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Abstract

We propose a method for variable selection in multiple regression with random predictors.

This method is based on a criterion that permits to reduce the variable selection problem

to a problem of estimating suitable permutation and dimensionality. Then, estimators for

these parameters are proposed and the resulting method for selecting variables is shown to be

consistent. A simulation study that permits to gain understanding of the performances of the

proposed approach and to compare it with an existing method is given.
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1. Introduction

The selection of variables and models is an old and important problem in statistics, and several approaches
have been proposed to deal with it for various methods of multivariate statistical analysis. For linear
regression, many model selection criteria have been proposed in the literature. Surveys on earlier work in
this field may be found in [6, 13, 14], whereas some monographs on this topic are avalaible (e.g.,[7, 8]). Most
of the methods that have been proposed for variable selection in linear regression deal with the case where
the covariates are assumed to be nonrandom; for this case, many selection criteria have been introduced in
the literature. These include the FPE criterion ([13, 14, 12, 15]), cross-validation ([16, 11]), AIC and Cp type
criteria (e.g., [4]), the prediction error criterion ([5]), and so on. There is just a few works dealing with the
case where the covariates are random, although its importance that have been recognized in [2] who argued
that that this case typically gives higher prediction errors than the fixed design counterparts and hence more
is gained by variable selection. Linear regression with random design were considered in [17, 9] for variable
selection, but these works only deal with univariate models, that is models for which the response is a real
random variable. A recent work that considered multiple regression model is [1] in which a method based on
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applying an adaptative LASSO type penalty and a novel BIC-type selection criterion have been proposed in
order to select both predictors and responses.

In this paper we extend the approach introduced in [9] to the case of multiple regression. In Section
2, the multiple regression model that is used is presented as well as a statement of the variable selection
problem. Then, the used criterion is introduced and we give a characterization result that permits to reduce
the variable selection problem to an estimation problem for two parameters. In Section 3, we propose our
method for selecting variables by estimating the two previous parameters, and we prove its consistency.
Section 4 is devoted to a simulation study which permits to evaluate finite sample performances of the
proposal and to compare it with the method given in [1]. Proofs of lemmas and theorems are given in
Section 5.

2. Model and criterion for selection

In this section, the multiple regresion model in which we are interested is introduced and a statement of the
corresponding variable selection problem is given. It is described as a problem of estimation of a suitable set.
A criterion permitting to characterize this set is propsed as well as an estimator of this criterion. Finally,
we give a result that permits to obtain asymtotic properties of this estimator.

2.1. Model and statement of the problem

We consider the multiple regression model given by:

Y = BX + ε (1)

where X and Y are random vectors valued into R
p and R

q respectively with p ≥ 2 and q ≥ 2, B is a q × p
matrix of real coefficients, and ε is a random vector valued into R

q and which is independent of X . Writing

X =




X1

...
Xp


 , Y =




Y1
...
Yq


 , ε =




ε1
...
εq




and

B =




b11 b12 · · · b1p
b21 b22 · · · b2p
...

... · · ·
...

bq1 bq2 · · · bqp




it is easily seen that Model (1) is equivalent to having a set of p univariate regression models given by:

Yi =

p∑

j=1

bijXj + εi, i = 1, · · · , q, (2)

and can also be writen as

Y =

p∑

j=1

Xjb•j + ε (3)

where

b•j =




b1j
b2j
...
bqj


 .

We are interested with the variable selection problem, that is identifying the Xj’s which are not relevant
in the previous set of models, on the basis of an i.i.d. sample

(
X(k), Y (k)

)
1≤k≤n

of (X,Y ). We say that a
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variable Xj is not relevant if the corresponding coefficients vector b•j is null. So, putting I = {1, · · · , p} we
consider the subset I0 = {j ∈ I / ‖b•j‖Rq = 0} which is assumed to be non-empty, and we tackle the variable
selection problem in Model (1) as a problem of estimating the set I0 or, equivalently, the set I1 = I − I0. In
order to simplify the estimation of I1 we will first characterize it by means of a criterion which introduced
below.

