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Summary

1. Forecasting shifts in biome and species distribution is crucially needed in the current context of global change.

So far, most projections of vegetation distribution rely on correlative species distribution models (SDMs). Yet,

process-based or hybrid models based on explicit physiological description may be more robust to extrapolation

under future climatic conditions. Differences between model projections may be wide, leading to scepticism

among environmental stakeholders.

2. Here, we propose to combine outputs of several distributionmodels based on physiological responses, to pro-

duce both consensual maps of occurrences and maps of associated uncertainty. The consensus map relies on the

conditional projections of each SDM. Because the models used are based on processes, their errors are likely to

vary consistently with climate as some processes not implemented in a model might be important under a given

set of climatic conditions. Uncertainty of the consensus model is thus assessed through multimodel regression of

deviancemaps with respect to current climatic conditions, and can be extrapolated to forecast climates.

3. We illustrate this approach using three SDMs, on three widely distributed European trees (Fagus sylvatica L.,

Quercus robur L. and Pinus sylvestris L.), and project their distributions under two scenarios. The conditional

consensus outperforms classical methods of model consensus (i.e. to use the mean, the median or a weighted

average of individual SDMoutputs) in projecting current occurrences.

4. Consistently, with the results of individual SDMs, the conditional consensus projects that the suitable areas

for F. sylvatica and Q. robur will expand towards north-eastern Europe, while that of P. sylvestris will contract.

Projections of future occurrence aremost uncertain towards themargins of the distribution (particularly the trail-

ing edge).

5. Our approach can help modellers identify the limitations of each SDM and stakeholders pinpoint the regions

ofmodels agreement and highest certainty.

Key-words: climate change, correlative distribution models, environmental clustering of model

errors, Fagus sylvatica, likelihood, model assessment, Pinus sylvestris, process-based distribution

models,Quercus robur

Introduction

The latest Intergovernmental Panel onClimateChange (IPCC)

scenarios are already exceeded by recent estimations of green-

house gas emissions (Raupach et al. 2007), leaving open ques-

tions about the development of global climate modifications

and their impact on natural ecosystems. Recent climatic and

atmospheric composition changes have modified the distribu-

tion, structure and function of ecosystems (Walther, Berger &

Sykes 2005), thus altering biodiversity and ecosystem services,

and leading to socioeconomic and financial costs. Adaptive

management strategies directly based on spatialized, compre-

hensive and robust projections of species distribution and

extinction risks could helpmitigate these effects (TEEB2010).

To date, species distributions are mostly investigated using

three types of species distribution models (SDMs): correla-

tive, process-based and hybrid models (Peterson et al. 2011).

Correlative SDMs infer correlations between current species

occurrences and various environmental descriptors. Process-

based SDMs describe the responses of selected traits or pro-

cesses (such as phenology, resistance to stress, resource acqui-

sition) to environmental descriptors, based on empirical

observations, and estimate proxies of occurrence, such as

growth or fitness (Kearney & Porter 2009). Hybrid SDMs

associate correlative models to describe habitat suitability,

and process-based models to narrow down to the realized

niche, through describing e.g. population dynamics, dispersal

and/or energy uptake. Correlative models allow the explora-

tion a species’ limiting environmental variables across its real-

ized niche, while process-based models infer its fundamental

niche. Because correlative models rely on widely available
*Correspondence author. E-mail: emmanuel.gritti@supagro.inra.fr
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occurrence and climatic data, they are largely used in the lit-

erature. However, their extrapolation to novel climates is

uncertain. It has been suggested to use smooth response

curves and to refrain from making projections to climates

that differ too much from currently observed climates (Elith,

Kearney & Phillips 2010). In contrast, process-based SDMs

are thought to be more robust to extrapolation to novel cli-

mates (Morin & Thuiller 2009; Dormann et al. 2012),

because their parameterization relies solely on empirically

determined response curves driving important processes regu-

lating the species’ probability of surviving and reproducing,

with respect to environmental conditions.

Forecasts of future distribution vary according to the correl-

ative model used (e.g. Pearson et al. 2006), and between correl-

ative and process-based SDMs (Buckley 2008; Kramer et al.

2010; Cheaib et al. 2012; but see Kearney, Wintle & Porter

2010). This may puzzle stakeholders and policy makers, and

jeopardize the credibility of species distribution projections.

Ensemble or consensus approaches, using information pro-

vided by different SDMs, have been advocated to tackle this

problem (Ara�ujo & New 2007): models can vote for the spe-

cies’ presence or absence. Votes can be weighted by models’

accuracies (e.g. Marmion et al. 2009), or models can be com-

bined using multimodel inference (Burnham & Anderson

2002; see e.g. Gibson et al. 2004; Hartley, Harris & Lester

2006).

