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This paper details the implementation of state-of-the-art whole-body control algorithms on
the humanoid robot iCub. We regulate the forces between the robot and its surrounding
environment to stabilize a desired posture. We assume that the forces and torques are
exerted on rigid contacts. The validity of this assumption is guaranteed by constraining
the contact forces and torques, e.g., the contact forces must belong to the associated
friction cones. The implementation of this control strategy requires the estimation of both
joint torques and external forces acting on the robot. We then detail algorithms to obtain
these estimates when using a robot with an iCub-like sensor set, i.e., distributed six-axis
force-torque sensors and whole-body tactile sensors. A general theory for identifying the
robot inertial parameters is also presented. From an actuation standpoint, we show how
to implement a joint-torque control in the case of DC brushless motors. In addition, the
coupling mechanism of the iCub torso is investigated.The soundness of the entire control
architecture is validated in a real scenario involving the robot iCub balancing and making
contact with both arms.

Keywords: whole-body control, floating-base robots, rigid contacts, non-coplanar contact, tactile sensors,
force sensors

1. INTRODUCTION
Classical industrial applications employ robots with limited
mobility. Consequently, assuming that the robot is firmly attached
to the ground, interaction control (e.g., manipulation) is usu-
ally achieved separately from whole-body posture control (e.g.,
balancing). Foreseen applications involve robots with augmented
autonomy and physical mobility. Within this novel context, phys-
ical interaction influences stability and balance. To allow robots
to overcome barriers between interaction and posture control,
forthcoming robotics research needs to investigate the principles
governing whole-body coordination with contact dynamics, as these
represent important challenges toward achieving robot physical
autonomy and will therefore be the focus of the present paper.

It is worth recalling that the aforementioned industrial robots
have been extensively studied since the early seventies. Robot phys-
ical autonomy asks for switching from conventional fixed-base to
free-floating robots, whose control has been addressed only during
recent years. Free-floating mechanical systems are under actuated
and therefore cannot be fully feedback linearized (Spong, 1994).
The problem becomes even more complex when these systems are
constrained that is their dynamics are subject to a set of (possibly
time-varying) non-linear constraints. This is the typical case for
legged robots, for which motion is constrained by rigid contacts
with the ground.

The major contribution of this work is the implementation
and integration of all the building blocks composing a system
for balance and motion control of a humanoid robot. The sys-
tem includes the low-level joint-torque control, the task-space

inverse-dynamics control, the task planner and the estimation of
contact forces and joint torques. Even though in recent years, other
similar systems have been presented (Ott et al., 2011; Herzog et al.,
2014), the originality of our contribution lies (i) in the specificities
of our test platform and (ii) in a number of design choices that
traded off simplicity of implementation for performances of the
control system. In particular:

• differently from the other robots, iCub can localize and estimate
contact forces on its whole-body thanks to its distributed tactile
sensors

• similarly to the DLR-Biped (Ott et al., 2011), iCub is actuated
with DC motors and harmonic drives,but we chose to neglect the
gear-box flexibility, which simplified the motor-identification
procedure and the low-level torque controller

• differently from the above-mentioned platforms, iCub is not
equipped with joint-torque sensors, but we designed a method
that exploits its internal 6-axis force/torque sensors to estimate
the joint torques

• all our control loops run at 100 Hz, which is (at least) 10 times
slower with respect to Ott et al. (2011) and Herzog et al. (2014).

We believe that further investigation will be necessary to thor-
oughly understand all the consequences of our hardware/software
design choices. Nonetheless, these peculiarities make the presented
system unique, and for this reason we think it is important to share
our results with the robotics community.
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Nori et al. Whole-body force and posture control

The paper is organized as follows: Section 2 reviews the state
of the art and motivates our specific choices, with a focus on why
we defined postural stability by means of the center of pressure at
individual contacts. A counterexample discussed in Section 2.3.3
shows that the commonly used global center of pressure is not
suitable for the scope of our application. Section 3.1 describes the
whole-body distributed force and tactile sensors on iCub. These
sensors are used to estimate contact forces (Section 3.2.1), internal
torques (Section 3.2.2), and to improve the accuracy of the robot’s
inertial parameters (Section 3.3), while Section 3.4 presents the
prioritized contact-force controller. Section 4 discusses the imple-
mentation scenario, consisting in controlling the iCub posture and
contact forces at both arms and feet. Remarkably, iCub can estab-
lish and break contacts at the arms using tactile sensing for both
contact detection and localization. Finally, Section 5 draws the
conclusions.

2. BACKGROUND
This section reviews previous literature on rigid contacts and their
role in whole-body stability. Then we conclude that for the scope
of the current paper we need to consider local contact stability as
opposed to global stability criteria proposed in previous literature.
Section 2.1 makes some general considerations about contacts and
Section 2.1.1 gives a characterization of contacts by means of the
center of pressure, a point in space that summarizes the effects of
distributed forces acting on a rigid body. Section 2.2 focuses on
planar unilateral contacts and their stability (Section 2.2.1). This
specific type of contacts is associated with a center of pressure that
lies on the contact plane (Section 2.2.2). This property is exploited
to give necessary and sufficient conditions for the stability of a pla-
nar unilateral contact (Section 2.2.3). Section 2.3 reviews previous
literature on multiple contacts. In particular, Section 2.3.1 consid-
ers the coplanar case, whereas Section 2.3.2 the non-coplanar one.
Section 2.3.3 discusses a counterexample to justify our choice of
addressing the multiple-contact case without resorting to a global
stability criterion as proposed in most of previous approaches.
Finally, Section 2.4 briefly reviews the state of the art of prioritized
task-space inverse dynamics.

2.1. CONTACTS
We consider articulated rigid-body systems under the effects of
multiple rigid contacts. In general, a contact can be seen as a con-
tinuum of infinitesimal forces acting on the surface of a rigid body.
The effect of contact forces will be represented with an equivalent
wrench wc= (fc,µc), composed by a three-dimensional force and
a three-dimensional torque, denoted fc and µc, respectively. Con-
sidering that a contact exerts infinitesimal forces distributed over
a surface, fc is computed as the integral of infinitesimal forces over
the surface. Similarly, µc is computed as the integral of the infin-
itesimal torques due to infinitesimal forces over the surface. The
effect of other (non-contact) forces and torques acting on the rigid
body will be denoted as wo= (fo,µo), being fo and µo the equiva-
lent force and torque (respectively) resulting from all non-contact
forces.

2.1.1. Definition of center of pressure (CoP)
Given a rigid body subject to contact forces, we associate a field of
pressure to the contact itself. For each contact point, the pressure

is defined as the amount of normal force acting per unit area. The
center of pressure (CoP) is defined as an application point where
the force obtained by the integration of the field of pressures causes
an effect that is equivalent to that of the field of pressures itself.
Remark 1: by definition, pressure accounts only for the normal
component of the contact forces acting on the surface of a rigid
body. Therefore, the CoP comes handy especially when the tan-
gential forces (shear stress) are negligible or does not play a role
in the rigid body dynamics (e.g., the effect of tangential forces
is compensated by the static friction). Otherwise, the CoP does
not represent per se a full characterization of the forces acting
on the system and the effect of tangential forces should be also
taken into account. Remark 2: at any point in space, the effect of a
field of pressures can be represented by an equivalent force and an
equivalent torque (the integral of infinitesimal forces and torques,
respectively). Given the above definition, the CoP is an application
point where the equivalent torque is null.

2.1.2. Existence of the center of pressure (CoP)
Given the above definition, we can infer that the CoP sometimes
might not exist. As a trivial example, the CoP does not exist when
a field of pressure generates a zero net force but a non-zero net
torque. Excluding this trivial case, by resorting to the Poinsot the-
orem it can be shown (see Appendix A) that the CoP is defined
if and only if the resulting net torque is orthogonal to the result-
ing net force. Two relevant cases that satisfy this condition can
be identified: field of pressures due to forces lying on a plane
(torques orthogonal to the plane) and field of pressures due to
forces orthogonal to a plane (torques lying on the plane). The
first is a typical example used in aerodynamics (profile of a wing)
and the latter is a typical example in the field of humanoid walk-
ing (contact with planar surfaces). In any case, the CoP is never
uniquely defined and the set of valid CoPs corresponds to the
Poinsot axis (see Appendix A.2). In the case of planar contacts, we
will uniquely identify the CoP with the intersection between the
axis and the planar contact surface as proposed by Sardain and
Bessonnet (2004).