2.2. Characterization of I1

Without loss of generality, we assume that X and Y are centered; thus, that is also the case for ε. Fur-
thermore, denoting by ‖ · ‖Rk the usual Euclidean norm of R

k, we assume that E
(
‖X‖4

Rp

)
< +∞ and

E
(
‖Y ‖4

Rq

)
< +∞. Then, it is possible to define the covariance operators

V1 = E (X ⊗X) and V12 = E (Y ⊗X) , (4)

where ⊗ denotes the tensor product of vectors defined as follows: when E and F are euclidean spaces and
(u, v) is a pair belonging to E × F , the tensor product u⊗ v is the linear map from E to F such that

∀h ∈ E, (u⊗ v) (h) = 〈u, h〉E v,

where 〈·, ·〉E denotes the inner product in E.

Remark 1. In all of the paper, we essentially use covariance operators, but the translation into matrix
terms is obvious and more details can be found in [3]. Particularly, when u and v are vectors in R

p and R
q

respectively, the matrix related to the operator u ⊗ v, relative to canonical bases, is vuT where uT is the
transpose of u. So, if matricial expressions are prefered to operators, one can identify the operators given in
(4) with the matrices V1 = E

(
XXT

)
and V12 = E

(
XY T

)
.

In all of the paper, the operator V1 is assumed to be invertible. For any subset K of I, let AK be the
projector

x = (xi)i∈I ∈ R
p 7→ xK = (xi)i∈K ∈ R

card(K)

and put ΠK := A∗
K (AKV1A

∗
K)

−1
AK , where A∗ denotes the adjoint operator of A. Then, we introduce the

criterion
ξK = ‖V12 − V1ΠKV12‖ (5)

where ‖ · ‖ denotes the usual operator norm given by ‖A‖ =
√
tr (A∗A). This criterion permits to give a

more explicit expression of I1 as stated in the following lemma.

Lemma 1. We have I1 ⊂ K if, and only if, ξK = 0.

This lemma permits to characterize the fact that an interger i belongs to I0. Indeed, since having i ∈ I0 is
equivalent to having I1 ⊂ I − {i}, we deduce from this lemma that one has i ∈ I0 if, and only if, ξKi

= 0
where Ki = I−{i}. Then I1 consists of the elements of I for which ξKi

does not vanish. Now, let us consider
the unique permutation σ of I satisfying:

(i) ξKσ(1) ≥ ξKσ(2) ≥ · · · ≥ ξKσ(p);
(ii) ξKσ(i) = ξKσ(j) and i < j imply σ (i) < σ (j).

Since I0 is a not empty, there exists an integer s ∈ I, that we call the dimensionality, satisfying

ξKσ(1) ≥ ξKσ(2) ≥ · · · ≥ ξKσ(s) > 0 = ξKσ(s+1) = · · · = ξKσ(s+1).

Therefore, we obviously have the following characterization of I1:

Lemma 2. I1 = {σ(k) / 1 ≤ k ≤ s}.
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This result shows that estimation of I1 reduces to that of the two parameters σ and s. So, our method for
selecting variables will be based on estimating these parameters; in the next subsection, an estimator of the
used criterion will be introduced. That will be the basis of the proposed procedure for variable selection.

2.3. Estimation of the criterion

Recalling that we have an i.i.d. sample
(
X(k), Y (k)

)
1≤k≤n

of (X,Y ), we consider the sample means

X
(n)

= n−1
n∑

k=1

X(k), Y
(n)

= n−1
n∑

k=1

Y (k),

and the empirical covariance operators

V̂
(n)
1 = n−1

n∑

k=1

(X(k) −X
(n)

)⊗ (X(k) −X
(n)

),

and

V̂
(n)
12 = n−1

n∑

k=1

(Y (k) − Y
(n)

)⊗ (X(k) −X
(n)

).

Then, for any K ⊂ I, an estimator of ξK is given by

ξ̂
(n)
K = ‖V̂ (n)

12 − V̂
(n)
1 Π̂

(n)
K V̂

(n)
12 ‖

where Π̂
(n)
K = A∗

K(AKV
(n)
1 A∗

K)−1AK . The result given below permits to obtain asymptotic properties of
this estimator. As usual, when E and F are Euclidean vector spaces, we denote by L(E,F ) the vector space
of operators from E to F . When E = F , we simply write L(E) instead of L(E,E). Each element A of
L(Rp+q) can be writen as

A =




A11 A12

A21 A22




where A11 ∈ L(Rp), A12 ∈ L(Rq,Rp), A21 ∈ L(Rp,Rq) and A22 ∈ L(Rq). Then we consider the projectors