Providing consensus maps is, however, not sufficient to

guide stakeholders. All models may agree with each other for

wrong reasons (Elith, Kearney & Phillips 2010), potentially

leaving systematic errors. Mapping the resulting uncertainty is

therefore as important as mapping the consensual projection

itself. Yet, few studies have provided uncertainty maps of

SDM projections. Maps of model discrepancies (e.g. Hartley,

Harris & Lester 2006) only inform on the uncertainty associ-

ated with different model projections, not the uncertainty asso-

ciated with the relevance of the climatic descriptors or the

processes considered. Should an important environmental

descriptor have been omitted in the individual SDMs, its varia-

tion would be absent from any multimodel, and even the best

model among those considered would be unable to accurately

project the species’ range (Elith, Kearney & Phillips 2010;

Dormann et al. 2012). The performance of conceptually

different SDMsmay vary with environmental conditions: each

SDM may surpass the others in projecting a species’ presence

under a given set of climatic conditions, for the environmental

variables or the processes it considers are more relevant in

these conditions.

Here, we build a simple consensus between SDMs relying

on vegetation’s physiological responses to climate. Its

uncertainty due to the poor parameterisation or omission

of important processes is assimilated to its statistical devi-

ance to observed occurrence maps. To account for the

environmental clustering of SDM errors, uncertainty is

modelled as a function of composite, independent environ-

mental descriptors, in a multimodel framework. Both the

probabilities of occurrence and the associated uncertainty

can then be projected onto forecasted climatic conditions.

We illustrate this approach through modelling the potential

distribution of three common European tree species (Fagus

sylvatica L., Quercus robur L. and Pinus sylvestris L.), com-

bining the outputs of three conceptually different SDMs

(one correlative with physiological basis, one hybrid and

one process-based).

Materials andmethods

Our approach is summarized in Fig. 1.

STEP 1: SPECIES DISTRIBUTION MODELS

Details on all three models and their parameterization are provided as

Supplementary Information.

STASH (correlativemodel)

STASH is a correlative, physiologically based climate envelope model

(Sykes, Prentice & Cramer 1996). It relies on bioclimatic limits restrict-

ing the species’ envelope, and on variables acting as multipliers of the

species’ growth efficiency index. All bioclimatic limits and variables are

assumed to have strong links with vegetation responses through impor-

tant physiological mechanisms. Because bioclimatic limits are defined

according to the observed species distribution, this model is likely to

over fit. To avoid this, we ran this model 100 times, with bioclimatic

limits defined on random re-samplings of 30% of the Atlas Flora

Europaeae distribution map (AFE; Tutin et al. 1964-85). For each

pixel, the final STASH output corresponded to the average of the out-

puts obtained for that pixel when belonging to the remaining 70%

validation set (Supplementary Information).

LPJ (hybridmodel)

Lund-Potsdam-Jena (LPJ) model is a general ecosystem model com-

bining bioclimatic limits to the species’ establishment and survival and

mechanistic representations of physiology, biochemistry, vegetation

dynamics and carbon and water fluxes (Sitch et al. 2003). A minimum

set of bioclimatic limits defines the bioclimatic envelope of the species.

From climatic, soil and CO2 data, the model simulates different

growth-related variables such as leaf area index (LAI) or net primary

production (NPP). Here, we used the LPJ version described in Gritti,

Smith & Sykes (2006), but did not take competition into account. LPJ

was run at the species level, using specific parameters when available

(Supplementary Information), or the generic parameters of the corre-

sponding plant functional type described by Smith, Prentice & Sykes

(2001). Because bioclimatic limits do not directly derive from the

observed distribution, no cross-validation from resampling approaches

was performed.

PHENOFIT (process-basedmodel)

PHENOFIT (Chuine & Beaubien 2001) is a process-based SDM rely-

ing on the assumption that a temperate tree species’ survival and repro-

ductive success are related to its capacity to synchronize its annual life

cycle with seasonal climatic variations, as well as to sustain temperature

and water stresses. From daily temperature and precipitation records,

PHENOFIT estimates survival and reproductive success for an average

tree. This model intrinsically takes phenotypic plasticity into account

through the reaction norms of phenology and resistance to stress in

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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relation to climate. Here, PHENOFIT was parameterized for up to

four populations per species, thus somewhat accounting for local adap-

tation. Observed species distribution is not used as input for the model,

nor is it used to estimate parameters (parameters are derived from

empirical observations of trees’ physiological responses to climate).

This model can therefore not be cross-validated by resampling

approaches. As its output is related to the species’ fundamental niche,

the model can be validated a posteriori, by comparing its output to the

observed distribution of the species.