2.2. PLANAR UNILATERAL CONTACT
A particular type of contacts, nominally planar unilateral con-
tacts, has been widely studied to characterize the stability of an
articulated rigid-body system while walking on flat terrain. The
typical case-study considers a single link (foot) in contact with a
flat surface (ground). Proposed stability criteria take into account
the fact that while the foot has to be constantly in contact with
the ground, the rest of the body is moving and therefore transfers
inertial and gravitational forces to the foot. The foot is therefore
subject to two sets of wrenches: those due to the contact with
the ground (wc) and those due to the movements of the rest of
the body (wo). For the contact to be stable, these forces should
balance (see Section 2.2.1). Force balance might not always hold
since planar unilateral contacts exert a limited range of forces and
torques. Original stability properties were proposed by Vukobra-
tovic and Juricic (1969), who introduced the zero moment point
(ZMP) concept. The ZMP coincides with the unique point on the
ground where fc,µc produce zero tangential moments (see Section
2.2.2). As it was pointed out by Sardain and Bessonnet (2004), in
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the case of planar contacts, the ZMP coincides with the intersec-
tion of the Poinsot axis with the contact plane as defined in Section
2.1.1; the ZMP is therefore a valid CoP. Other stability criteria for
planar unilateral contacts have been proposed by Goswami (1999)
and reviewed in Section 2.2.3.

2.2.1. Definition of stable planar unilateral contact
So far, we have only discussed about forces generated by contacts.
In general, contacts also introduce motion constraints and there is
always a duality between contact forces and constrained motion.
In the case of rigid contacts, the directions in which motion is con-
strained are precisely those in which (contact) forces can be exerted
as observed by Murray et al. (1994). In other words, contact forces
and possible motions are always orthogonal. From a control point
of view, it is often desirable that the set of motion constraints does
not change over time, since if it does, the control problem becomes
harder to solve (see, for example, literature on hybrid and switch-
ing systems). This is the reason why we say that a contact is stable
when the motion constraints induced by it do not change over time.
Interestingly, motion constraints are effective on the system only
if certain conditions are satisfied. If these conditions are not met
(e.g., contact forces violate unilateral constraints or exceed friction
cones) contacts are broken and motion constraints are no longer
active on the system. It is therefore important to find a set of nec-
essary and sufficient conditions for a contact to constrain always
the same motion.

In the case of planar unilateral contacts, these conditions
assume an elegant form that will be presented in Section 2.2.3. The
analysis is simplified by observing that planar unilateral contacts
impose constraints on all linear and angular motions1. There-
fore, a planar unilateral contact imposes null linear and angular
accelerations. By means of the Newton–Euler equations on the
contact link, motion constraints are therefore guaranteed if and
only if fc=− fo and µc=−µo. In a sense, deciding whether or
not a planar unilateral contact is stable (with the above terminol-
ogy) corresponds to understanding if a given wrench fo, µo can
be compensated by the forces fc and torques µc generated by the
given type of contact. If−fo,−µo lie outside the space of wrenches
that a planar unilateral contact can generate, then non-zero accel-
erations are generated and the contact is broken. The following
section shows how to characterize the set of wrenches generated
by a planar unilateral contact.

2.2.2. Characterization of the CoP for planar unilateral contacts
Given a planar unilateral contact, the set of forces induced by the
contact are such that it is always possible to find a point on the
plane where the equivalent moment has null tangential compo-
nents. This point has been named zero moment point (ZMP) by
Vukobratovic and Juricic (1969). The name is sometimes consid-
ered misleading [see, for example, Sardain and Bessonnet (2004)]
since at the ZMP the “tipping” (or tangential) moment and not
the “total” moment is zeroed. The computation of the zero tip-
ping moment point is relatively straightforward and reformulated

1Normal linear motion and tangential angular motions are constrained by the uni-
lateral contact forces; tangential linear motions and normal angular motion are
constrained by friction.

in Section “Appendix B.1.” In the case of unilateral contacts, the
ZMP coincides with the CoP [see Sardain and Bessonnet (2004)]
and always lies in the convex hull of the contact points as shown
by Wieber (2002) and in Section “Appendix B.1.” It is worth notic-
ing that (in the ZMP context) restricting to tangential moments
corresponds (in the CoP context) to neglecting tangential forces
(see the first remark in Section 2.1.1).

2.2.3. Characterization of stable planar unilateral contact
Goswami (1999) pointed out that the ZMP lying within the con-
tact convex hull is not a proper stability measure. He therefore
formulated some different statements for the characterization of
the stability of planar unilateral contacts. These statements make
use of the foot rotation indicator (FRI), which corresponds to
the unique zero tipping moment point associated to fo, µo and
belonging to the contact plane. The name FRI is misleading since
this physical quantity can be associated to any rigid body in contact
with a planar surface, regardless of the fact that the body itself is a
foot or not. Remarkably, the FRI (differently form the CoP) is not
constrained in the contact convex hull because fo and µo are not
the result of unilateral contact forces. Other names used in liter-
ature for the FRI are fictitious ZMP (FZMP) and computed ZMP
(CZMP) used by Vukobratovic and Borovac (2004) and Kajita and
Espiau (2008), respectively. If the FRI is not within the contact con-
vex hull, Goswami (1999) has shown that a rotation of the rigid
link is occurring (i.e., angular acceleration is not identically zero).
Vice versa, if the FRI is within the contact convex hull and if fric-
tional constraints are satisfied2, then the unilateral contact is stable
(i.e., the contact link has null accelerations). The complete proof
of the latter statement requires some additional considerations,
which are outside the scope of the present paper. The interested
reader should refer to chapter 11 of Featherstone (2008).

Both the ZMP and the FRI concept have been used by sev-
eral authors to define a suitable stability margin for balancing an
articulated rigid body system. Hirai et al. (1998) used the ZMP
concept to balance one of the earliest versions of the Honda walk-
ing humanoids. Huang et al. (2001) adopted a similar concept
to define a stability margin tunable by modifying the robot hip
motion. Li et al. (1993) used the error between a desired and the
computed ZMP to learn stable walking. A good reason to prefer
the FRI has been pointed out by Goswami (1999): given that “the
ZMP cannot distinguish between the marginal state of static equi-
librium and a complete loss of equilibrium of the foot (in both
cases, the ZMP is situated at the support boundary), its utility in
gait planning is limited. FRI point, on the other hand, may exit the
physical boundary of the support polygon and it does so whenever
the foot is subjected to a net rotational moment.”

2.3. MULTIPLE CONTACTS
So far, we discussed the stability of an articulated rigid body sys-
tem subject to a single planar unidirectional contact. The stability

2The FRI and ZMP (as they have been defined) do not depend neither on the tan-
gential forces nor on the normal moments. However, frictional constraints depend
on these quantities. Therefore, no stability criteria can be formulated using only the
FRI and the ZMP quantities. Within this context, it comes with no surprise that
the sufficient condition for contact stability requires tangential forces and normal
moments to be within the friction cones of the contact itself.
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Nori et al. Whole-body force and posture control

characterization given by Goswami (1999) guarantees contacts
stability by requiring the FRI to stay inside the support convex
hull. In this section, we review extensions of this criterium to the
case of multiple contacts. Proposed extensions search for some
global stability criteria to condense the local stability criteria on
individual contacts. Section 2.3.1 considers the simple case of mul-
tiple coplanar contacts and the associated global stability criteria,
known as global CoP. Section 2.3.2 reviews previous literature on
global criteria with multiple non-coplanar contacts. The present
section concludes by observing that, for the scope of the present
paper, it is mandatory to abandon global criteria and stick to local
ones. The conclusion follows from a counterexample, provided in
Section “Appendix A.2” and discussed in Section 2.3.3.

2.3.1. Multiple coplanar contacts
In this section, we consider the case of articulated rigid body
systems in contact with a flat surface (typically the ground). Dif-
ferently from the previous sections, we assume that more than one
single rigid body is in contact with the flat ground and therefore we
consider a multiple coplanar contacts scenario. Within this con-
text, we distinguish between local CoP (one per each rigid body in
contact with the ground) and global CoP (the center of pressure
resulting from all rigid bodies in contact). The local CoP of a rigid
body has been defined and characterized in Sections 2.1.1, 2.2.2,
and 2.2.3. These definitions and characterizations refer to a single
rigid body (e.g., the foot) but can be extended to any rigid body
of the articulated system. Computations in this case account only
for the contact forces acting on the rigid body itself. Global CoP
(GCoP) is instead a quantity associated with the whole articulated
system and corresponds to the center of pressure obtained by inte-
grating all contact forces acting on the articulated system. Most
of the previous literature does not distinguish between local and
global center of pressure but often refer to the latter when charac-
terizing stability during the double-support phase of flat terrain
walking. Remarkably, the property of the GCoP lying inside the
contacts convex hull still holds. This stability criterion has been
used by several authors (Huang et al., 2001; Wieber, 2002; Stonier
and Kim, 2006) to infer stability in flat terrain walking. In partic-
ular, Wieber (2002) defined a motion to be realizable if and only if
the GCoP lies inside the convex hull of contact points. Even though
Popovic and Herr (2005) questioned the use of the GCoP as a way
to guarantee postural stability, associated criteria are at present the
most adopted for planning walking trajectories. In Section 2.3.3,
we further question the GCoP as a stability criterion, focusing in
particular on the scope of the current paper.