P1 : A ∈ L(Rp+q) 7→ A11 ∈ L(Rp) and P2 : A ∈ L(Rp+q) 7→ A12 ∈ L(Rq,Rp),

and we have:

Proposition 1. We have √
n ξ̂

(n)
K = ‖Ψ̂(n)

K (Ĥ(n)) +
√
n δK‖,

where δK = V12 − V1ΠKV12, (Ψ̂
(n)
K )n∈N∗ is a sequence of random operators which converges almost surely,

as n→ +∞, to the operator ΨK of L(L(Rp+q),L(Rq,Rp)) given by:

ΨK(A) = P2(A)− P1(A)ΠKV12 + V1ΠKP1(A)ΠKV12 − V1ΠKP2(A),

and (Ĥ(n))n∈N∗ is a sequence of random variables valued into L(Rp+q) which converges in distribution to
random variable H having a normal distributon with mean 0 and covariance operator given by:

Γ = E
(
(Z ⊗ Z − V )⊗̃(Z ⊗ Z − V )

)
,

Z being the R
p+q-valued random variable given by

Z =

(
X
Y

)

and ⊗̃ is the tensor product between elements of L(Rp+q) related to the inner product < A,B >= tr (A∗B).
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3. Selection of variables

Lemma 2 shows that estimation of I1 reduces to that of σ and s. In this section, estimators for these two
parameters are proposed and consistency properties are established for them.

3.1. Estimation of σ and s

Let us consider a sequence (fn)n∈N∗ of functions from I to R+ such that there exists a real α ∈ ]0, 1/2[ and
a strictly decreasing function f : I → R+ satisfying:

∀i ∈ I, lim
n→+∞

(nα fn (i)) = f (i) .

Then, recalling that Ki = I − {i}, we put

φ̂
(n)
i = ξ̂

(n)
Ki

+ fn (i) (i ∈ I)

and we take as estimator of σ the random permutation σ̂(n) of I such that

φ̂
(n)

σ̂(n)(1)
≥ φ̂

(n)

σ̂(n)(2)
≥ · · · ≥ φ̂

(n)

σ̂(n)(p)

and if φ̂
(n)

σ̂(n)(i)
= φ̂

(n)

σ̂(n)(j)
with i < j, then σ̂(n) (i) < σ̂(n) (j). Furthermore, we consider the random set

Ĵ
(n)
i =

{
σ̂(n) (j) ; 1 ≤ j ≤ i

}
and the random variable

ψ̂
(n)
i = ξ̂

(n)

Ĵ
(n)
i

+ gn

(
σ̂(n) (i)

)
(i ∈ I)

where (gn)n∈N∗ is a sequence of functions from I to R+ such that there exist a real β ∈ ]0, 1[ and a strictly
increasing function g : I → R+ satisfying:

∀i ∈ I, lim
n→+∞

(
nβ gn (i)

)
= g (i) .

Then, we take as estimator of s the random variable

ŝ(n) = min

{
i ∈ I / ψ̂

(n)
i = min

j∈I

(
ψ̂
(n)
j

)}
.

The variable selection is achieved by taking the random set

Î
(n)
1 =

{
σ̂(n) (i) ; 1 ≤ i ≤ ŝ(n)

}

as estimator of I1.

3.2. Consistency

The following theorem establishes consistency for the preceding estimators :

Theorem 2. We have:
(i) limn→+∞ P

(
σ̂(n) = σ

)
= 1;

(ii) ŝ(n) converges in probability to s, as n→ +∞.

As a consequence of this theorem, we easily obtain: limn→+∞ P
(
Î
(n)
1 = I1

)
= 1. This shows the consistency

of our method for selecting variables in the model (1).

