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Chapter 8
The Use of Hyperspectral Imagery for Digital
Soil Mapping in Mediterranean Areas

P. Lagacherie, C. Gomez, J.S. Bailly, I Baret, and G. Coulouma

Abstract Hyperspectral imagery is considered as a promising source of data to
overcome the lack of soil information that often hamper digital soil mapping. We
have tested it in the vineyard plain of Languedoc (southern France) usingan 5 x Sm
resolution HYMAP image and 52 calibration-validation points. Satisfactory predic-
tions of clay content and calcium carbonate (CaCO3) content were first obtained
from HYMAP spectra over bare soils, partial least-squares regression performing
better than continuum removal technique. These predictions were however less
precise than using laboratory spectra. An examination of the possible factors that
could explain this decrease showed that calibration uncertainties of the HYMAP
sensor and of atmospheric effects were largely predominant. Secondly, since the
HYMAP image was largely covered by vegetation with few pure bare soil pixels,
an interpolation-aggregation procedure was proposed to obtain a 100 x 100 m dig-
ital soil map of the whole study area from a set of scattered bare soil fields with
hyperspectral soil characterization. Interpolation was performed by a conditional
simulation algorithm to estimate the within pixel soil pattern parameters. Validation
results showed that satisfactory estimates of local means can be obtained whereas
the variations of local variances were only partly represented,

In the near future, a new proof-of-concept zone will be implemented in Tunisia
to confirm these encouraging results and to examine how hyperspectral imagery can
be used in association with soil legacy data and digital terrain models to produce
digital maps of soil properties in the Mediterranean areas.
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8.1 Introduction

It has been largely recognized in the previous digital soil mapping workshops
(Lagacherie, 2008) that poor soil datasets have been (and still remain) a factor that
can severely limit digital soil mapping progress. It is thus important to include the
use of soil sensors that can deliver precise soil property estimates over large areas in
the digital soil mapping toolbox, Among the large set of possible soil sensors, visi-
ble and near infrared (vis-NIR) hyperspectral imagery is one of the most promising
candidates since it is derived from reflectance spectroscopy, a laboratory technique
that was proved as being a good alternative to the costly soil physical and chemical
laboratory analysis for the estimation of a large range of soil properties (Viscarra
Rossel et al., 2006; sce also Section 7.2.3), and the few studies that exist in the
literature show promising results (e.g., Ben-Dor et al., 2008; Gomez et al., 2008b).
It is important to note that hyperspectral imagery can estimate the properties of the
immediate soil surface only (e.g., the first millimetres). However, it provides a new
soil covariate layer that may serve o estimate soil properties of deeper soil layers
and to predict soil classes.

Hyperspectral imagery looks particularly promising in Mediterrancan arcas
where bare soil surfaces and dry soil conditions are frequent, easing the interpre-
tation of hyperspectral images. This is why our research team was early to work
(since 2003) on hyperspectral imagery. The first exploratory results were presented
in the first digital soil mapping workshop in Montpellier, France in 2004 (Madeira
et al., 2007). Since then, further research has been undertaken on three questions
that must be addressed for an effective use of hyperspectral imagery in digital soil
mapping: (i) How to derive soil property estimates from Vis-NIR spectra? (Gomez
et al., 2008a; Lagacherie et al., 2008), (ii) what are the main perturbing factors when
passing from laboratory to remote sensing spectra? (Lagacherie et al., 2008), and
(iii) how to obtain a digital soil map from a hyperspectral image with high fraction
of pixels covered by the vegetation?

This paper summarizes the main findings of the research listed above.

8.2 The “Peyne Experiment”

8.2.1 Study Area

The study was carried out in la Peyne catchment, South of France (43° 29 N
and 3°22' E) (Fig. 8.1), which is dominated by vineyard land cover. Marl, lime-
stone and calcareous sandstones coming from Miocene marine and lacustrine sed-
iments (Fig. 8.2) formed the parent material of several soil types observed in this
area: Lithic Leptosols, Calcaric Regosols and Calcaric Cambisols. These sediments
were partly covered by successive alluvial deposits ranging from the Pliocene to
Holocene and differing in their initial nature and in the duration of weathering
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conditions (Fig. 8.2). They have produced an intricate soil pattern that includes a
large range of soil types such as Calcaric, Chromic and Eutric Cambisols, Chromic
and Eutric Luvisol and Butric Fluvisols. Local transport of colluvial material along
slopes added to the complexity of the soil pattern,
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Fig. 8.2 Geology of the study
area and the masked image
showing only data on bare
soil fields




96 P. Lagacherie et al.

8.2.2 The Hymap Image

The HYMAP airborne imaging spectrometer measured reflected radiance in 126
non-contiguous bands covering the 400-2,500nm spectral domain with around
19 nm bandwidths and average sampling intervals of 17 nm in the 1,950-2,480 nm
domain, The HYMAP image was acquired on July 13th 2003 with a spatial resolu-
tion of 5 x 5 m. This image was geometrically, atmospherically and topographically
corrected (see details in Lagacherie et al., 2008).

