classes; d) tessellation correspondante (en noir, le réseau entre classes).

Figure 6 :

 6 Figure 6: a) Cellules de Kovalevsky hexagonales, les hexagones sont ouverts et les segments fermés; b) et c) ouverts de base.

Figure 7 :

 7 Figure 7: Tesselations carrée et hexagonale. Les gros ronds sont les ouverts élémentaires (carrés ou hexagonaux) les petits sont les segments et les points (en carré) ou les segments (en hexagonal). Le cas hexagonal lève l'ambiguité des points quadruples, et par ailleurs son réseau du fond n'est pas filiforme.

Figure 8 :

 8 Figure 8: Emulation d'une trame hexagonale à partir d'une trame carrée: la forme de l'hexagone élémentaire varie selon la parité de la ligne centrale.

6. 2

 2 Tesselation de Z 3 par octaèdres tronqués Malgré son nom barbare de tétrakaïdécaèdre, l'octaèdre tronqué est tout simplement le Voronoï de la trame cubique centrée (figure 9). Il découpe l'espace R 3 en polyèdres ouverts, faces carrées et hexagonales, arêtes triples et points quadruples. Les polyèdres, et leurs paquets par deux, trois et quatre, engendrent par réunion les ouverts d'une topologie à plus petit voisinage. Lorsqu'on passe en tessellation, la régularisation ne laisse plus que des ouverts sans fissures internes (les classes) complètement enveloppés par des unions de faces et d'arêtes joignant celles-ci (réseau de fond). En digital, la règle Z 3 → H 3 pour passer en tesselation est indiquée en figure 10. Partant des trois plans horizontaux n • 1 et 5 contenant les sommets du cube unité, et n • 3 contenant le centre, on leur adjoint les plans n • 2 et 4 comme indiqué. On crée ainsi une maille cubique centrée deux fois plus fine. Dans les sept directions majeures, i.e. les trois des arêtes du cube et les quatre de ses diagonales principales, alternent les points de Z 3 et ceux rajoutés pour former H 3 . La structure rapelle la trame triangulaire de Z 2 et le passage Z 2 → H 2 .

Figure 9 :

 9 Figure 9: Les octaèdres tronqués forment les Voronoï de la maille cubique centrée (gauche), ils partitionnent donc l'espace (centre). Le cube octaèdre ne pave pas l'espace, mais a toutes ses arêtes égales (droite).

Figure 10 :

 10 Figure 10: Décomposition de l'octaèdre tronqué. Les gros points sont les cellules (ouvertes) d'octaèdres tronqués de Z 3 , les petits points et anneaux sont les points rajoutés dans H 3 . Le régularisé s'obtient par réunion entre gros et petits points

Figure 11 :

 11 Figure 11: Emulation, en trame cubique, des 12 voisins du point central d'un cube-octaèdre. Comme pour l'hexagone en trame carrée, le voisinage change avec la parité du centre.

On n'introduit d'hypothèse que quand c'est nécessaire.
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Il s'agit d'une axiomatique, c'est à dire d'un choix: si l'on décide de n'accorder aucune importance à la connexité, et/ou à l'invariance par translation, ces conditions perdent leur raison d'être.

Quand G. Matheron propose cette hypothèse, dans la préface de Random sets[START_REF] Matheron | Random sets and integral geometry[END_REF], il ajoute :"This is really the minimum concession that the physicist has the right to demand from the mathematician".