2.3.2. Mutiple non-coplanar contacts
Harada et al. (2003) defined a generalized ZMP (GZMP) and a pro-
jected convex hull to formulate stability conditions for a limited
class of arm/leg coordination tasks. Sardain and Bessonnet (2004)
proposed a concept of virtual surface and virtual CoP-ZMP limited
to the case of two non-coplanar contacts. In spite of the adopted
simplification, authors themselves admit their failure in finding an
associated pseudo support polygon onto which the pseudo-ZMP
stays. Hyon et al. (2007) presented a framework for computing
joint torques that optimally distributes forces across multiple con-
tacts; conditions for the CoP to lie within the supporting convex

hull are formulated but stability conditions are not formulated
with sufficient level of details.

2.3.3. Global versus local CoP
In the present paper, we formulate a whole-body postural control,
which assumes stable contacts. Stability, as defined in Section 2.2.1
guarantees time invariance of motion constraints and avoids the
complications of controlling hybrid systems. Necessary and suffi-
cient conditions for stability of individual contacts can be obtained
by resorting to the FRI of each contact. Most of previous literature
on flat terrain walking postulates the GCoP to lie in the contacts
convex hull as a stability criterium. This criterium is a necessary
and sufficient condition for a whole-body motion to be realizable
as pointed out by Wieber (2002) (see, in particular, Section 3.2 of
his paper). However, it is not a sufficient condition to guarantee
stability of all contacts. Section “Appendix B” provides a coun-
terexample in the simple case of two coplanar contacts: the GCoP
is shown to lie in the contacts convex hull but individual contacts
are proven to be unstable. We therefore decide in this paper to stick
to local contact stability criteria since no previous global criteria
guarantee the stability of all local contacts.

2.4. TASK-SPACE INVERSE DYNAMICS
We now briefly review the vast literature on prioritized task-
space inverse-dynamics control and we motivate our choices in
this regard. Sentis (2007) and Park (2006) have been pioneers
in the control of articulated free-floating rigid bodies exploit-
ing the operational-space framework (Khatib, 1987). More recent
approaches have explored the idea of simplifying the system
dynamic equations by performing suitable projections onto the
null space of the contact forces as proposed by Righetti et al.
(2011) and Aghili (2005). While being computationally efficient
(i.e., a total computation time below 1 ms), all these approaches
share a common drawback: contact forces cannot be controlled.
As a consequence, stability of the contacts cannot be guaranteed,
which may lead the robot to tip over and fall.

As opposed to these analytical solutions to the control prob-
lem, an alternative numerical approach proposed by de Lasa
et al. (2010) is to use a Quadratic Programing solver. This allows
to include inequality constraints into the problem formulation,
which can model control tasks and physical constraints (e.g., joint
limits, motor-torque bounds, force friction cones). Even if this
technique can guarantee contact stability, solving a cascade of Qua-
dratic Programs with inequality constraints can be critical from a
computational standpoint.

We decided to take an in-between approach: our framework
of choice [see Section 3.4 or Del Prete et al. (2014) for details]
allows to control the contact forces, but with a computational
complexity of the same order of inverse-dynamics-based methods.
Compared to optimization-based methods, our implementation
does not allow for inequality constraints. To the best of our knowl-
edge, the only real-time implementation of a cascade of Quadratic
Programs with inequalities has been tested with a 14-DoF robot
on a fast 3.8 GHz CPU (Herzog et al., 2014). We cannot be
sure that this method will be fast enough for 26 DoFs and/or a
slower CPU. For this reason, while we think that using inequali-
ties could be useful, we postponed it to the (near) future because
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we know that it demands for an efficient and careful software
implementation.

3. MATERIALS AND METHODS
In this section, we present our approach to solve the problem of
controlling whole-body posture on multiple rigid planar contacts.
We suppose each contact to be planar, but contact planes to be
in general non-coplanar. Within this context, the considerations
presented in the previous sections justify our choice to abandon
the idea of defining a global stability criterion (such as the GCoP).
In case of non-coplanar contacts, a global CoP is not even prop-
erly defined given that the resulting force and torque might not in
general be orthogonal (see Sections 2.1.2 and Appendix A.2). In
any case, the counterexample in Section “Appendix B.1” suggests
to consider multiple local stability criteria instead of a single global
one. Local contact stability has been defined in Section 2.2.1 and
it has been characterized as a condition for motion constraints
to be time invariant. At present, necessary and sufficient condi-
tions for contact stability have been formulated only in the case
of planar rigid unilateral contacts (see Section 2.2.3). This is the
reason why the scope of the current paper is limited to multiple
planar contacts on rigid non-coplanar surfaces. Future extensions
of the present work are foreseen in the direction of characterizing
contact stability in more general situations.

In the rigid and planar contact case, contact stability has been
characterized by means of the contact FRI and CoP. Both quan-
tities depend on the wrench (i.e., both force and torque) at the
contact point. Assuming that contacts might occur at any point
on the robot body, an estimate of the contact wrench might be
difficult to obtain if not impossible. Conventional manipulators
measure wrenches at the end-effector, where force and torque
sensors are placed. Joint-torque sensing gives only an incom-
plete characterization of contact wrenches. The problem can be
solved adopting whole-body distributed force/torque (F/T) and
tactile sensors as those integrated in the iCub humanoid (Section
3.1). This specific design choice calls for custom algorithms
for contact-wrench estimation (Section 3.2.1), internal torques
measurement (Section 3.2.2), and dynamic model identification
(Section 3.3). Whole-body control with multiple non-coplanar

FIGURE 1 | See the video showing the control performances of the
control architecture https://www.youtube.com/watch?v=jaTEbCsFp_M.

contacts is discussed in Section 3.4 and requires all the above
custom components for its implementation (Section 4).

3.1. WHOLE-BODY DISTRIBUTED WRENCH AND CONTACT SENSING
The platform used to perform experimental tests is the iCub
humanoid robot, which is extensively described in Metta et al.
(2010). One of the main features of this system is represented by
the large variety of sensors, which include whole-body distributed
F/T sensors, accelerometers, gyroscopes (see Figure 2), and pres-
sure sensitive skin. Furthermore the robot possesses two digital
cameras and two microphones. From a mechanical standpoint,
iCub is 104 cm tall and has 53 degrees of freedom: 6 in the head,
16 in each arm, 3 in the torso, and 6 in each leg. All joints but
the hands and head are controlled by brushless electric motors
coupled with harmonic drive gears. During experimental tests, we
mainly exploit two kinds of sensors: the F/T sensors and the dis-
tributed sensorized skin. The F/T sensor described in Fumagalli
et al. (2012) is a 6-axis custom-made sensor that is mounted in
both iCub’s arms between the shoulders and elbows and in both
legs between the knees and hip and between the ankles and feet.
This solution allows to measure internal reaction forces, which
in turn can be exploited to estimate both the internal dynamics
and external forces exerted on its limbs. The robot skin (Cannata
et al., 2008; Maiolino et al., 2013) is a compliant distributed pres-
sure sensor composed by a flexible printed circuit board (PCB)
covered by a layer of three dimensionally structured elastic fabric
further enveloped by a thin conductive layer. The PCB is com-
posed by triangular modules of 10 taxels, which act as capacitance
gages plus two temperature sensors for drift compensation. In
our experiments, iCub’s upper body was wrapped with approx-
imately 2000 sensors, each foot sole is covered with 250 taxels,
while 1080 further sensors are at the last design and integration
stage on the lower body. Each single taxel has 8 bits of resolution,
and measurements can be provided as raw data or as thermal drift
compensated.