4. Simulations

5



Sample size Proposed method ASCCA

50 0.00105 5.323e-6
100 0.00012 0.00052
500 1.009e-6 9.075e-6
800 20602e-7 5.789e-7
1000 1.243e-7 1.308e-7
2000 1.436e-8 1.692e-8

Table 1: Average of prediction errors over 2000 replications

In this section, we report results of a simulation study which was made in order to check the efficacy
of the proposed approach and to compare it with an existing method: the ASCCA method introduced
by An et al. (2013). This latter method is based on re-casting the multivariate regression problem as a
classical CCA problem for which a least quares type formulation is constructed, and applying an adap-
tative LASSO type penalty together with a BIC-type selection criterion (see [1] for more details). Our
simulated data is based on two independent data sets: training data and test data, each with sample size
n = 50, 100, 500, 800, 1000, 2000. The training data is used for selecting variables by using both our method,
with penalty terms fn (i) = n−1/4 i−1and gn (i) = n−3/4 i, and the ASCCA method. The test data is used
for computing prediction error given by

e =
1

n

n∑

k=1

‖Y (k) − Ŷ (k)‖2
Rq ,

where Y (k) is an observed response and Ŷ (k) is the usual linear predictor of Y (k) computed by using the

variables selected at the previous step, that is Ŷ (k) =
(
X

T
X
)−1

Y (k) where X is a matrix with n rows and
columns containing the observations of the Xj ’s that have been selected in the previous step. Each data set
was generated as follows: X(k) is generated from a multivariate normal distribution in R

7 with mean 0 and

covariance cov(X
(k)
i , X

(k)
j ) = 0.5|i−j| for any 1 ≤ i, j ≤ 7, and the corresponding response Y (k) is generated

according to (1) with

B =




3 0 0 1.5 0 0 2
4 0 0 2.5 0 0 −1
5 0 0 0.5 0 0 3
6 0 0 3 0 0 1
7 0 0 6 0 0 4




and the related error term ε(k) having a multivariate normal distribution in R
5 with mean 0 and covariance

matrix 0.5 I5, where I5 denotes the 5-dimensional identity matrix. The outputs of the numerical experiment
are the averages of the aforementioned prediction errors over 2000 independent replications. The results are
reported in Table 1. Our method gives the better results for n ≥ 100 but was outperformed by the ASCCA
method for n = 50.

5. Proofs

5.1. Proof of Lemma 1
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Denoting by (Ω,A, P ) the considered probability space, we consider the operators:

L1 : x =




x1
...
xp


 ∈ R

p 7−→
p∑

j=1

xjXj ∈ L2(Ω,A, P ) and L2 : y =




y1
...
yq


 ∈ R

q 7−→
q∑

i=1

yiYi ∈ L2(Ω,A, P )

with adjoints are respectively given by:

L∗
1 : Z ∈ L2(Ω,A, P ) 7−→ E(ZX) ∈ R

p, and L∗
2 : Z ∈ L2(Ω,A, P ) 7−→ E(ZY ) ∈ R

q.

It is easy to verify that L∗
1L1 = V1 and L∗

1L2 = V12. Denoting by R(A) the range of the operator A, and
from the fact that the orthogonal projector ΠR(A) onto R(A) is given by ΠR(A) = A(A∗A)−1A∗, we clearly
have

ξK = ‖L∗
1L2 − L∗

1L1A
∗
K(AKL

∗
1L1A

∗
K)−1AKL

∗
1L2‖ = ‖L∗

1L2 − L∗
1ΠR(L1A∗

K
)L2‖ = ‖L∗

1ΠR(L1A∗

K
)⊥L2‖, (6)

where E⊥ denotes the orthogonal space of the vector space E. For any vector α = (α1, · · · , αq)
T in R

q, one
has

L2(α) =

q∑

i=1

αiYi =

q∑

i=1

αi




p∑

j=1

bijXj + εi


 =

q∑

i=1

p∑

j=1

αibijXj +

q∑

i=1

αiεi.

Since for any u = (u1, · · · , up)T ∈ R
p, we have

< L1(u), αiεi >=

p∑

j=1

uj < Xj, αiεi >=

p∑

j=1

ujαiE (Xjεi) =

p∑

j=1

ujαiE (Xj)E (εi) = 0,

it follows that αiεi ∈ R(L1)
⊥ and, from R(L1)

⊥ ⊂ R(L1A
∗
K)⊥, we obtain

L∗
1ΠR(L1A∗

K
))⊥αiεi = L∗

1αiεi = E (αiεiX) = αiE(εi)E(X) = 0.

Thus,

L∗
1ΠR(L1A∗

K
))⊥L2(α) = L∗

1ΠR(L1A∗

K
))⊥

q∑

i=1

p∑

j=1

αibijXj =

q∑

i=1

αiL
∗
1ΠR(L1A∗

K
)⊥L1(bi•), (7)

where

bi• =




bi1
bi2
...
bip


 .

