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Abstract Research into legged robotics is primarily moti-
vated by the prospects of building machines that are able to
navigate in challenging and complex environments that are
predominantly non-flat. In this context, control of contact
forces is fundamental to ensure stable contacts and stabil-
ity of the robot. In this paper we propose a planning/control
framework for quasi-static walking of quadrupedal robots,
implemented for a demanding application in which regula-
tion of ground reaction forces is crucial. Experimental re-
sults demonstrate that our 75-kg quadruped robot is able to
walk inside two high-slope (50◦) V-shaped walls; an achieve-
ment that to the authors’ best knowledge has never been
presented before. Furthermore, the robot is distributing its
weight among the stance legs so as to optimize user-defined
criteria. We compute joint torques that result in no foot slip-
page, fulfillment of the unilateral constraints of the contact
forces and minimization of the actuators effort. This paper
presents an experimental study that compares the proposed
framework with different state-of-the-art control strategies,
demonstrating the effectiveness and robustness of our ap-
proach.

Keywords Whole-body control · Locomotion

1 Introduction

Current research on legged robots is motivated by their po-
tential impact in real-world scenarios such as disaster recov-
ery scenes. Such environments require systems capable of
robustly negotiating uneven and sloped terrains. In recent
years the field has seen remarkable advances in the theoret-
ical tools, which have allowed legged robots to tackle chal-
lenging and possibly dynamic tasks in simulation [14, 12].
However, to this date, experimental results have been limited
to few platforms and tasks, still not matching the complex-
ity of the real world. Righetti et al. [20] experimented with

Fig. 1: HyQ quadruped robot walking inside a 50◦-inclined
groove. Desired wrench (force, moments) at the CoM is de-
picted in white. Ground reaction forces are in brown friction
while cone constraints are indicated in shaded red. The wall
inclination is θ .

walking up a slope of 26◦ with the Little Dog quadruped
robot. On the quadruped robot StarlETH [6] Hutter et al. [8]
used a contact-force optimization method to achieve static
walking on a surface with approximately 40◦ inclination.
Regarding contact force control in humanoid robots, so far
research has mainly focused on balancing experiments on
flat ground [9, 17, 23].

This substantial gap between simulation and reality is
due to a number of different factors. The lack of high-fidelity
joint torque control is probably the first difficulty [8, 4, 2].
Moreover, the identification of inertial and geometric param-
eters of these high-DoF multibody systems is usually cum-
bersome [15], and errors in the identified dynamical models
introduce unknown disturbances in the control actions. Fur-
thermore, the estimation of the system state is typically a
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complex procedure that merges multiple sensor data in or-
der to exploit all the available information [1].

The contribution of this work is to tackle the complete
set of these issues, combining different ideas from planning
to control, and applying them to a challenging test case. We
present experimental results on a 75-kg torque-controlled
quadruped robot, showing that it can walk in between two
high-slope (50◦) V-shaped walls (Fig. 1).

To the best of our knowledge this is the first implementa-
tion of such a task on a real robot. Such a scenario is the most
challenging for testing the capabilities of our controller, be-
cause it allows a greater slope inclination, and therefore re-
quires a greater rotation of the ground reaction forces (GRFs)
compared to walking on a flat or inclined surface. For in-
stance, a static walk on a single slope of 50◦ would not be
possible with a friction coefficient of 1 or less. Nonetheless,
our approach is applicable to any kind of sloped terrains.

We also present a comparison with other state-of-the-
art controllers, which demonstrates the importance, for this
kind of task, of accurately controlling the contact forces.
Fig. 2 presents the building blocks of our control frame-
work. The motion control block is a whole-body controller
inspired by the works presented in [17, 6]. The approach is
rather general, because it can deal with any number of con-
tacts, as long as normal directions and friction coefficients
are known or estimated. The robot can adapt to uneven sur-
faces while distributing its weight over the supporting con-
tact points in an optimal manner. Moreover, the method does
not require contact force measurements and avoids joint tor-
que discontinuities. The motion generation block computes
desired trajectories for the CoM, the base orientation and
the swing foot to achieve a static walking pattern. The lat-
ter adapts to the geometry of the terrain to achieve a stable
foothold and to ensure physical feasibility (e.g. not to violate
the constraints of the stance feet). The rest of this work is or-
ganized as follows: Section 2 and Section 3 describe the con-
troller implementation and the motion generation, respec-
tively. Section 4 introduces our robotic platform and reports
the experimental results obtained, along with the values used
for all the parameters of the algorithm. Section 5 discusses
some practical issues that are often overlooked when work-
ing in simulation, namely joint torque limits, model identi-
fication and friction estimation. Finally, Section 6 draws the
conclusions and presents future work directions.

2 Whole body controller with optimization of ground
reaction forces

This section describes the control architecture developed for
quadrupedal robot walking on inclined terrain. The controller
computes desired joint torques, that are tracked by the low-
level torque controllers [2]. Our objectives are to regulate

i) the position of the center of mass (CoM) and ii) the ori-
entation of the base of the robot. We do this by computing
Ground Reaction Forces (GRFs) at the stance feet that result
in the desired i) acceleration of the CoM and ii) angular ac-
celeration of the robot’s base. At the same time, we take into
account the constraints imposed by the friction cones.