3.2. INTERNAL AND EXTERNAL (CONTACT) WRENCH ESTIMATION
Fumagalli et al. (2012) proposed a theoretical framework that
exploits embedded F/T sensors to estimate internal/external forces
acting on floating-base kinematic trees with multiple-branches.
From a theoretical point of view, the proposed framework allows
to virtually relocate the available F/T sensors anywhere along the
kinematic tree. The algorithm consists in performing classical
recursive Newton–Euler algorithm (RNEA) steps with modified
boundary conditions, determined by the contact and F/T sensor
location. It can be shown that relocation relies solely on iner-
tial parameters, velocities, and accelerations of the rigid links in
between the real and virtual sensors [see, in particular, the exper-
imental analysis conducted by Randazzo et al. (2011)]. The pro-
posed algorithm consists in cutting the floating-base tree at the
level of the (embedded) F/T sensors obtaining multiple subtrees
as in Figure 3. Then, each subtree is an independent articulated
floating-base structure governed by the Newton–Euler dynamic
equations. The F/T sensor, gives a direct measurement of one
specific external wrench acting on the structure (green arrows in
Figure 3). Other external wrenches (red arrows in Figures 3 and 4)
can be estimated with the procedure hereafter described.
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Nori et al. Whole-body force and posture control

FIGURE 2 | Mechanical schemes of the humanoid robot iCub
with force/torque sensors, gyroscopes, and accelerometers
highlighted in green. Left : locations of the six proximal six-axis
F/T sensors (legs and arms). Center : locations of the skin

microcontrollers, which have a 3D accelerometer embedded. Right :
locations of the motor microcontrollers and the commercial inertial
sensor, with the latter having a 3D gyroscope and a 3D accelerometer
embedded.

FIGURE 3 |The left picture shows the location of four (out of six)
F/T sensors on the iCub humanoid (sensors at the feet are omitted
in this picture). The right picture shows the induced iCub kinematic
tree partitioning. Each obtained subpart can be considered an

independent floating-base structure subject to an external wrench,
which coincides with the one measured by the F/T sensor (green
arrow). Red arrows represent possible location for the unknown
external wrenches.

3.2.1. Method for estimating external wrenches
We now describe a method for the estimation of contact wrenches;
more details can be found in Del Prete et al. (2012). Let us consider
a kinematic chain composed by N links, having a F/T sensor at the

base (see Figure 4), where wi is the wrench (i.e., force and moment)
exerted from link i to link i+ 1, p̈ci is the acceleration of the center
of mass of link i and mi is the mass of link i. We know w0 (i.e., the
F/T sensor measurement), the K contact locations r0,ei , . . . , r0,eK
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FIGURE 4 | Sketch of a kinematic chain with an embedded F/T sensor.
Although the sketch refers to a serial chain, the theoretical framework holds
also in the case of multiple-branches articulated chains (see, for example,
the torso sub-chain in Figure 3).

(i.e., the locations where the skin senses contacts), and we want to
estimate the K contact wrenches we1, . . . , weK. Writing Newton’s
and Euler’s equations for each rigid link and summing up all the
N resulting equations we obtain:

f0 +
K∑

i=1

fei =

N∑
i=1

mi p̈ci , (1)

µ0 +

K∑
i=1

(µei + r0,ei × fei) =

N∑
i=1

(r0,ci ×mi p̈ci + I i
i ω̇i

+ ωi × I i
i ωi), (2)

where I i
i is the inertia of link i, ωi and ω̇i are the angular veloc-

ity and acceleration of link i, respectively, and r0,ci is the vector
connecting the chain base to the center of mass of link i. Noting
that in equations (1) and (2) the only unknowns are the contact
wrenches, the estimation problem may be solved rewriting these
equations in matrix form Ax = b, where x ∈Ru contains all the u
contact unknowns, whereas A ∈R6×u and b ∈R6 are completely
determined. The equations are constructed taking into account the
type of possible contacts among the following three: pure wrench
(we, 6-dimensional vector corresponding to force and torque);
pure force (fe, 3-dimensional vector corresponding to a pure force
and no torque); force norm (‖fe‖, one-dimensional unknown
assuming the force to be orthogonal to the contact surface). In
the simplest case, only a single contact acts on the sub-chain and
the associated pure wrench can be uniquely determined (system of
six equations and six unknowns). In other cases, a solution can be
obtained with the following least squares procedure. The matrix
A is built by attaching columns for each contact according to its
type. The columns associated to pure wrenches (Aw), pure forces
(Af), and force norm (An) are the following:

Aw =

[
I 0

S(r0,en) I

]
, Af =

[
I

S(r0,en)

]
, An =

[
ûn

r0,en × ûn

]
.

where S(v)∈R3×3 is the skew-symmetric matrix such that
S(v)z = v × z, with × denoting the cross product operator, and
ûn is the versor of the contact force fen. The matrix A mainly
depends on the skin spatial calibration, which can be obtained and

refined with the procedure described by Del Prete et al. (2011). The
6-dimensional vector b is defined as:

b =

[
fb
µb

]
=


N∑

i=1
mi p̈ci − f0

N∑
i=1
(r0,ci ×mi p̈ci + I i

i ω̇i + ωi × I i
i ωi)− µ0


The vector b depends on kinematic quantities, which can be

derived for the whole-body distributed gyros, accelerometers, and
encoders. Details on how to estimate these quantities have been
detailed by Fumagalli et al. (2012). Once A and b have been com-
puted, we can use the equation Ax= b for estimating external
wrenches. The equation defines a unique solution if there is exactly
one unknown wrench on the considered sub-chain. In the case of
interest for the present paper, an exact characterization of the inter-
action wrenches can be obtained if there exists exactly one contact
wrench per each of the sub-chains obtained by the body structure
partition induced by the F/T sensor positions (see Figure 3). In all
other situations, an exact estimate cannot be obtained but from a
procedural point of view it is preferable to give a reasonable esti-
mate of all the contact wrenches. The solution we adopted consists
in computing the minimum norm x∗ that minimizes the square
error residual:

x∗ = A†b

where A
†

is the Moore–Penrose pseudo-inverse of A. The method
has been implemented as an extension of the iDyn library3 and
it has been integrated with other software modules to create an
efficient software system able to estimate internal and external
wrenches of the whole iCub robot.

3.2.2. Method for estimating internal torques
Once an estimate of external forces is obtained with the method
described in Section 3.2.1, internal wrenches can also be estimated
with a standard Newton–Euler force propagation recursion. Pro-
jection of the internal wrenches on the joint axes provides an
estimate of the joint torques τ . A torque controller with joint
friction compensation guarantees that each motor provides the
desired amount of torque to the joints. In order to improve the
torque tracking performance, a suitable identification procedure
was adopted to estimate the voltage to torque transfer function
for each motor. Details are given in the following section together
with some details on the dynamic model identification.

3.3. DYNAMIC MODEL ESTIMATION
As it was previously pointed out, the technology available in the
iCub (nominally, whole-body distributed tactile and F/T sensing)
and the estimation algorithm presented in the previous sections
allows to simultaneously estimate internal (i.e., joint torques) and
external (i.e., contact) forces. The accuracy of the estimates is deci-
sive for the efficacy of the control algorithm that will be described
in Section 3.4. A key element to improve the estimation and control

3See the software library documentation http://wiki.icub.org/iCub_documentation/
idyn_introduction.html
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Nori et al. Whole-body force and posture control

accuracy is the availability of a reliable dynamic model [masses,
inertias, and center of mass positions in equations (1) and (2)].
Standard identification procedures do not apply directly and a
customization to iCub specific sensor modalities and distribu-
tions is necessary. In the following two subsections, we describe
the solution that we implemented in order to improve dynamic
model accuracy (Section 3.3.1) and torque tracking performances
(Section 3.3.2).

3.3.1. Dynamic model identification
The accuracy of the system dynamics equation (7) is crucial in the
proposed control framework since it affects the controller equa-
tion (8) and the internal/external torque estimation procedure
described in Section 3.2. Individual dynamic parameters (mass,
inertia, and center of mass position) of the rigid bodies consti-
tuting an articulated chain can be directly obtained from CAD
drawings. These parameters are often not sufficiently accurate
and standard identification procedures such as those proposed
in the handbook of robotics by Hollerbach et al. (2008) can be
applied in order to improve modeling accuracy. Remarkably, these
procedures do not give an estimate of individual parameters but
some linear combination of them, known in literature as the base
parameters. It remains therefore to be clarified if the base parame-
ters suffice to implement the procedure described in Section 3.2.1
to estimate external wrenches. This procedure, written as it is,
requires the knowledge of individual dynamic parameters as evi-
dent from equations (1) and (2). Additionally, it needs to be
verified that also the procedure for estimating internal torques
presented in Section 3.2.2 can be reformulated in terms of the
base parameters only. Interestingly, it can be shown, resorting
to the work by Ayusawa et al. (2014) that the base parameters
are a subset of those used for both the estimation procedures in
Section 3.2.