If ξK = 0, then considering, for i = 1, · · · , q, the vector α = (0, · · · , 0, 1, 0, · · · , 0) of Rq whose coordinates
are null except the i-th one which equals 1, we deduce from (7) that L∗

1ΠR(L1A∗

K
)⊥L1(bi•) = 0. Since, for

any operator A, ker(A∗A) =ker(A), it follows that we have ΠR(L1A∗

K
)⊥L1(bi•) = 0, that is

L1(bi•) ∈ R(L1A
∗
K). (8)

Denoting by |K| the cardinality of K and putting K = {k1, k2, · · · , k|K|}, we deduce from (8) that there

exists a vector β =
(
β1, · · · , β|K|

)T ∈ R
|K| such that L1(bi•) = L1A

∗
Kβ, that is

p∑

j=1

bijXj =

|K|∑

ℓ=1

βℓXkℓ
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and, equivalently,

|K|∑

ℓ=1

(bikℓ
− βℓ)Xkℓ

+
∑

ℓ∈I−K

bijXj = 0. (9)

Since V1 is invertible we have ker(L1) = ker(L∗
1L1) = ker(V1) = {0}. Then, X1, · · · , Xp are linearly

independent and, therefore, (9) implies that, for all j ∈ I − K, bij = 0. This property holds for any
i ∈ {1, · · · , q}, then we deduce that I −K ⊂ I0 and, equivalently, that I1 ⊂ K. Reciprocally, we first have

L∗
1ΠR(L1A∗

K
)⊥L1(bi•) = L∗

1ΠR(L1A∗

K
)⊥

p∑

j=1

bijXj

= L∗
1ΠR(L1A∗

K
)⊥


∑

j∈K

bijXj +
∑

j∈I−K

bijXj




= L∗
1ΠR(L1A∗

K
)⊥




|K|∑

ℓ=1

bikℓ
Xkℓ

+
∑

j∈I−K

bijXj


 .

If I1 ⊂ K, then I −K ⊂ I0 and, consequently, for all j ∈ I −K, bij = 0. Thus

L∗
1ΠR(L1A∗

K
)⊥L1(bi•) = L∗

1ΠR(L1A∗

K
)⊥




|K|∑

ℓ=1

bikℓ
Xkℓ


 = L∗

1ΠR(L1A∗

K
)⊥L1A

∗
K(bi•) = 0

because L1A
∗
K(bi•) ∈ R(L1A

∗
K). Then, from (7) and (6), we deduce that ξK = 0.

5.2. Proof of Proposition 1

We have:

√
nξ̂

(n)
K = ‖√n(V̂ (n)

12 − V12) − √
n(V̂

(n)
1 − V1)Π̂

(n)
K V̂

(n)
12 − V1

(√
n(Π̂

(n)
K −ΠK)

)
V̂

(n)
12

− V1ΠK

(√
n(V̂

(n)
12 − V12)

)
+
√
nδK‖,

and since

Π̂
(n)
K −ΠK = A∗

K

(
(AK V̂

(n)
1 A∗

K)−1 − (AKV1A
∗
K)−1

)
AK

= A∗
K

(
−(AK V̂

(n)
1 A∗

K)−1
(
AK V̂

(n)
1 A∗

K −AKV1A
∗
K

)
(AKV1A

∗
K)−1

)
AK

= −Π̂
(n)
K

(
V̂

(n)
1 − V1

)
ΠK ,

it follows:

√
nξ̂

(n)
K = ‖√n(V̂ (n)

12 − V12)−
√
n(V̂

(n)
1 − V1)Π̂

(n)
K V̂

(n)
12 (10)

+ V1Π̂
(n)
K

(√
n
(
V̂

(n)
1 − V1

))
ΠK V̂

(n)
12

− V1ΠK

(√
n(V̂

(n)
12 − V12)

)
+
√
nδK‖.