2.1 Centroidal robot dynamics

Following the results presented in [16], the centroidal robot
dynamics can be described as:

l̇ = m(ẍcom +g) = Fcom (1)

ḣ = IGω̇G + İGωG = Γcom, (2)

where l̇ and ḣ are the rate of change of linear and angular
momentum respectively, g ∈ R3 is the gravity acceleration
vector, m ∈R is the total robot’s mass, IG ∈R3×3 is the cen-
troidal rotational inertia, ẍcom ∈R3 is the acceleration of the
CoM, ω̇G ∈ R3 is the rotational acceleration of an equiva-
lent rigid body with the inertia IG, and finally Fcom ∈R3 and
Γcom ∈R3 are the net external force and moment at the CoM,
respectively.

The design of the controller is based on the following
assumptions. First, we assume that İGωG ' 0: this is rea-
sonable because in our experiments the robot moves slowly.
Second, since most of the robot’s mass is located in its base
(i.e. 47 out of 75 kg), we approximate the CoM (xcom) and
the average angular velocity of the whole robot (ωG) with
the CoM of the trunk xcom−base

1 and the angular velocity of
the base ωb. Third, since our platform has nearly point-like
feet, we assume that it cannot generate moments at the con-
tacts. Fourth, we assume that the GRFs are the only external
forces acting on the system. Under these assumptions, we
can rewrite (1) and (2) expressing the net force and moment
at the CoM as functions of the c GRFs (i.e. f1, . . . , fc ∈ R3,
where c is the number of stance feet):

m(ẍcom +g) =
c

∑
i=1

fi (3)

IGω̇b '
c

∑
i=1

( fi× pcom,i), (4)

where pcom,i ∈ R3 is a vector going from the CoM to the
position of the ith foot defined in an inertial world frame
W (see Fig. 3). These two equations are the base of our
control design because they describe how the GRFs affect
the acceleration of the CoM and the angular acceleration of
the robot’s base. We now design two proportional-derivative
control laws to compute the desired values of ẍcom and ω̇b.
Then, we will find the GRFs that allow us to achieve these
desired accelerations.

1 In the following we keep using xcom even if in the implementation
we actually used xcom−base.
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Fig. 2: Block diagram of our framework. The motion generation block (yellow) computes the input trajectories for CoM and
joints, while the motion control block (green) computes the reference torques for the low-level controller (grey). Light red
blocks indicate user-defined input parameters. Each block is detailed in the sections indicated in parenthesis.

World

frame

Robot
trunk

Base frame

RF 
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HFE
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HAA

Fig. 3: Summary of the nomenclature used in the paper.
Leg labels: left front(LF), right front(RF), left hind (LH)
and right hind(RH). The world frame W ; the base frame B
(attached to the geometric center of the robot body). Left
subscripts indicate the reference frame, for instance Bxcom is
the location of the CoM w.r.t. the base frame. In case of no
left subscript, quantities are expressed w.r.t. W .

2.2 Control of CoM’s position and base’s orientation

We compute the desired acceleration of the CoM ẍd
com ∈ R3

using a PD control law:

ẍd
com = Kpcom(xd

com− xcom)+Kdcom(ẋd
com− ẋcom), (5)

where xd
com ∈R3 is the desired position of the CoM, whereas

Kpcom ∈R3×3 and Kdcom ∈R3×3 are positive-define diagonal
matrices of proportional and derivative gains, respectively.
Similarly, we compute the desired angular acceleration of
the robot’s base ω̇d

b ∈ R3 as:

ω̇
d
b = Kpbasee(Rd

bR>b )+Kdbase(ω
d
b −ωb), (6)

where Rb ∈ R3×3 and Rd
b ∈ R3×3 are rotation matrices rep-

resenting the actual and desired orientation of the base w.r.t.
the world reference frame, respectively, e(.) : R3×3→ R3 is

a mapping from a rotation matrix to the associated rotation
vector, ωb ∈ R3 is the angular velocity of the base, whereas
Kpbase ∈ R3×3 and Kdbase ∈ R3×3 are positive-define diag-
onal matrices of proportional and derivative gains, respec-
tively.

2.3 Computation of the desired GRFs

Given a desired value of the acceleration of the CoM and the
angular acceleration of the robot’s base, we want to compute
the desired GRFs f . We rewrite (3) and (4) in matrix form
as:[

I . . . I
[pcom,1×] . . . [pcom,c×]

]
︸ ︷︷ ︸

A

 f1
. . .

fc


︸ ︷︷ ︸

f

=

[
m(ẍd

com +g)
Igω̇d

b

]
︸ ︷︷ ︸

b

, (7)

where we replaced the actual accelerations with the desired
accelerations. This system has 6 equations and k = 3c un-
knowns; since in our experiments 3 ≤ c ≤ 4, typically the
system has infinite solutions. We exploit this redundancy to
ensure the respect of the inequality constraints imposed by
the friction cones. At every control loop we solve the fol-
lowing quadratic program:

f d =argmin
f∈Rk

(A f −b)>S(A f −b)+α f>W f

s. t. d <C f < d̄,
(8)

where S ∈ R6×6 and W ∈ Rk×k are positive-definite weight
matrices, α ∈ R weighs the secondary objective, C ∈ Rp×k

is the inequality constraint matrix, d, d̄ ∈Rp the lower/upper
bound respectively, with p being the number of inequality
constraints. These ensure that i) the GRFs lie inside the fric-
tion cones and ii) the normal components of the GRFs stay
within some user-defined values.
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We approximate friction cones with square pyramids to
express them with linear constraints. We then define C,d and
d̄ as:

C =

C0 . . . 0
...