3.3.2. Modeling and representation of the motor transfer function
Another important component in implementing the control strat-
egy detailed in Section 3.4 is torque control. For the scope of the
present paper, it was necessary to implement a model-based con-
troller tuned for each motor. The model assumes that the i-th
joint’s torque τi is proportional (kt) to the voltage Vi applied to
the associated motor, with the additional contribution of some
viscous (kv) and Coulomb (kc) friction:

Vi = kt τi + (kvps(θ̇i)+ kvns(−θ̇i))θ̇i + (kcps(θ̇i)

+ kcns(−θ̇i))sign(θ̇i), (3)

where θ̇i is the motor velocity, s(x) is the step function (1 for
x> 0, 0 otherwise) and sign(x) is the sign function (1 for x> 0,
−1 for x< 0, 0 for x= 0). Operationally, it was observed quite
relevant to distinguish between positive and negative rotations
as represented in the model above. We identified the coefficients
kt, kvp, kvn, kcp, kcn for each joint with an automatic procedure
implemented in an open-source software module4. The motor

4https://github.com/robotology/codyco-modules/tree/master/src/modules/
motorFrictionIdentification

controller exploits the transmission model and implements the
following control strategy:

Vi = kt

(
τ d

i − kp τ̃i − ki

∫
τ̃idt

)
+ [kvps(θ̇i)

+ kvns(−θ̇i)]θ̇i + [kcps(θ̇i)+ kcns(−θ̇i)] tanh(ks θ̇i), (4)

where tanh(ks θ̇i) is used to smooth out the sign function, ks is a
user-specified parameter that regulates the smoothing action, and
τ̃i = τi − τ

d
i is the i-th torque tracking error, and kp, ki> 0 are

the low-level control gains. The control objective for the torque
controller consists in obtaining τ ' τ d and therefore the con-
troller will make the assumption that the commanded value τ d

i is
perfectly tracked by the torque controller. Also, observe that there
is no derivative term in the parenthesis on the right hand side of
equation (4). In fact, the measurement of ˙̃τ i is noisy and unreliable
at the current state of the iCub’s measuring devices.

3.3.3. Differential joint torque and motion coupling
Specific care was posed in controlling the torques at joints actu-
ated with a differential mechanism. As an example, we consider
here the torso roll, pitch, and yaw joint represented in Figure 5.
In particular, define q ∈R3 the vector of the joint angles cor-
responding to the torso yaw, the torso roll, and torso pitch
degree of freedom. Also, by abusing notation, define θ ∈R3 as
the angles between the stator and the rotor of the motors 0B4M0,
0B3M0, and 0B3M1. Then, a simple analysis leads to the following
relationship:

q̇ = T θ̇ , T =:

 r
R

r
2R

r
2R

0 0.5 0.5
0 −0.5 0.5

 , (5)

where r and R are the radius of the pulleys sketched in Figure 5.
The above matrix T is obtained by combining a classical dif-
ferential coupling between pitch and yaw (first two rows) with
a more complicated coupling with the roll motion (third row,
see Figure 6). Defining τq to be the link torques and τ θ the
motor torques, the coupling induced on torques can be eas-
ily obtained by imposing the equality between link and motor
powers:

q̇>τq = θ̇
>τθ ∀q̇, θ̇ ⇒ τq =T−>τθ

with T−> :=

 R
r 0 0
−1 1 1
0 −1 1

 . (6)

In the case of coupled joints, the transformation matrix T is
used in both equations (3) and (4), which hold at the motor level.
Since position (q̇) and torque (τ ) feedback is available at the joint
level, suitable transformations need to be applied. In the case of
coupled joints, our current software5 implements joint per joint

5Both the identification equation (3) and control equation (4) are available with an
open source license. See the documentation in http://wiki.icub.org/wiki/CoDyCo_
Software
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Nori et al. Whole-body force and posture control

FIGURE 5 |The sketch represents the differential joint of the iCub torso. The pitch, yaw, and roll joints are actuated with three motors 0B4M0, 0B3M0, and
0B3M1 in differential configuration. Motor ( θ ∈R3) and joint (q ∈R3) positions are coupled as described in Figure 6.

FIGURE 6 |The sketch is used to represent the kinematic coupling between the yaw and roll movements. A roll movement of an angle q2 implies an equal
and opposite movement of the rotor of the motor 0B4M0. This rotor moves, modulo the transmission ratio, also when a yaw movement of an angle q1 occurs.

equations (3) and (4) with substitutions τ↔ τ θ and q̇ ↔ θ̇ where
motor velocity (θ̇) and motor torques τ θ are obtained from joint
velocity (q̇) and joint torques (τq) as follows:

θ̇ = T−1q̇, τθ = T>τq .

3.4. COMPLETE FORCE CONTROL
In this section, we describe the control algorithm for controlling
an articulated rigid body subject to multiple rigid constraints.
The system dynamics are described by the following constrained
differential equations:[

Mb Mbj

M>bj Mj

]
︸ ︷︷ ︸

M (q)

[
v̇b

q̈j

]
︸ ︷︷ ︸

v̇

+

[
hb

hj

]
︸ ︷︷ ︸
h(q,v)

−

[
J>cb

J>cj

]
︸ ︷︷ ︸
Jc (q)

>

f =

[
06×n

In×n

]
︸ ︷︷ ︸

S>

τ (7a)

Jc (q)v̇ + J̇c (q, v)v = 0, (7b)

where q ∈ SE(3)×Rn, with SE(3) the special Euclidian group,
represents the configuration of the floating-base system, which
is given by the pose of a base-frame [belonging to SE(3)] and n
generalized coordinates (qj) characterizing the joint angles. Then,
v ∈Rn+6 represents the robot velocity (it includes both q̇j ∈Rn

and the floating-base linear and angular velocity vb ∈R6), v̇ is

the derivative of v, the control input τ ∈Rn is the vector of
joint torques, M ∈R(n+6)×(n+6) is the mass matrix, h ∈Rn+6

contains both gravitational and Coriolis terms, S ∈Rn×(n+6) is
the matrix selecting the actuated degrees of freedom, f∈Rk

is the vector obtained by stacking all contact wrenches, which
implies that k= 6Nc and Nc the number of (rigid) contacts,
Jc ∈Rk×(n+6) is the contact Jacobian. Let us first recall how
the force-control problem is solved in the task space inverse
dynamics (TSID) framework proposed by Del Prete (2013) in
the context of floating-base robots. The framework computes
the joint torques to match as close as possible a desired vector
of forces at the contacts [equation (8a)] while being compatible
with the system dynamics [equation (8b)] and contact constraints
[equation (8c)]:

τ ∗ = arg min
τ∈Rn
‖f − f ∗‖2 (8a)

s.t . Mv̇ + h − J>c f = S>τ (8b)

Jc v̇ + J̇c v = 0 (8c)

where f * ∈Rk is the desired value for the contact forces. Then we
can exploit the null space of the force task to perform N− 1 motion
tasks at lower priorities. These tasks (indexed with i= 1, . . ., N− 1)
are all represented as the problem of tracking a given reference
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Nori et al. Whole-body force and posture control

acceleration v̇∗i for a variable xi differentially linked to q by the
Jacobian Ji as follows:

ẋi = Jiv , ẍi = Ji v̇ + J̇iv . (9)

Assuming that the force task has maximum priority the
solution is:

τ ∗ = −(Jc S̄)
>

f ∗ + N−1
j v̇∗1 + S̄>n, (10)

where N−1
j = Mj − Mbj M

−1
j M>bj , S̄ =

[
−M>bj M−1

b I
]>

and

the term v̇∗1 is computed solving the following recursion for
i=N, . . ., 1:

v̇i = v̇i+1 + (Ji S̄Np(i))
†

(ẍ∗i − J̇iv + Ji(U
>M−1

b (hb − J>cb f )− S̄v̇i+1))

Np(i) = Np(i+1) − (Ji+1S̄Np(i+1))
†
Ji+1S̄Np(i+1), (11)

where U ∈R6×(n+6) is the matrix selecting the floating-base vari-
ables, and the algorithm is initialized setting v̇N+1 = 0, Np(N)= I,
JN= Jc and ẍN = 0. The implementation of this controller exploits
the fact that we can compute equation (10) with an efficient
hybrid-dynamics algorithm.