Let us consider the R
p+q-valued random vectors

Z =

(
X
Y

)
, Z(k) =

(
X(k)

Y (k)

)
, k = 1, · · · , n;
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the covariance operator of Z is given by V = E(Z ⊗ Z) and can be writen as

V =




V1 V12

V21 V2


 (11)

where V2 = E(Y ⊗ Y ) and V21 = V ∗
12. Further, putting

Z
(n)

= n−1
n∑

k=1

Z(k), and V̂ (n) = n−1
n∑

k=1

(Z(k) − Z
(n)

)⊗ (Z(k) − Z
(n)

),

we can write

V̂ (n) =




V̂
(n)
1 V̂

(n)
12

V̂
(n)
21 V̂

(n)
2


 (12)

where V̂
(n)
2 = n−1

∑n
k=1(Y

(k) − Y
(n)

) ⊗ (Y (k) − Y
(n)

) and V̂
(n)
21 =

(
V̂

(n)
12

)∗
. Then we deduce from (10),

(11) and (12) that
√
nξ̂

(n)
K = ‖Ψ̂(n)

K (Ĥ(n)) +
√
nδK‖, where Ĥ(n) =

√
n
(
V̂ (n) − V

)
and Ψ̂

(n)
K is the random

operator from L(Rp+q) to L(Rp) defined by

∀A ∈ L(Rp+q), Ψ̂
(n)
K (A) = P2(A)− P1(A)Π̂

(n)
K V̂

(n)
12 + V1Π̂

(n)
K P1(A)ΠAV̂

(n)
12 − V1ΠKP2(A).

Considering the usual operators norm ‖ · ‖∞ defined in L(E,F ) by ‖A‖∞ = supx∈E−{0} ‖Ax‖F /‖x‖E and
recalling that, for two operators A and B, one has ‖AB‖∞ ≤ ‖A‖∞‖B‖∞, we obtain

‖Ψ̂(n)
K (A)−ΨK(A)‖∞ =

∥∥∥−P1(A)
(
Π̂

(n)
K −ΠK

)
V̂

(n)
12 − P1(A)ΠK

(
V̂

(n)
12 − V12

)

+V1

(
Π̂

(n)
K −ΠK

)
P1(A)ΠK V̂

(n)
12 +−V1ΠKP1(A)ΠK

(
V̂

(n)
12 − V12

)∥∥∥
∞

≤ ‖P1(A)‖∞
[
‖Π̂(n)

K −ΠK‖∞‖V̂ (n)
12 ‖∞ + ‖ΠK‖∞‖V̂ (n)

12 − V12‖∞

+‖V1‖∞‖ΠK‖∞‖Π̂(n)
K −ΠK‖∞‖V̂ (n)

12 ‖∞
+‖V1‖∞‖ΠK‖2∞‖V̂ (n)

12 − V12‖∞
]

≤
[
‖Π̂(n)

K −ΠK‖∞‖V̂ (n)
12 ‖∞ + ‖ΠK‖∞‖V̂ (n)

12 − V12‖∞

+‖V1‖∞‖ΠK‖∞‖Π̂(n)
K −ΠK‖∞‖V̂ (n)

12 ‖∞
+‖V1‖∞‖ΠK‖2∞‖V̂ (n)

12 − V12‖∞
]
‖P1‖∞,∞‖A‖∞,

where ‖T ‖∞,∞ := supA∈L(Rp+q)−{0} ‖T (A)‖∞/‖A‖∞. Hence

‖Ψ̂(n)
K −ΨK‖∞,∞ ≤ [‖1 + ‖V1‖∞‖ΠK‖∞‖] ‖V̂ (n)

12 ‖∞‖Π̂(n)
K −ΠK‖∞‖P1‖∞,∞ (13)

+ [1 + ‖V1‖∞‖ΠK‖∞] ‖ΠK‖∞‖V̂ (n)
12 − V12‖∞‖P1‖∞,∞.

From the strong law of large numbers it is easily seen that V̂
(n)
1 (resp. V̂

(n)
12 converges almost surely, as

n → +∞ to V1 (resp. V12). Therefore, Π̂
(n)
K converges almost surely, as n → +∞ to ΠK , and from (13)

we deduce that Ψ̂
(n)
K converges almost surely, as n → +∞ to ΨK . It remains to obtain the asymptotic

distribution of Ĥ(n). We have Ĥ(n) = Ĥ
(n)
1 − Ĥ

(n)
2 where

Ĥ
(n)
1 =

√
n

(
1

n

n∑

k=1

Zk ⊗ Zk − V

)
and Ĥ

(n)
2 =

1√
n

(
(
√
nZ

(n)
)⊗ (

√
nZ

(n)
)
)
.
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The central limit theorem ensures that Ĥ
(n)
1 (resp.