. . .
...

0 . . . Cc

 d =

d0
...

dc

 d̄ =

d̄0
...

d̄c

 , (9)

with:

Ci =


(−µini + t1i)

>

(−µini + t2i)
>

(µini + t2i)
>

(µini + t1i)
>

n>i

 di =


−∞

−∞

0
0

fmini

 d̄i =


0
0
∞

∞

fmaxi

 ,
(10)

where ni ∈ R3 is the direction normal to the surface, t1i ,
t2i ∈R3 are the tangential directions, µi ∈R is the coefficient
of friction, and fmini , fmaxi ∈ R are the minimum and max-
imum allowed values for the ithnormal force, respectively;
all these values are of course relative to the ithcontact. In
the cost function of (8) the term f>W f regularizes the solu-
tion by trading-off the tracking of ẍcom and ω̇b with small-
magnitude GRFs. We can use the weight matrix W to pe-
nalize certain force directions (e.g. to penalize tangential
forces). Actually, in our experiments we found more use-
ful to penalize high joint torques rather than high GRFs (see
Section 5.3).
Remark 1 According to our robotic-platform specificities,
the presented controller is sufficient to control the whole
system. The robot has 18 DoFs (12 joints plus 6 DoFs of
the floating base), but as long as it stands on four feet it is
subject to 12 rigid-contact constraints. This leaves only 6
unconstrained DoFs, which are exactly the number of DoFs
controlled by the presented method. When the robot stands
on three feet it has instead 9 unconstrained DoFs: in this
phase the 3 additional DoFs are compensated by the control
of the position of the swinging foot. However, for systems
with more DoFs (e.g. humanoid robots) it is necessary to
control the remaining redundancy.
Remark 2 Although this paper focuses on quadruped lo-
comotion, the presented method can accommodate for any
number of contact points. For instance we could use virtual
models [18] to generate virtual forces at the end-effectors
to achieve motion-force tasks. In case of physical interac-
tion, we have to incorporate the effect of the additional con-
tact forces on the centroidal dynamics (i.e. on the vector b
in (8)). This would enable to include manipulation tasks to
physically interact with the environment.
Remark 3 The weights of the two conflicting terms in the
objective function of (8) must be carefully tuned through the
parameter α . A too strong regularization causes big tracking
errors, thus negatively affecting the robot equilibrium.

Remark 4 Problem (8) always has a solution. Nonetheless,
if the desired accelerations require GRFs that violate the in-
equality constraints, the controller does “the best that it can”
in the least-squares sense. Therefore, it is crucial to plan tra-
jectories that are coherent with friction constraints.

2.4 Mapping of GRFs to joint torques

We compute the desired joint torques τd ∈ Rn (where n is
the number of joints) by superimposing two control actions.
First, mapping the desired GRFs f d into joint space we get
the feedforward torques τ f f :

τ f f =−SJ>c f d , (11)

where Jc ∈ Rk×n+6 is the stacked Jacobian of the contact
points and S =

[
In×n 0n×6

]
is a selection matrix that selects

the actuated DoFs. This same mapping was used in [17] and
it is valid only for quasi-static motion.

The second part consists of a proportional-derivative (PD)
joint-position controller with low gains, which on average
contributed only to ≈ 18% of τd . This second term is moti-
vated by safety reasons — hydraulic actuators can generate
fast and powerful movements — and it is also used to move
the swing leg. During the swing motion we increase the PD
gains of the swing leg joints to improve tracking capabil-
ities. Overall, we compute the desired torques τd that we
command to the underlying joint-torque controllers [2] as:

τ
d = τff +PD(qd , q̇d ,cst), (12)

where qd ∈ Rn, q̇d ∈ Rn are the desired joint positions and
velocities, respectively, and cst ∈R4 is the vector of boolean
variables representing the stance condition of the legs.

3 Static-Walking Algorithm for Quadrupeds

Our static-walking algorithm is a sequential repetition of the
following phases: move CoM, unload leg, swing leg, load
leg. Each phase is a state of the state machine depicted in
Fig. 4. The gait sequence that we used in our climbing exper-
iments is an input parameter of the walking algorithm and it
is described in the Appendix. We assume that the robot starts
with all the four legs in contact with the terrain. A boolean
flag cst represents the contact state; this flag can be modified
by both the walking algorithm and the environment, depend-
ing on the current walking phase.