4. RESULTS
4.1. SET OF ADMISSIBLE TASKS
The final validation of the proposed control framework requires
the definition of a suitable set of position (ẍ∗i ) and wrences (w*)
tasks and their relative priority. The set of admissible tasks is quite
flexible also considering the flexibility of the underlying software
libraries. Nevertheless, we list here a set of possible tasks, which
we will use as a reference in the following sections. Quantities are
defined with a notation similar to the one used by Featherstone
(2008): H denotes the total spatial momentum of an articulated
rigid body (including linear and angular), w indicates a wrench (a
single vector for forces and torques), the index i= 0, 1, . . ., NB− 1
is used to reference the NB rigid bodies representing the iCub body
chain (0 being defined as the pelvis rigid link), the index W is used
to represent the world reference frame, the superscripts and sub-
scripts la, ra, lf, and rf indicate reference frames rigidly attached
to the left arm, right arm, left foot, and right foot, respectively,
the superscript i indicates the reference frame attached to the i-th
rigid body, kXi represents the rigid motion vector transformation
from the reference frame i to the reference frame j, j X∗i represents
the force vector transformation from the reference frame i to the
reference frame j, qj represents the angular position of iCub joints.
Tasks will be thrown out of the following set of admissible tasks.
For each task Ti, we specify the reference values (ẍi or w∗) and
associated Jacobians (Ji).

• T
rf
w : right foot wrench task. Regulate the right foot interaction

wrench to a predefined value:

w∗i : wrf = w∗rf ;

Ji : Jrf ;

• T
lf
w : left foot wrench task. Regulates the left foot interaction

wrench to a predefined value:

w∗i : wlf = w∗lf ;

Ji : Jlf ;

• T ra
w : right arm wrench task. Regulate the right arm interaction

wrench to a predefined value:

w∗i : wra = w∗ra ;

Ji : Jra ;

• T la
w : left arm wrench task. Regulates the left arm interaction

wrench to a predefined value:

w∗i : wla = w∗la ;

Ji : Jla ;

• T q: postural task. Maintains the robot joints qj close to certain
reference posture q∗j :

x∗q : q̈j = q̈∗j ;

Ji : I .

4.2. SEQUENCING OF TASKS
The set of tasks active at a certain instant of time is regulated by
a finite state machine. In particular, there are five different states
S1, . . ., S5 each characterized by a different set of active tasks S1,
. . ., S5.

• S1 has the following set of active tasks S1= {T q}.

• S2 has the following set of active tasks S2 =

{
T

lf
w , T

rf
w

}
∪ S1.

• S3 has the following set of active tasks S3 =
{

T ra
w

}
∪ S2.

• S4 has the following set of active tasks S4 =
{

T la
w

}
∪ S2.

• S5 has the following set of active tasks S5 =
{

T la
w , T ra

w

}
∪ S2.

Transition between states is regulated by the following finite
state machine where the sets Cra and Cla contain the taxels (tactile
elements) activated at time t.

S1start S2 S3

S4 S5

t0 ∙ t ∙ t1

t > t1

Cra = ;
Cla = ;

Cra /=;

C
la
/=
;

Cra /=;
Cla = ;

C
la
/=
;

Cra = ;

C
r
a
=
;

C
la
/=
;

Cra /=;

C
la
=
;

C
r
a
/=
;

C
la
/=
;

C
la
=
;

Cra = ;

In practice, at start (t= t0) the robot is in state S1 in order to
maintain a configuration, which is as close as possible to the initial
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Nori et al. Whole-body force and posture control

configuration with a postural task (T q) that guarantees that the
system is not drifting. After a predefined amount of time (t= t1),
the system switches to state S2 by adding two tasks to the set of
active tasks: a control of the forces exchanged by the left and right

foot (T
rf
w , T

lf
w , respectively). The control of these forces allows for

a direct control over the rate of change of the momentum as will
be explained in Section 4.3. Successive transitions are triggered by
the tactile sensors. If no contact is detected on the right and left
arm (Cra=∅ and Cra=∅, respectively) the system remains in S2.
A transition from S2 to S3 is performed when the system detects
a contact on the right arm (Cra 6= ∅): in this state, the active tasks
are the same active in S2 with the addition of the task responsible
for controlling the force at the right arm contact location (T ra

w ).
Similarly, a transition from S2 to S4 is performed when the system
detects a contact on the left arm (Cla 6= ∅): in this state, the active
tasks are the same active in S2 with the addition of a task responsi-
ble for controlling the force at the left arm contact location (T la

w ).
Finally, a transition from either S3 or S4 to S5 is performed when-
ever the robot perceives a contact so that in this new situation both
arms are in contact (Cra 6= ∅ and Cla 6= ∅, respectively). In S5, both
arms are used to control the interaction forces by activating the
tasks T ra

w and T la
w .

4.3. TASK REFERENCES
In this section, we discuss how to compute the task references:

w∗ra , w∗la , w∗rf , w∗lf , q̈∗j .

to be used in the controller equation (8). Instantaneous values for
forces are computed so as to follow a desired trajectory of the cen-
ter of mass (xd

com) and to reduce the system’s angular momentum.
Instantaneous values for q̈∗j are chosen so as to follow a desired

reference posture qd
j . The latter is obtained by choosing:

q̈∗j (t ) = q̈d
j (t )− K

q
d

(
q̇j − q̇d

j (t )
)
− K

q
p

(
qj − qj

d(t )
)

, (12)

where K
q
p and K

q
d are arbitrary positive-definite matrices that take

into account that in the presence of modeling errors, the acceler-
ation imposed on the system q̈j might differ from the ideal one
q̈∗j . Instantaneous values for interaction forces are instead com-

puted to follow a prescribed center-of-mass trajectory (xd
com) and

to reduce angular momentum. In order to do so, a reference value
Ḣ∗com for the total rate of change of spatial momentum (expressed
at the center of mass) is computed with a strategy similar to
equation (12).

Ḣ∗com(t ) = Ḣ d
com(t )− K h

d

(
Hcom −H d

com(t )
)

−

[
K com

p

(
xcom − xd

com(t )
)

03×1

]
, H d

com =

[
mẋd

com
03×1

]
(13)

where K h
d , K com

p are suitably defined gain matrices, Hcom is the
spatial momentum around the center of mass, xcom is the center-
of-mass Cartesian position, xd

com its desired value and m is the

total mass of the robot. Finally, values for f ∗ra , f ∗la , f ∗rf , f ∗lf can be

computed from Ḣ∗com considering that the time derivative of the
momentum equals the resultant of forces and torques if all quanti-
ties are computed with respect to the center of mass. The notation
is slightly complicated due to the fact that in the different sce-
nario states S1, . . ., S5 the meaning of f (and consequently f ∗) in
equation (8) changes. In particular we have:

S2 : f =

[
wrf

wlf

]
, S3 : f =

wra

wrf

wlf

 , S4 : f =

wla

wrf

wlf

 ,

S5 : f =


wra

wla

wrf

wlf

 , (14)

In the different states, the following equations on f and Ḣcom

always hold:

Si : CSi f + fg = Ḣcom , (15)

where fg is the gravitational force and where we defined CSi to
be the matrix that expresses the spatial forces with respect to the
center of mass:

CS2 =

[
comX∗rf

comX∗lf

]
,

CS3 =

[
comX∗ra

comX∗rf
comX∗lf

]
,

CS4 =

[
comX∗la

comX∗rf
comX∗lf

]
,

CS5 =

[
comX∗ra

comX∗la
comX∗rf

comX∗lf

]
.

In literature, these equations (derived from the Newton–Euler
equations) have been presented in detail by Orin et al. (2013)
under the name of centroidal dynamics. The constraints (15) on f
given Ḣcom are not sufficient to identify a unique solution. Addi-
tional constraints or requirements need to be imposed in order to
properly define f ∗ to achieve the desired momentum derivative.
In order to get rid of this ambiguity, the following problem can be
solved when at state Si :

f ∗ = arg min
f
‖f − f0‖

2
W s.t. CSi f + fg = Ḣ∗com , (16)

where ‖ · ‖W denotes a norm weighted with the matrix
W=W>> 0. The solution of this optimization is given by:

f ∗ = C†W
Si

(
Ḣ∗com − fg

)
+ (I − C†W

Si
CSi )f0,

C†W
Si
= W−1C>Si

(
CSi W

−1C>Si

)−1
. (17)

This solution gives a set of desired forces f ∗, which generate the
desired momentum derivative Ḣ∗com . It is worth noting here that
additional constraints should be imposed on the contact forces
to guarantee contact stability. In particular, planar unilateral
contacts should have an associated FRI lying in the contact support
polygon (see Section 2.2.3) and forces should be maintained within
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Nori et al. Whole-body force and posture control

the contact friction cones. Considering that these constraints can
be approximated with a set of linear inequalities, adding them
into equation (16) corresponds to transforming the problem into
a quadratic program, as proposed by de Lasa et al. (2010). In
the present implementation, we follow a different strategy where
stability constraints are enforced by solving equation (16) with a
suitable choice for the reference value f0 and weight matrix W.
To ensure that reference contact forces are stable in the sense
of Section 2.2.3, we express f in a reference frame whose origin
coincides with the center of the maximum circle inscribed in the
contact polygon. Choosing f0 to have a null torque component

penalizes solutions whose FRI is closer to the polygon borders and
this penalty monotonically increases with the distance from the
center of the maximum circle. Similarly, friction cones constraints
are enforced by choosing the components of f0 to be sufficiently
far from the cone borders. Assuming contact plane normals to
coincide with the z-axis, cone borders distance is maximized with
null x and y components. If a good choice for the z-axis force
components is available, it can be used in f0. Otherwise a viable
choice is also to choose f0= 0 since in most realistic situations the
solution f ∗ is dominated by the component fg, which is always
non-zero.
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[N
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rf
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+ f
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lf

y
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FIGURE 7 | Results of the double-support experiment on planar contacts
(left and right feet). The picture shows the time behavior of forces (top) and
center of mass position (bottom) on the sagittal (blue) and transverse (green)
axis. It is worth noting that forces should be proportional to center of mass

accelerations and this is visible in the plot considering that accelerations are
sinusoidal in counter phase with positions. Rapid variations of the contact
forces at the time t ≈2[s], i.e., starting time, are due to the activation of the
torque control.