√
nZ

(n)
) converges in distribution, as n → +∞, to a

random variable H (resp. U) having a centered normal distribution with covariance operator Γ (resp. Γ′)
given by

Γ = E
(
(Z ⊗ Z − V )⊗̃(Z ⊗ Z − V )

)
(resp. Γ′ = E (Z ⊗ Z) ).

Hence, Ĥ
(n)
2 converges in probability, as n→ +∞, to 0 and Slustky theorem permits to conclude that Ĥ(n)

converges in distribution, as n→ +∞, to H .

5.3. Proof of Theorem 2

We just need to prove the lemma which is given below. Then the proof of Theorem 1 is similar than that of
Theorem 3.1 in [10]. Let r ∈ N

∗ and (m1, · · · ,mr) ∈ (N∗)r such that
∑r

ℓ=1mℓ = p and

ξKσ(1)
= · · · = ξKσ(m1)

> ξKσ(m1+1)
= · · · = ξKσ(m1+m2)

> · · · > ξKσ(m1+m2+···+mr−1+1)
= · · · = ξKσ(m1+m2+···+mr)

.

Then, putting E = {ℓ ∈ N
∗ / 1 ≤ ℓ ≤ r, mℓ ≥ 2} and Fℓ :=

{(∑ℓ−1
k=0mk

)
+ 1, · · · ,

(∑ℓ
k=0mk

)
− 1
}

with

m0 = 0, we have:

Lemma 3. If E 6= ∅, then for all ℓ ∈ E and all i ∈ Fℓ, the sequence nα
(
ξ̂
(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)
converges in

probability to 0 as n→ +∞.

Proof. Let us put γℓ = ξKσ(i)
= ξKσ(i+1)

; if γℓ = 0, then

∣∣∣nα
(
ξ̂
(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)∣∣∣ = nα− 1
2

∣∣∣‖Ψ̂(n)
Kσ(i)

(Ĥ(n))‖ − ‖Ψ̂(n)
Kσ(i+1)

(Ĥ(n))‖
∣∣∣

≤ nα− 1
2 ‖
(
Ψ̂

(n)
Kσ(i)

− Ψ̂
(n)
Kσ(i+1)

)(
Ĥ(n)

)
‖

≤ nα− 1
2 ‖Ψ̂(n)

Kσ(i)
− Ψ̂

(n)
Kσ(i+1)

‖∞‖Ĥ(n)‖,

Since Ψ̂
(n)
Kσ(i)

and Ψ̂
(n)
Kσ(i+1)

converge almost surely, as n → +∞, to ΨKσ(i)
and ΨKσ(i+1)

respectively, and

since Ĥ(n) converges in distribution, as n → +∞, to H , it follows from the preceding inequality and from

α < 1/2 that nα
(
ξ̂
(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)
converges in probability to 0 as n→ +∞. If γℓ 6= 0, we have

nα
(
ξ̂
(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)
= nα− 1

2

(
‖Ψ̂(n)

Kσ(i)
(Ĥ(n)) +

√
nδKσ(i)

‖ − ‖Ψ̂(n)
Kσ(i+1)

(Ĥ(n)) +
√
nδKσ(i+1)

‖
)

=
nα− 1

2

(
‖Ψ̂(n)

Kσ(i)
(Ĥ(n))‖2 − ‖Ψ̂(n)

Kσ(i+1)
(Ĥ(n))‖2

)

‖Ψ̂(n)
Kσ(i)

(Ĥ(n)) +
√
nδKσ(i)

‖+ ‖Ψ̂(n)
Kσ(i+1)

(Ĥ(n)) +
√
nδKσ(i+1)

‖

+
2nα

(〈
δKσ(i)

, Ψ̂
(n)
Kσ(i)

(Ĥ(n))
〉
−
〈
δKσ(i+1)

, Ψ̂
(n)
Kσ(i+1)

(Ĥ(n))
〉)

‖Ψ̂(n)
Kσ(i)

(Ĥ(n)) +
√
nδKσ(i)

‖+ ‖Ψ̂(n)
Kσ(i+1)

(Ĥ(n)) +
√
nδKσ(i+1)