In the move-CoM phase the robot moves its CoM inside
the support triangle formed by the three legs opposite to the
one that is about to swing (Section 3.1). This ensures static
equilibrium when breaking the contact. A timer regulates
the duration tmcom of the move-CoM phase. Then the unload
phase starts. During this phase the load on the swing leg is
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Fig. 4: Logic diagram of the state machine used in the static walking algorithm. Rectangles represent temporized phases and
actions, arrows represent transitions, and rounded boxes represent actions associated to transitions.

gradually reduced to zero (Section 3.2). When the time tload
has elapsed, the swing phase begins with the computation of
the desired foot placement for the swing foot (Section 3.3).
Initially the foot swings away from the surface to achieve
step clearance and then toward it (see Fig. 5). If in the pre-
touchdown motion the ground is reached earlier than pre-
dicted the swing phase terminates. Otherwise the leg keeps
moving (searching motion, see Section 3.3) until the foot
makes contact. Finally, during the load phase, the number
of stance legs is reset to four and the previous swing leg
is gradually loaded, redistributing the weight equally on all
the legs. At the same time the robot’s height is corrected (see
Section 3.4). After the load phase the next swing leg is taken
from the gait sequence and the cycle repeats. The input pa-
rameters for the static-walking algorithm (Fig. 2) are: the
normals to the surface ni at each contact point, the gait se-
quence GaitS, the step-length offset stepLoff , the step height
stepH, and the time duration of each phase (tmcom, tload , tsw)
(see Tab. 1).

3.1 CoM’s Trajectory Generation

We estimate the CoM position xcom w.r.t. an inertial frame
W through leg odometry [13]. To do this we use joint-angle
measurements and the model of the robot kinematics; under
the assumption that the stance feet do not move (i.e. no slip),
and given that there are always at least three stance feet,
the position/orientation of the robot can always be uniquely
determined.

In the move CoM phase the desired CoM trajectory is
generated as a 5th-order minimum-jerk spline. The trajec-
tory starts from the current CoM position (xd

com(0)) and it
ends at the target CoM xd

com(tmcom). The target CoM is com-
puted so that Pxyxd

com(tmcom) lies inside the next support tri-
angle T , where Pxy ∈R3×3 is a projector into a plane perpen-
dicular to gravity (see Fig. 5). Since the steps are adapted to
the terrain geometry during the walking, the support trian-
gle can change its inclination w.r.t. gravity, because the feet

Hip shoulder

Fig. 5: HyQ robot walking inside a 50◦-inclined groove.
CoM is depicted in black and white. The wall inclination is
θ . The red dot represents the projection Pxyxd

com(tmcom) of
the desired CoM position xd

com(tmcom) on the stable convex
hull (light blue), which is a projection of the support trian-
gle (black) on a plane orthogonal to gravity. The desired tra-
jectory of the swing leg lies on a plane normal to the ground
surface, and it depends on the step height (stepH) and length
(stepL).

may not be at the same height. Therefore, to ensure static
equilibrium, we consider a projection of the triangle PxyT .
The position of Pxyxd

com(tmcom) inside PxyT can be tuned by
changing the parameter d, which is the distance from the
midpoint of the largest edge of the triangle. The smaller d,
the smaller the static-equilibrium margin, but the bigger the
walking velocity, because the amplitude of backward mo-
tions is reduced [3].

While we generate the desired trajectory of the CoM, we
also need to compute the desired trajectories for the joint-
level PD controllers of the stance legs. These joint trajecto-
ries must of course prevent the PD controllers from “fight-
ing” against the whole-body controller. Since the legs of the
robot have only 3 DoFs, we can analytically compute the
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joints’ trajectories from the feet’s trajectories. The trajecto-
ries of the feet can in turn be computed from the desired
CoM and base’s orientation. In the following the left sub-
script indicates the frame in which vectors are represented.
Assuming that the stance feet do not move w.r.t. the inertial
frame W (i.e. w ṗi = 0,∀i ∈ StanceFeet), we compute the
velocity of the ith foot w.r.t. the base frame B (i.e. b ṗi) as a
function of the CoM’s velocity wẋcom and the base’s angular
velocity wωb:

b ṗi = R(wẋcom−
[
RT

b pi
]
× wωb), (13)

where R ∈ R3×3 is the rotation matrix from W to B. Using
ωd

b (t) and ẋd
com(t) generated by the spliner (in world coordi-

nates), we can then compute b pd
i by integrating b ṗd

i . Finally,
we compute the desired joints’ angles for each stance leg to
use as references for the joint PD controllers.

3.2 Leg Loading/Unloading

The loading/unloading phases are fundamental to prevent
discontinuities in the joints’ torques any time that the num-
ber of stance legs changes. We achieve the loading/unloading
by splining the upper bound fmax,i on the normal force of the
leg i, from the current value to 10m/0, where m is the mass
of the robot. In particular, we update the d̄ vector (inequality
constraints) at each time step during these phases.