Living (essentially vineyard) and dry vegetation were masked on the HYMAP
image using respectively the NDVI and the cellulose absorption band (2,010 nm).
The final result was a masked image covering 23.5km? with data only on bare soil
fields (Fig. 8.2).

8.2.3 Field Data

Clay and CaCOj contents were selected as examples of target soil properties since
they are widely used by soil surveyors to describe soil types and are essential to
quantify the soil erodibility. These two properties were determined by routine soil
analysis for 52 sites collected over bare soil fields. The sampling was designed
to capture the variability of the propertics of interest within the study area (clay
contents from 65 to 452 g/kg and CaCOj3 contents from O to 360 g/kg). Laboratory
vis-NIR reflectance spectra were recorded for these 52 samples with an ASD pro FR
Portable Spectro-radiometer, and field vis-NIR reflectance spectra were recorded
for the 19 samples collected in 2005 with the same tool. Detailed measurement
protocols are available in Lagacherie et al. (2008).

8.2.4 Methods

Two well-known techniques were used to infer the soil properties from laboratory
and HYMAP spectra; the continuum removal analysis (CR) and the partial least
square regression (PLSR).

CR is a means of normalizing reflectance spectra to allow comparison of indi-
vidual absorption features from a common baseline (Clark and Roush, 1984).
The CR technique presents the advantage of targeting specific absorption features
that should be resistant across scales and observation conditions. After contin-
uum removal, absorption band depth values are calculated from vis-NIR spectra
to estimate mineral, rock, and soil properties. Specific absorption features of min-
erals, rocks, and soil properties, including clay and CaCO3, have been widely stud-
ied under laboratory conditions. The absorption band depth values at 2,206 and
2,341 nm, calculated from laboratory spectra after continuum removal, can be used
to estimate clay and CaCOj3 content, respectively.
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PLSR is one of the most common multivariate statistical techniques for spectral
calibration and prediction of soil properties (e.g., Viscarra Rossel et al., 2006). In
the PLSR approach, the full spectrum is used to establish a linear regression model
where the significant information contained in the vis-NIR spectra is concentrated
in a few latent variables that are optimized to produce the best correlation with the
desired property of interest.

8.3 Results

8.3.1 How to Derive Soil Property Estimates from Vis-NIR
Spectra? (Gomez et al., 2008a; Lagacherie et al., 2008)

Table 8.1 shows the performance of the two tested methods for predicting clay and
calcium carbonate content from laboratory and remote sensing (HYMAP) spectra.
It shows that the two soil properties can be predicted with an acceptable preci-
sion although a decrcase of precision is observed when passing from laboratory to
HYMAP spectra. The PLSR technique performs better than the CR approach when
the absorption peak selected in the CR approach corresponds to a chemical species
that does not match perfectly the soil property of interest (e.g., OH™ for clay con-
tent), or when applied to the lower quality spectra provided by an airborne sensor
like HYMAP. In these situations, PLSR is able to find surrogate spectral features
that retain satisfactory estimations of the studied soil properties. However, these
surrogate spectral features correspond to soil properties that have only area-specific
correlations with the soil property of interest (e.g., soil colour with clay content), or
to chemical species that cannot be related with any explainable soil features. This
means that extrapolations to larger pedological contexts must be envisaged with
care (Gomez et al., 2008a). Conversely, in the case of CaCOj3 estimations from lab-
oratory spectra, CR overcame PLSR since it nearly equals the PLSR results while
using a more parsimonious model. Although these results only concern two soil
properties, this will certainly be extended in the near future to other soil propertics
that are known to be suitable for spectrometry analysis (granulometric fractions,
carbon content, iron conlent, salinity, ...).

Table 8.1 Estimations of Clay and CaCOj contents of soil surface from laboratory and HYMAP
spectra using the continuum removal method and the PLSR regression (after Gomez et al., 2008a)

Laboratory spectra HYMAP spectra
Clay CaCO; Clay CaCO;
CR R? 0.73 0.92 0.58 0.47
RMSE (g/kg) 44 52 82 132
PLSR R? 0.85 0.94 0.64 0.77
RMSE (g/kg) 31 39 50 77

Abbreviations: CR: continuum removal method, PLSR : partial least squares regression method,
RMSE: root mean square error, R?: determination coefficient (obtained by cross-validation)
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8.3.2 What Are the Main Perturbing Factors When Passing from
Laboratory to Remote Sensing Spectra? (Lagacherie et al.,
2008)

Nine intermediate stages from the laboratory up to HY MAP sensor mcasurements
were considered for separately evaluating the factors of confusion that may decrease
the estimation performances when going across scales and sensors (Fig. 8.3). These
stages were either characterised by additional measurements or by simulations (see
details in Lagacherie et al., 2008), The importance of each factor of confusion was
evaluated by examining the correlations between the soil property predictions using
the CR method with data from the two corresponding consecutive measurement
stages.