FIGURE 8 | Results of the double-support experiment on planar contacts
(left and right feet). The left picture shows in three dimensions the feet
contacts, the feet center of pressures, the forces at the feet and at the center
of mass during three instants: at two extrema of the sinusoid (red and blue)
and in the middle of the sinusoid (green). Remarkably forces are maximum at

the extrema when also accelerations are maximal. The right picture shows a
close-up of the feet with the trajectory of the center of pressure, an ellipse
representing a Gaussian fit of the data points and three points corresponding
to the position of the centers of pressure when at the two extrema of the
sinusoid (red and blue) and in the middle of the sinusoid (green).
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FIGURE 9 | Results of the double-support experiment on four non-coplanar contacts (both feet and arms). The plots represent the evolution of the
contact forces at the left (top) and right (bottom) arms when contact is established.

FIGURE 10 | Results of the double-support experiment on four
non-coplanar contacts (both feet and arms). The left picture gives a
three-dimensional view of the foot center-of-pressure positions
together with the arm contact forces. Forces are represented in a color

scale that goes from black (contact establishment) to blue (steady
state). The right picture gives a close-up on the foot center-of-pressure
positions with an ellipse that represents the Gaussian approximation of
its distribution.

4.4. EXPERIMENTAL RESULTS
We implemented the proposed control strategy on the iCub
humanoid. In a first phase, the iCub was balancing with both
feet on the ground plane (coplanar flat contacts, see Figure 1).
The desired center of mass position was moved left to right with
a sinusoidal overimposed on its initial position xcom(t 0) along the
robot transverse axis (n):

xd
com(t ) = xcom(t0)+ n · A sin(2π fr t ) (18)

with fr= 0.15Hz and A= 0.02m (see Figure 7). The reference
posture qj

d(t ) was maintained at its initial configuration qj
d(t0).

As previously described the desired center-of-mass acceleration
was obtained by suitably choosing the forces at the contact points
(in this case at the feet) as represented in Figure 8. A video of the
first phase of the experiment6 is available for the interested reader.

In a second phase, the iCub was maintaining its center of
mass at its initial position xd

com(t ) ≡ xcom(t0) and the joint ref-
erence posture qj

d(t ) was chosen so as to move the arms toward
a table in front of the robot. The controller equation (8) was reg-
ulated by the finite state machine described in Section 4.2. At the

6https://www.youtube.com/watch?v=jaTEbCsFp_M
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Nori et al. Whole-body force and posture control

occurrence of contacts, forces at the arms were regulated to a pre-
defined value fd, which was obtained by imposing two additional
constraints in solving equation (16): wra=wd and wla=wd. The
force-regulation task at the arms is shown in Figures 9 and 10,
which also shows that the generation of forces at the arms does
not affect the center of pressure at the feet.

5. CONCLUSION
The present paper addressed the problem of whole-body motion
control in the presence of multiple non-coplanar and rigid con-
tacts. The proposed solution defines a stability criterion based on
the FRI of individual contacts as opposed to global stability crite-
ria. It is argued that the FRI lying on the contact support polygon
is a necessary and sufficient condition for the contacts to impose
always the same motion constraints on the whole-body dynamics.
These stability conditions are therefore the ones adopted in this
paper in order to avoid the complications of hybrid and switch-
ing systems control. The chosen stability conditions require the
capability of simultaneously measuring forces and torques (i.e.,
wrenches) at any possible contact location. This is not possible
with conventional torque-controlled manipulators and requires
whole-body distributed force and tactile sensing. These sensing
capabilities are available in the iCub humanoid exploiting its
whole-body distributed artificial skin and force/torque sensors.
In consideration of this specific hardware, in the present paper,
we discussed our approach to obtain: contact-wrench estimates,
internal-torque measurement and dynamic model identification.
All these components are functional to the implementation of
the proposed whole-body controller with multiple non-coplanar
contacts.
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APPENDIX
A. CoP EXISTENCE CONDITIONS
The Poinsot theorem [see p. 65 in Murray et al. (1994)] states that
every wrench applied to a rigid body is equivalent to a force applied
along a fixed axis plus a torque about the same axis. In particular,
let us define a wrench (f A

c ,µA
c ) applied at the point A. This wrench

is equivalent to another wrench (f L
c ,µL

c ) applied at any point L on
an axis l= {q′ : q′= q+ λω, ∀λ∈R} and whose components f L

c
and µL

c are parallel to l, i.e., f L
c = λf ω and µL

c = λµω. Assuming

‖f A
c ‖ 6= 0, quantities are defined as follows:

ω =
f A
c

‖f A
c ‖

, q =
f A
c × µ

A
c

‖f A‖2
, λf = ‖f

A
c ‖, λµ =

f A
c
>
µA

c

‖f A
c ‖

.

(A1)

The proof of the equivalence between (f A
c ,µA

c ) and (f L
c ,µL

c ) is
reported by Murray et al. (1994) and therefore here omitted. In
the next subsection, we prove instead that all equivalent wrenches
on the Poinsot axis have minimum norm torque.

A.1. POINSOT AXIS AS THE GEOMETRIC LOCUS OF MINIMUM
TORQUES

Besides being an equivalent wrench, the Poinsot wrench (f L
c ,µL

c )

has an associated minimum norm torque µL
c among all equiva-

lent wrenches. In order to prove this optimality principle, let us

consider the equivalent torque µQ
c at an arbitrary point Q:

µQ
c = µ

L
c + rQL × f L

c = λµω + rQL × λf ω, (A2)

being rQL the vector connecting L to Q. Applying the norm to
the above equation and observing that the sum is an orthogonal
decomposition, we obtain:

‖µQ
c ‖ = ‖λµω‖ + ‖rQL × λf ω‖ ≥ ‖λµω‖ = ‖µ

L
c ‖. (A3)

Therefore, ‖µQ
c ‖ ≥ ‖µ

L
c ‖ and the equality holds if and only

if rQL is parallel toω, i.e., when Q lies on the Poinsot axis defined as:{
q′ : q′ =

f A
c × µ

A
c

‖f A‖2
+ λ

f A
c

‖f A
c ‖

, ∀λ ∈ R
}

. (A4)

On the Poinsot axis, the torque norm is minimal and equals:

‖µmin
c ‖ =

f A
c
>
µA

c

‖f A
c ‖

. (A5)

A.2. CoP EXISTENCE AND POINSOT AXIS
Given a rigid body subject to a field of pressures, the center of
pressure (CoP) is an application point where the equivalent torque
(due to the field of pressure) is null. Being the Poinsot axis, the
geometric locus of minimum torques, it is evident that a CoP can
be defined if and only if ‖µmin

c ‖ = 0, or equivalently if and only
if fc and µc are orthogonal. When this is the case, the CoP is not
uniquely defined and the geometric locus of valid CoP corresponds
to the Poinsot axis (22).

B. COUNTEREXAMPLE ON THE GLOBAL CoP AS A
CONTACT STABILITY CRITERIA

In this section, we provide a counterexample to show that the con-
dition on GCoP (global center of pressure) to lie in the contacts
convex hull is not sufficient to guarantee the stability of individual
contacts. Consider the simple system represented in Figure A1.
For certain values of the torques at the joints the global stability
criteria are met (i.e., the GCoP lies in the convex hull of contacts)
but individual contacts are unstable (i.e., the FRI of each con-
tact lies outside the contact area). Given the unilateral nature of
the contacts acting on the system, its solution is non-trivial and
requires to make hypotheses on whether or contacts break or per-
sist as clearly explained by Featherstone (2008) in chapter eleven
of his book. In the specific case of Figure A1, however, it would be
sufficient to just provide that particular situation in which torques
at the joints force contacts to break while maintaining the GCoP
within the contact support polygon. This specific situation is pre-
sented in B.3. For sake of clarity, we start with discussing the case
in which contacts persist. This case just helps in understanding the
proposed counterexample.