3.3 Swing Leg

At the beginning of the swing phase we compute the step
length stepLi as a fixed offset stepLoff in the forward direc-
tion w.r.t. the hip shoulder. Computing the footstep locations
w.r.t. to the shoulder — rather than w.r.t. the actual foot po-
sition — ensures no drift in the distance between the feet.
Then the swing leg’s trajectory pd

i (t) is generated on a plane
normal to the ground’s surface, as a function of the user-
defined step height stepH and step length stepL (see Fig. 5).
The first part of the swing motion is a spline through a via
point to achieve step clearance; the second part consists of
a surface approaching motion (pre-touchdown) towards the
desired foot’s placement. During the downward motion, if
the contact is made before the planned foothold is reached,
the leg stops. Conversely, if the step ends before making
contact, the foot keeps moving at constant velocity along the
ground’s normal direction (searching motion) until it either
makes contact or reaches the workspace’s limits. The lowest
singular value of the foot’s Jacobian matrix is monitored to
stop the leg motion before getting close to a singularity (e.g.
leg completely extended).

3.4 Height Correction

Whenever the swing foot makes contact before/after expec-
ted the foot-shoulder distance gets smaller/larger, and this
affects the height of the robot. Thus, to prevent the robot
from gradually “squatting”/“rising” during the walk, we cor-
rect the leg’s length. During the load phase, while changing
the limit of the normal force, we also move the desired foot’s
position — and the relative desired joints’ positions — of
∆ pi(Z):

∆ pi =−
[
hd− e>3 Bxcom− (−e>3 pi(tsw)

]
, (14)

where hd ∈ R is the desired robot’s height computed at the
CoM (see Tab. 1), Bxcom is the position of the CoM in the
frame B (identified as explained in Section 5.2) and e>3 ∈ R1×3

is a vector selecting the z component.

4 Experiments

Before carrying out experiments on the real robot we exten-
sively tested the framework in simulation with the SL soft-
ware package [21]. (see attached video). However, for the
sake of brevity, we report only the results obtained on the
real robot.

4.1 HyQ Platform’s Description

The experimental platform used in this work is a quadruped
robot [22] (Fig. 5). The robot weighs 75 kg, it is 1m×0.5×
1m (L×W ×H) dimensions and it is equipped with 12 ac-
tuated DoFs i.e. 3 DoFs for each leg. The hip abduction-
adduction (HAA) joints (see Fig. 3) connect the legs to the
robot’s torso, creating the lateral leg’s motion, while the hip
and knee flexion/extension (HFE and KFE, respectively)
create the motion in the sagittal plane. Linear hydraulic cylin-
ders actuate the hip and knee flexion/extension (HFE and
KFE, respectively), while the HAA are rotary hydraulic ac-
tuators. Load-cells, located at the end of the piston rods,
measure the force of the hydraulic cylinders. By kinematic
transformations, considering the lever arm between the pis-
ton attachment and the joint axis, the joints’ torques are
computed. Similarly, a custom torque sensor, embedded in
the HAA joint, provides direct measurements of the torque.
An off-board pump brings the pressurized oil to the system
through tethered hoses. An inertial measurement unit (IMU)
provides measurements of orientation and angular velocity
of the robot’s base. Since most of the torque at the joints
is due to the GRFs, we estimate the force at the ith foot as:
fi '−J−>i τlegi , where Ji ∈R3×3 is the ith leg’s Jacobian and
τlegi ∈R3 are the torques of the ith leg’s joints. All the joints
of the robot are torque controlled with a high-performance
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low-level controller [2]. To verify the contact status of the
feet we use a threshold on the normal component of the
GRFs. The kinematic transformation used in this work are
computed according to [5].

4.2 Groove

A good template to test the capability of our framework is
the “horizontal groove” (see Fig.5). In this experiment the
robot must actively push against the wall of the chimney to
keep the GRFs inside the friction cones, so preventing slips
and consequent falls. For practical reasons we built a hor-
izontal chimney (groove) instead of a vertical one, which
has been equivalently good for the proof of the concept.
The robot has successfully walked through the entire length
(2.5m) of the groove, with a wall inclination of θ = 50◦.
Before starting the controller the robot is already inside the
groove, with all four feet in contact with the walls. A video
of the experiments demonstrating multiple experimental tri-
als of our control framework is enclosed.

4.2.1 Implementation Details

The control of the base’s orientation aims to maintain the
robot’s trunk horizontal during the walk. Table 1 reports the
values of the parameters used in the experiments. To be con-
servative we used a friction coefficient (µ = 0.5) lower than
the one that we estimated (mu = 1) (see Section 5.1). This is
important to improve the robustness w.r.t. the friction coeffi-
cient and terrain topology (i.e. inclination). Indeed, by using
a conservative friction coefficient in the optimization prob-
lem, uncertainties in the estimation of the terrain’s normal
direction are well tolerated. For example, in our experimen-
tal trials this ensured a tolerance to slope estimation errors
of up to 18◦.

The identification of the CoM’s position (see Section 5.2)
was crucial for the success of the experiments. Despite hav-
ing only 2.7cm of error (in the xy plane) w.r.t. the CoM com-
puted from the CAD model, this was enough to make the
robot fall after half a cycle.