Results show that the main uncertainty factor in scaling up laboratory to air-
borne measurements is the capacity of airborne reflectance measurements to be
spectrally consistent (good inter-band relative radiometric accuracy), and well cor-
rected from atmospheric effects, particularly regarding water vapour (first line in
Fig. 8.3). A small effect on the degradation of the radiometric performances was
observed as well. The influence of pebbles was found generally limited except for
CaCO; estimates with calcareous pebbles and high CaCOj; contents. More sites

Corralalions between Cr

Measurement Stages Factors of at stages i and I-1 (RY)
confusion CRyva (£12Y) 1 CRinu (C3CO,)
HAYMAP Hdor
fimcienee | o | oss
HYMAP Simulated radiomelric characlerislics
Ra‘glomerrfc p—_— 048
erformances k i
HYMAP Simulated spectral characteristics 4
t Spectral
: resolution 0.97 0.97
Field spalial averaging
Spatial
varabllity 0.97 0.97
Fleld
t Roughness 0.91 0.90
In situ disturbed soil suiface
Mlumination 0.97 0.91
Laboratory disturbed soil surface
‘ﬂ' Molsture 0.95 0.97
Dried sample
Stoniness 0.94 0.23
Laboratory fine soll

Fig. 8.3 The different possible factors of confusions across scale and sensors and their influence
on soil property predictions. A low R? between consecutive stages means a strong influence of the
corresponding confusion factor (after Lagacheric ct al,, 2008)
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will be necessary to identify situations where pebbles have to be taken into consid-
eration. The other factors considered (i.e., spectral and spatial resolutions, surface
roughness, illuminations conditions and soil moisture) played a minor role.

8.3.3 How to Obtain a Digital Soil Map from a Hyperspectral
Image Partly Covered by the Vegetation?

An interpolation-aggregation procedure has been developed to derive a 100 x 100m
resolution digital soil map of clay content of the entire study region from a hyper-
spectral image where pixels with vegetation cover were masked. In this situation,
the source of data is the set of scattered bare soil fields with hyperspectral soil
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property estimations. The procedure includes two steps: (i) interpolation of the soil
properties predicted from HYMAP spectra in the bare soil fields, and (ii) pooling of
the interpolation outputs lo obtain the soil pattern parameters (mean, variances and
semi-variances at lags 0-50 m and 50-100 m) of the pixels of the targeted digital soil
map. A conditional simulation approach was selected as the interpolation function
since it can predict the local values of the property of interest while giving a realistic
representation of its spatial structure,

The procedure was applicd using the absorption band depth values at 2,206 nm
(CR3206) that satisfactorily mapped clay content of the soil surface in bare soil
fields as input data (Table 8.1). A double-log transformation of CR3,206 was applied
to obtain normal distributions. The conditional simulation was performed from the
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variogram of the double-log transformed CR3 206 computed from the set of bare soil
pixels with CR3 206 values. It was conditioned by bare soil pixels randomly sampled
[rom this sel. The Circulant Embedding (CE) simulation algorithm was selected
for its ability of handling large datasets. Double log transformed outputs were
finally back transformed into CR3 206 estimates and the linear formula calibrated
by Lagacherie (2008) was applied to obtain clay content values (clay% = 3,790*
(1 — CR2,206)).

Figure 8.4 shows the map of local means of clay content at 100 x 100 m resolu-
tion variances that were obtained from the interpolation-aggregation procedure, and
Fig. 8.5 shows the corresponding maps of local variances and semi-variances. The
spatial distribution of these two soil pattern parameters seems (o be in relation with
the geological pattern of the region shown in Fig. 8.2.

As validation was not possible on pixels directly, a cross validation procedure
was performed from the set of bare soil parcels. It showed that local means were
estimated with an acceptable accuracy (R = 0.62). The quality of estimations
of the local variance and semi-variances was not so good (R? = 0.30, R? = 0.29,
R? = 0.22 for local variance, local semi-variance at lag 0-50 m, local semi-variance
at lag 50-100 m, respectively) since the procedure failed to reproduce the small
number of erratic large local variances and semi-variances that was observed in the
study region. However, the part of the variation of local variance in relation with
geological variations seemed to be correctly represented (Fig. 8.5).

8.4 Conclusion

The following conclusions can be drawn from the first results of the Peyne
experiment:

— Satisfactory predictions of barve soil surface properties can be obtained from
hyperspectral imagery, although a decrease of precision is observed when passing
from laboratory to airborne reflectance spectra.

— Calibration uncertainty of the airborne sensor and non-corrected atmospheric
effects are by far the main factors that explain this decrease of precision.

— A digital soil map at medium resolution (100 x 100 m) can be derived from a
hyperspectral image with part of the pixels covered by vegetation.

In the near future, a proof-of-concept zone located in the gouvernorat of Nabeul
(northern Tunisia) will be implemented. It is expected to demonstrate that a digital
soil map of the Mediterranean areas that fit the standards of the GlobalSoilMap.net
project (see Chapter 33) can be produced using hyperspectral imagery associated
with digital terrain model and legacy soil data. The added value of this digital soil
map will be evaluated for the spatial assessment of soil vulnerability to erosion and
the mapping wheat yield in water limited situations,
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