‖

=
nα−1

(
‖Ψ̂(n)

Kσ(i)
(Ĥ(n))‖2 − ‖Ψ̂(n)

Kσ(i+1)
(Ĥ(n))‖2

)

‖n− 1
2 Ψ̂

(n)
Kσ(i)

(Ĥ(n)) + δKσ(i)
‖+ ‖n− 1

2 Ψ̂
(n)
Kσ(i+1)

(Ĥ(n)) + δKσ(i+1)
‖

+
2nα− 1

2

(〈
δKσ(i)

, Ψ̂
(n)
Kσ(i)

(Ĥ(n))
〉
−
〈
δKσ(i+1)

, Ψ̂
(n)
Kσ(i+1)

(Ĥ(n))
〉)

‖n− 1
2 Ψ̂

(n)
Kσ(i)

(Ĥ(n)) + δKσ(j)
‖+ ‖n− 1

2 Ψ̂
(n)
Kσ(i+1)

(Ĥ(n)) + δKσ(i+1)
‖
,
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where < ·, · > is the inner prodcut defined by < A,B >= tr(A∗B). First,

∣∣∣nα−1
(
‖Ψ̂(n)

σ(j)(Ĥ
(n))‖2 − ‖Ψ̂(n)

σ(j+1)(Ĥ
(n))‖2

)∣∣∣

≤ nα−1
(
‖Ψ̂(n)

Kσ(i)
(Ĥ(n))‖2 + ‖Ψ̂(n)

Kσ(i+1)
(Ĥ(n))‖2

)

≤ nα−1
(
‖Ψ̂(n)

Kσ(i)
‖2∞ + ‖Ψ̂(n)

Kσ(i+1)
‖2∞
)
‖Ĥ(n)‖2 (14)

and, further,

∣∣∣2nα− 1
2

(〈
δKσ(i)

, Ψ̂
(n)
Kσ(i)

(Ĥ(n))
〉
−
〈
δKσ(i+1)

, Ψ̂
(n)
Kσ(i+1)

(Ĥ(n))
〉)∣∣∣

≤ 2nα− 1
2

(∣∣∣
〈
δKσ(i)

, Ψ̂
(n)
Kσ(i)

(Ĥ(n))
〉∣∣∣+

∣∣∣
〈
δKσ(i+1)

, Ψ̂
(n)
Kσ(i+1)

(Ĥ(n))
〉∣∣∣
)

≤ 2nα− 1
2

(
‖δKσ(i)

‖‖Ψ̂(n)
Kσ(i))

(Ĥ(n))‖+ ‖δKσ(i+1)
‖‖Ψ̂(n)

Kσ(i+1)
(Ĥ(n))‖

)

≤ 2nα− 1
2 γℓ

(
‖Ψ̂(n)‖∞ + ‖Ψ̂(n)

Kσ(i+1)
‖∞
)
‖Ĥ(n)‖. (15)

Equations (14) and (15), and the above recalled convergence properties permit to conclude that the sequence

nα
(
ξ̂
(n)
Kσ(i)

− ξ̂
(n)
Kσ(i+1)

)
converges in probability to 0, as n→ +∞.

References

[1] B. An, J. Guo, H. Wang. Multivariate regression shrinkage and selection by canonical correlation
analysis. Comput. Statist. Data Anal., 62:93–107, 2013.

[2] L. Breiman, P. Spector. Submodel selection and evaluation in regression. The X-random case. Internat.
Statist. Rev., 60:291–319, 1992.

[3] J. Dauxois, Y. Romain, S. Viguier. Tensor products and statistics. Linear Algebra Appl., 210:59–88,
1994.

[4] Y. Fujikoshi, K. Sato. Modified AIC and Cp in multivariate linear regression. Biometrika, 84:707–716,
1997.

[5] Y. Fujikoshi, T. Kan, S. Takahashi, T. Sakurai. Prediction error criterion for selecting variables in a
linear regression model. Ann. Inst. Stat. Math., 63:387–403, 2011.

[6] R. R. Hocking. The analysis and selection in linear regression. Biometrics, 32:1–49, 1976.

[7] H. Linhart, W. Zucchini. Model selection. Wiley, New York, 1986.

[8] A. J. Miller. Subset selection in regression. Chapman and Hall, London, 1990.
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