The control loop for the low-level torque controller ran
at 1 kHz, whereas the whole-body controller ran at 133 Hz.
We solved the optimization problem (8) in real-time using
the open-source software OOQP [7]. On the onboard pen-
tium PC104 1GHz computer, running under a real-time Li-
nux operating system, the resolution of (8) with 3c = 12
variables (c = 4 contact points) and 5c = 20 inequality con-
straints took on average 6.34 ms. We decided not to include
the inequality constraints for the joints’ torques (see Sec-
tion 5.3) because the 12 additional bilateral constraints in-
creased the computation time to 9.82ms, thus exceeding the
maximum time of 7.52ms.

Table 1: Parameters of the controller

Parameter Symbol Value

Wall inclination θ [rad] 0.87
Friction coefficient µ [1] 0.5
CoM proportional gain Kpcom [N/m] diag(103,103,500)
CoM derivative gain Kdcom [sN/m] diag(200,200,0)
Attitude proportional gain Kpbase [Nm/rad] diag(103,103,103)
Attitude derivative gain Kdbase [sNm/rad] diag(200,200,200)
Joint impedance control Ksw [Nm/rad] 300stiffness during swing
Joint impedance control Dsw [sNm/rad] 6damping during swing
Step length offset w.r.t. hip stepLo f f [m] 0.11
Step height stepH [m] 0.1
Static stability margin d [m] 0.09
Weights for CoM wrench S diag( 5, 5, 10,
components 10, 10, 10)
Weights for torque Wτ diag(5, 50, 2)10−3
minimization (see 5.3)
Second objective weight α 0.01
Gait sequence GaitS RH,RF ,LH,LF
Phase durations tmb, tlu, tsw [s] 4, 2.5, 2
Desired robot height hd [m] 0.6

4.2.2 Results
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Fig. 6: Experimental results. Tracking of the center of mass
during the walking.

Fig. 6 and 7 present the tracking of the CoM’s posi-
tion and the base’s orientation, respectively. Fig. 8 plots the
tracking of the contact forces of the left-front foot. The feed-
back ratio

∫
|τPD|/|τ| is a good metric to determine how ac-

curate our kinematic/dynamic model (e.g. body inertia and
estimation of the CoM) of the robot is. In particular the feed-
back ratio represents the contribution of the PD controller
relative to the total commanded torque. The feedback ratio
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Fig. 7: Experimental results. Tracking of the base’s orienta-
tion during the walking.
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Fig. 8: Cartesian components of the contact forces in the
left-front leg. Red plots are the desired forces generated by
the optimizer, while blue plots are the actual contact forces.
The difference is due to the action of the PD controller,
whose overall influence is on average lower than 18%.

computed for the experimental data of Fig. 8 is 18%, which
shows a very small intervention of the PD feedback action
during the test. Fig. 9 shows the distribution of the GRFs on
all the legs for the same groove experiments. The GRFs are
always inside the friction-pyramid boundaries. Note that the
unilateral constraints on the contact forces implicitly restrict
the CoP inside the convex hull of the support polygon.

4.2.3 Torque limits

During the walk the robot reached configurations in which
the torques needed at the HFE joints exceeds their limits.
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Fig. 9: Distribution of the contact forces at the four feet.
The plots show the forces along the ground normal direc-
tion as a function of the norm of the tangential forces. The
green lines represent the estimated boundaries of the fric-
tion cones, which correspond to a friction coefficient µ = 1,
while the red line represent the conservative friction coeffi-
cient of µ = 0.5 set in the controller.

Indeed for the sagittal joints the available torque depends
on the joints’ positions because the lever arm of the piston
varies (nonlinearly) with the joint’s angle [22]. We therefore
tuned the matrix Wτ to penalize torques at the HFE joints.
We also tried to repeat the experiment with a steeper wall
inclination θ = 60◦, both in simulation and on the robot. The
experiment failed because both HFE and HAA reached their
torque limits and the problem could not be solved by tuning
Wτ (see Section 5.3). Conversely in simulation, where the
torque limitations were absent, the test succeeded.

4.2.4 Comparison with other approaches

. We implemented three other algorithms to compare them
with our approach on the same experimental conditions:

1. a high-gain joint PD position controller (with K = 500
Nm/rad and D = 6Nms/rad);

2. our controller, but without considering the terrain incli-
nation (i.e. θ = 0◦);

3. a low-gain PD controller (K = 150Nm/rad and D =

3Nms/rad) superimposed to a floating-base gravity com-
pensation [19].