B.1. ZMP COMPUTATION
In this section, we provide explicit computation for the zero tip-
ping moment point associated to a wrench wc= (fc,µc) applied at
a generic point P. It is worth stressing once more that the zero tip-
ping moment point is by definition the ZMP, the latter name being
misleading. For sake of simpler notation, let the contact plane coin-
cide with the x-y plane. Given the contact wrench wc= (fc,µc) at
a generic point P= [Px, Py, 0] of the contact plane, the equivalent

torque µ′c at P ′ =
[

P ′x , P ′y , 0
]

is given by:

µ′c = −rPP ′ × fc + µc =

 µx
c − r

y
PP ′ f

z
c

µ
y
c + rx

PP ′ f
z

c
µz

c − rx
PP ′ f

y
c + r

y
PP ′ f

x
c

 (A6)

where rPP ′ = P ′− P. At a particular point P ′ the tipping moments
along the x and y axes equal zero. This point corresponds to the
zero tipping moment associated to wc= (fc,µc) and equals:

rx
ZMP = −

µ
y
c

f z
c

, r
y

ZMP =
µx

c

f z
c

. (A7)

Assuming that the contact wrench wc= (fc,µc) is the resultant
of a field of pressures pc on the surface S, we have:

f z
c =

∫
S

pc dS, µx
c =

∫
S

ypc dS, µ
y
c =

∫
S
−xpc dS. (A8)

Therefore, we have:

rx
ZMP =

∫
S

xα dS, r
y

ZMP =

∫
S

yα dS, α =
pc∫

S pc dS
, (A9)

where in case of unilateral contacts (pc≥ 0) it results evident that
the ZMP is the convex combination of points in S and as such it
belongs to the convex hull of S.
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FIGURE A1 |The image shows the example of an articulated rigid body
with two links in contact with the ground. Left figure. The system is
composed of four rigid bodies. The centers of mass associated to the rigid
bodies are indicated with a check board circle. Three rotational joints have
associated torques τ 1, τ 2, and τ 3. Central figure. The sketch shows the

convention and the geometric dimension used in the computations. The
contact interaction forces are indicated with fr, fl ∈R2, τ r, τ l ∈R; the internal
constraint forces are indicated with f 1, f 2, f 3 ∈R2. Right figure. The linkage
that describes the system kinematic constraints when assuming that the left
foot is pivoting around its right edge and the right foot around its left edge.

B.2. EQUILIBRIUM CONFIGURATIONS
In the following paragraphs, we study equilibrium configurations
for the system in Figure A1. Let us first consider the case in which
both contacts are active. The idea is to find conditions on the
applied torques to guarantee that the system is in dynamic equi-
librium (i.e., null accelerations) and contacts persist. The planar
Newton–Euler equilibrium equations for each of the 4 rigid bodies
composing the system give 12 equations. Interaction (fr, fl ∈R2,
τ r, τ l ∈R) and internal (f1, f2, f3 ∈R2) forces and torques give
twelve unknowns that can be uniquely solved for any choice of
the joint torques τ 1, τ 2, τ 3. To simplify the notation and to obtain
a symmetric solution we assume τ 1= τ , τ 2= 0, τ 1=− τ . Solv-
ing the associated equations gives the following solution for the
contact forces:

fr =

[
τ/l

(m3 +m4)g

]
, fl =

[
−τ/l

(m1 +m2)g

]
, (A10a)

τr = −τ

(
1+

h

l

)
, τl = τ

(
1+

h

l

)
, (A10b)

and internal forces:

f1 =

[
τ/l
m2g

]
, f2 =

[
τ/l
0

]
, f3 =

[
−τ/l
m3g

]
. (A11)

Assuming for the sake of simpler notation m1+m2=m3+

m4=mtot/2, (28) gives the following expressions for the local right
and left foot FRI1 (expressed in the associated reference frames6r

and 6l, respectively):

FRIr =

[
−τ h+l

mlg/2

0

]
, FRIl =

[
τ h+l

mlg/2

0

]
.

The global center of pressure (GCoP) can be computed by rep-
resenting fr, fl, τ r, and τ l in a common reference frame to obtain

1Using the FRI definition and assuming the contact plane to be y = 0, a force f and
a torque τ have an associated FRI with x-coordinate given by FRIx

= τ /f y.

the total force and torque ftot-τ tot. Using a reference frame in the
middle of the two contacts we have:

τ l
tot = τr + lf

y
r + τl − lf

y
l = 0, f l

tot =

[
0

mg

]
,

and therefore GCoP= [0, 0]T. As expected by the system symme-
try, the global center of pressure is always in the middle of the
two contacts regardless of the value given to τ . Instead, the local
contacts rotation indicators FRIr and FRIl linearly depend on τ
and, for a given contact geometry, it is always possible to find a
τ , which brings them outside the contact areas. As an example,
we can assume that the surfaces in contact have width 2h (twice
the foot height) and, for sake of simpler notation h= l/2. With
this simplification the FRI is within the support polygon of each
contact if and only if:

−
mgl

6
≤ τ ≤

mgl

6
.

If τ ≥mgl/6, the left foot rotation indicator FRIl is on the right
of the left foot support polygon. Similarly, FRIr is on the left of the
right foot support polygon. In practice, recalling the results pre-
sented in Section 2.2, this fact implies that the computed fr, τ r, fl,
τ l for the system equilibrium cannot be generated by a unilateral
contact of the given geometry. In a sense, the equilibrium assump-
tion is wrong and we need to redo computations with a different
assumption. In the following, we assume that the left foot is rotat-
ing with respect to its right edge and that the right foot is rotating
with respect to its left edge. We then check that the solution found
is feasible in terms of contact forces.

B.3. INWARD FEET ROTATION CONFIGURATIONS
In this section, we make the hypothesis that contact constraints
force the left foot to rotate around its right edge and the right foot
around its left edge. In this specific case, the torques at the (point
wise) contacts is identically null. With respect to the previous situ-
ation we therefore have two unknowns less. Additional unknowns
come from the fact that we are no longer assuming accelerations to
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be identically null since the system is no longer assumed at equilib-
rium. These additional unknowns can be expressed as a function
of only two unknowns (e.g., the left and right foot tipping accel-
erations). This results by taking into consideration the kinematic
constraints in the system, as represented in the left hand side of
Figure A1. Therefore, with respect to the equilibrium case we
removed two unknowns (the torques at the contacts) and inserted
other two (the foot angular acceleration at the tipping point). As
a result, the Newton–Euler system of equations is still solvable.
Deriving the solution is out of the scope of the present paper and
therefore omitted. The interested reader can have a look at the
computations, which are available in Matlab2. We report here the
values of some important variables such as the right and left foot
acceleration (denoted q̈r and q̈l ):

q̈r = k
(
6τ −mgl

)
, q̈l = −k

(
6τ −mgl

)
.

for some positive scalar k> 0 which depends only on the system
geometric and dynamic parameters. By convention positive accel-
erations correspond to counter clock wise rotations. As soon as the
right foot FRI starts moving away from its left edge (τ >mgl/6)
the right foot starts counter clock wise rotating. Similarly, when
the left foot FRI moves away from its right edge (again, τ >mgl/6)
the left foot starts clock wise rotating. The left foot FRI can be
computed as well. Given that the foot is not in equilibrium, FRIl

2https://github.com/iron76/wholeBodyCounterExample

is computed using f1 and τ 1 reprojected on the planar contact
surface. Similar considerations hold for FRIr. The position of the
left and right feet rotation indicators with respect to the pivoting
point is given by:

FRIl =
6τ −mgl

k1 + k2τ
, FRIr = −

6τ −mgl

k1 + k2τ

where k1 and k2 are positive scalars which again depend only on
the system geometric and dynamic parameters. As expected FRIr

and FRIl coincide with the pivoting point (the edge of the support
polygon) when τ =mgl/6 and move away from the support poly-
gon when τ >mgl/6. The vertical forces at the contact have the
following expressions:

f
y

l = k3τ + k4, f
y

r = k3τ + k4

for positive constants k3 and k4. Contact forces are therefore posi-
tive as expected given the unilaterally of the contact. Finally, given
the symmetry of the problem, the GCoP is constantly at the center
of symmetry of the system and therefore within the contact sup-
port polygon. Therefore, when τ >mgl/6 the system starts rotating
feet at their edges (contacts are broken) even if the global center
of pressure is within the contact convex hull. This is therefore the
counterexample we were looking for.
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