We computed the floating-base gravity compensation as:

τ f f = (NcST )]Ncg, (15)

where Nc = I− J]cJc is the null-space projector of the con-
tact Jacobian Jc ∈ Rk×(n+6), which is a stack of the stance
feet’s Jacobians Jci =

[
JBi Jqi

]
, (.)] is the Moore-Penrose
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pseudoinverse, and g ∈ Rn+6 are the generalized forces due
to gravity. With all these controllers the robot has lost the
traction with the surface when moving the body, demon-
strating the importance, for this kind of task, of controlling
the GRFs. The first controller does not have an optimiza-
tion stage and so the feet quickly start to slip. The second
controller directs the GRFs on the vertical axis (Z), so once
the GRFs leave their friction cones the robot slips and falls.
The last controller compensates for gravity using a Moore-
Penrose pseudoinverse, which generates a minimum-norm
torque vector. This generally corresponds to GRFs pointing
through the hip-joint axis. Even though the GRFs could pos-
sibly lie inside the friction cones, the lack of an explicit op-
timization results in the robot slipping and falling when the
robot’s trunk starts moving.

5 Practical Issues

Here we present a number of steps taken to ensure the ro-
bustness of the robot’s behavior in a real-world environment.

5.1 Friction Cone Estimation

Before performing the walking experiments we estimated
the friction coefficient µ at the contact between the rubber
coating of the robot’s feet and the wall surface. We laid one
of the groove walls flat on the ground, with the robot stand-
ing statically on top of it. Then we made the robot exert hor-
izontal GRFs, increasing up to the point at which one of the
feet slipped. Finally, we chose µ =

√
f 2
x + f 2

y / fz), where
fx, fy and fz are respectively the two tangential components
and the normal component of the contact force at the foot,
right before slipping.

5.2 Identification of the CoM with Static Poses

In order to improve the estimation of the center of mass of
the robot we identified its location. Since most of the mass
of the robot is located in the trunk, we assumed that the CoM
does not depend on the configuration of the legs – as we did
in the controller design. This allows us to consider just a
lower dimensional model of the robot (e.g. the rigid body
of the trunk). When the robot is still (i.e. q̇ = q̈ = 0) the net
moment at the CoM is zero:

Γcom =
3

∑
i=0

( fi× pcom,i) =
3

∑
i=0

fi× (pi− xcom) = 0, (16)

where fi ∈R3 is the GRF at the ith foot and pcom,i ∈R3 is the
distance from the CoM to the ith foot. The only unknown in
this equation is the CoM position xcom. By collecting force

and position measurements over T seconds while the robot
was in a set of manually designed static poses, we could
write the overconstrained system of equations: [∑

3
i=0 fi(0)]×

...
[∑3

i=0 fi(T )]×


︸ ︷︷ ︸

A

xcom =

∑
3
i=0( fi(0)× pi(0))

...
∑

3
i=0( fi(T )× pi(T ))


︸ ︷︷ ︸

b

(17)

We designed the static poses to obtain a sufficiently rich re-
gression matrix A. We then estimated the CoM’s position
as x̂com = (A>A)−1A>b. The estimated CoM lied at about
2.7cm (in the xy plane) from the CoM computed from the
CAD model. Moreover, by performing a recursive least-squa-
res estimation with forgetting factor, we measured how much
the CoM’s estimation varied through all the static poses due
to the influence of the mass of the legs. The variations were
of≈ 1cm; this suggested that approximating the robot’s CoM
with the trunk’s CoM was acceptable for our quasi-static
movements.

5.3 Torque Minimization

The joint torque limits proved to be a crucial issue dur-
ing our experiments. The respect of the joint-torque lim-
its can be achieved in (8) through either the cost function
or the inequality constraints. Even though this allows con-
straint violations, we used the first method because the sec-
ond one was computationally too expensive. The regulariza-
tion term f>W f can be defined in order to penalize joint
torques rather than GRFs. This can be achieved by know-
ing the relationship between feet forces and torques: τ =

−SJ>c f . Therefore to minimize τ>Wτ τ , with Wτ ∈ R3c×3c

being a diagonal positive-definite matrix, we set

W = JcS>Wτ SJ>c

This results in implicitly minimizing the torques of the stance-
legs’ joints.

5.4 Robustness to Friction Coefficient

Looking at Fig. 9 it can be noted that GRFs are always close
to the cone boundaries. This is expected because, due to the
quasi-static motions, gravitational components (mainly ver-
tical) dominates in the body wrench, and using a regulariza-
tion that minimizes the norm of the torques or of the forces
leads to solutions that are close to the cone boundaries (for
the actual task). To improve robustness it would be prefer-
able to have a solution where forces are close to the cones’
normals. This is equivalent to penalizing the norms of the
feet’s forces in frames that are aligned with the contacts’
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normals. To achieve this we could set the following block-
diagonal weight matrix [20]:

W =

T0Wn0T T
0 . . . 0

...
. . .

...
0 . . . TcWncT T

c

 , (18)

where Ti =
[
t1i t2i ni

]
is a rotation matrix whose columns

are the coordinate axis of a frame aligned with the con-
tact surface i. The weight matrix for each stance leg i is
Wni = diag(Kt1 ,Kt2 ,1), where Kt1 and Kt2 are the weights
used to penalize the tangential forces in the t1i and t2i direc-
tions. Despite this regularization would be preferable for the
robustness of the controller, due to the torques’ limitations
we used the regularization described in Section 5.3 in the
real experiments.

6 Conclusions and future work

We presented a self-contained planning/control framework
for quadrupedal quasi-static walking on high-sloped terrain,
reporting experimental results on a torque-controlled qua-
druped robot. By direct control of the GRFs we could avoid
slippage despite the high terrain inclination (i.e. 50◦). Sim-
ilar theoretical control architectures have been presented in
recent years [10, 11, 6, 14], but to the best of our knowl-
edge, the few demonstrations on torque-controlled platforms
have been limited to humanoid balancing [9, 23, 17] and
quadruped locomotion on terrains with low slope (≤ 40◦)
[20, 8]. The presented experiments show that the recent trend
of force-based control frameworks can be used to perform
locomotion on high-slope terrain. We believe that this ca-
pability is essential for the deployment of robots in adverse
environments, such as mountains or disaster-recovery sce-
narios.

In the controller we assumed that the CoM does not de-
pend on the configuration of the legs, though their mass is
far from negligible. Despite this simplifying assumption, the
use of a lower-dimensional model was sufficient to perform
the task. Furthermore, we have shown that a simple proce-
dure is adequate to estimate the few inertial parameters used
in our simplified model.

In the near future we plan to relax the simplifying as-
sumptions undertaken in this work (quasi-staticity, lower-
dimensional model) and develop a whole-body control frame-
work with optimization of GRFs, joint torques and joint lim-
its. This framework will be suitable to perform more dy-
namic tasks. Indeed, relaxing the quasi-static assumption
(i.e. computing the whole-body dynamics) would allow for
more aggressive movements, hence faster locomotion. We
want to speed up the controller in order to solve the opti-
mization in real-time, despite the increased computational
burden (due to more inequalities and variables).
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t

RH RF LH LF

Fig. 10: (top) Top view of two different support triangles
T1 and T2. Relative to T1 we report also the three con-
tact forces f1, f2, f3, the distance between the contact points
p12, p13, p23 and the friction cone of f3. (bottom) Gait se-
quence for the groove walk experiments.

We plan to perform more challenging tasks like locomo-
tion on different groove shapes (e.g. diverging walls, irreg-
ular slopes, turns), on ice and slippery slopes (low friction)
and on a moving platform (keep balance).

The framework will also be extended to our Centaur
robot (a quadruped base with two arms on top) in order to
perform whole-body manipulation tasks. In this scenario the
legs can provide assistance to pull or push an object. Fur-
thermore, a body-posture optimization will be implemented
with the purpose to increase stability and be more effective
to exert a force in a desired direction, while minimizing the
torques at the legs’s joints. This is a strategy, to reduce the
overall energy expenditure, which is very common for hu-
mans.

More advanced techniques for the estimation of the base’s
position/orientation [1] could improve the performances of
the controller. Finally, we plan to incorporate more informa-
tion on the geometry of the environment, possibly combin-
ing vision and active haptic exploration (e.g. touching three
points on the terrain and fitting a plane).

A Intuitive justification of foot placement

This section explains our choices regarding foot positioning for qua-
drupedal walking on v-shaped terrain. We show that, when the robot
stands on three feet, having an acute support triangle is convenient
for maintaining the robot in equilibrium. We know that the robot is in
equilibrium when the net external force and moment (about any point)
acting on it are zero. We define a reference frame O1 located at foot
1 (see Fig. 10), with the axis z1 aligned with gravity and the axis x1
pointing towards foot 2 (which we assume to be approximately aligned
with foot 1). At the equilibrium, the net moment m ∈ R3 about z1 has
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to be zero, that is:

Pzm = (Pxy p12)× (Pxy f2)+(Pxy p13)× (Pxy f3) = 0, (19)

where Pxy ∈R3×3 projects onto the x1y1 plane, Pz ∈R3×3 projects onto
the z1 axis, f2( f3) ∈ R3 is the GRF at the foot 2 (3), and p12, p13 ∈ R3

are the lever arms from foot 1 to foot 2 and 3, respectively. The first
term of (19) always generates a positive moment about z1 because of
the unilaterality constraints, i.e. f2y > 0. To have equilibrium then we
need f3 (i.e. the second term) to generate a negative moment about z1.
In other words (Pxy f3) must lie in the right halfspace delimited by the
line passing through feet 1 and 3. Similarly, computing the net moment
about z2 (i.e. the z axis of the frame O2), we can infer that to have
equilibrium (Pxy f3) must lie in the left halfspace delimited by the line
passing through feet 2 and 3. This implies that (Pxy f3) must lie — not
only inside the friction cone, but also — inside the support cone, that is
the cone originating in O3 and delimitated by two sides of the support
triangle (green cone in Fig. 10). We can then state that having an acute
support triangle leaves more freedom in the choice of f3 because it
results in a bigger area of intersection between the friction cone and
the support cone. If p3 gets too close to p1 or p2, a part of the friction
cone of f3 stops intersecting the support cone, leaving less freedom for
the choice of f3 (e.g. red support triangle in Fig. 10).

Taking advantage of these insights we planned contact configura-
tions that generate acute support triangles. A gait sequence that satisfies
this requirement is RH, RF , LH, LF , in which we set an initial offset
positions for the feet along the x direction (see Fig.10 (bottom)).
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