STEP 2: CL IMATE DATA

SDMs simulations

Climatic and atmospheric CO2 concentration time series were extracted

from the Advanced Terrestrial Ecosystem Analysis and Modelling

(ATEAM; http://www.pik-potsdam.de/ateam) data set for the period

1901–2100. Forecasts of climatic data were computed for the period

2081–2100 using the HadCM3 atmosphere–ocean general circulation

STASH P/A PHENOFIT P/ALPJ P/A

STEP 1. Generate SDMs projections

STEP 3a. Determine the 
specific threshold for P/A

p(occurrence) Modelled deviance

STEP 3b. For each subset S of  
{STASH, LPJ, PHENOFIT} 
projected occurrence,
define the probability
of occurrence pS 

STEP 4. Model the deviance 
to observed data 

as a function of synthetic 
environmental descriptors 

(evaluating 27 models)

STEP 5. Forecast future distributions
Attribute p(occurrence) = pS 
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Extrapolate the relationships 
between deviance and climate 
obtained in step 4 to future climates.

p(occurrence) Projected deviance

Observed P/A

Observed P/A

STASH LPJ PHENOFIT

STEP 2. Describe the 
environment

Climatic descriptors
PC1, PC2, PC3

Fig. 1. Schematic workflow of the design of the consensusmodel and its forecasts. Themaps illustrating the chart correspond toQuercus robur.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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model (Mitchell et al. 2004) following two scenarios: A1Fi (‘business

as usual’) and B2 (local development, with environmental focus). This

climatic data set covers the European window from 11 °W, 34 °N to

32°E, 72°Nwith a 10′ 9 10′ pixel resolution formonthly values of tem-

perature, precipitation and percentage of sunshine. Twenty-year aver-

ages of monthly means served as input data for STASH. Monthly

values were directly used as input data for LPJ. Daily interpolation was

performed using the weather generator CLIGEN (Nicks, Lane &

Gander 1995) to drive PHENOFIT.

Description of the climatic space used to explain the

deviance of the consensusmodel

We eliminated multicollinearity between environmental descriptors,

through summarizing the variation of eight potentially correlated cli-

matic variables (four related to temperature, four to the amount and

seasonality of precipitation) in a Principal Component Analysis carried

on the concatenated climatic data sets (historical, 1981–2000 and sce-

narios, 2081–2100; Supplementary Material). The first three principal

axes (PC) summarized 92�8% of the total variance of climatic descrip-

tors, with PC1mostly explained by temperature, PC2 by the amount of

precipitations and PC3 by their seasonality. The coordinates of each

pixel along these three axes were used as synthetic climatic descriptors.

STEP 3: CONDIT IONAL CONSENSUS MODEL AND

ASSOCIATED UNCERTAINTY

All three models produce different synthetic estimates (growth effi-

ciency index, LAI, fitness), none of them actually being a probability of

occurrence, and none being directly comparable to each other.We thus

decided to transform their outputs into comparable binary presence/

absence data, using model- and species-specific thresholds (hereafter,

SPT). The SPTs were defined so as to maximize the sum of sensitivity

and specificity (see e.g. Nenz�en & Ara�ujo 2011), using the AFE occur-

rence data as a reference.

For each species and each climatic data set, each pixel in the simula-

tion windowwas attributed to one of 23 = 8 subsets, indexed by S, cor-

responding to the triplets of the combinations of {STASH, LPJ,

PHENOFIT} projected presence (above the SPT) or absence (below

the SPT). For example, {1,0,0} would be one such triplet, correspond-

ing to STASH projecting occurrence, and LPJ and PHENOFIT pro-

jecting absence of the species in the pixel. Within each subset, all pixels

shared the same probability of occurrence pS (equal to its maximum

likelihood estimator nobs/ntot), leading to eight levels of probabilities of

occurrence.

STEP 4: ESTIMATING THE ASSOCIATED UNCERTAINTY

For each pixel, the deviance to the observed occurrence was computed

as (McCullagh&Nelder 1989; p 118):

dev ¼ �2½obs lnðpSÞ þ ð1� obsÞ lnð1� pSÞ� eqn 1

where obs is the observed occurrence (0 or 1) and pS the estimated prob-

ability of occurrence for the relevant subset. Note that this is the exact

deviance of projections (pS) with respect to the observed occurrences (i.

e. to a perfect model). Within each subset, deviance can take at most

two values, so that the ratio of the difference between observed and

minimum deviance to its maximum span (thereafter the ‘standardized

deviance’, noted (d) is 0 or 1. The standardized deviance was modelled

as a Bernoulli process. To account for its possible dependency upon

environmental variables, we modelled the logit of its mean as a polyno-

mial function of the three synthetic climatic variables with polynomial

degree � 2:

logitðdÞ ¼ a0;S þ a11;SPC1þ a12;SPC1
2 þ a21;SPC2þ a22;SPC2

2

þ a31;SPC3þ a32;SPC3
2 eqn 2

Twenty-seven models for d were considered for each species and each

subset, corresponding to the combinations of models including or

excluding coefficients in eqn (1), with the additional constraints that (i)

all models included the intercept a0,S; and (ii) second-degree terms ai2,S
were constrained to co-occur with the corresponding first-degree term

ai1,S. For each species and subset S, each model j was weighted by its

Akaike weight wS,j (Burnham&Anderson 2002) so that the projection

of themodelled deviance devS for current data is:

devS ¼
X24

j¼1

wS;jdevS;j eqn 3

Species distribution projections were obtained by pooling together

model-averaged projections of deviance [eqn (3)] for each of the eight

subsets S, so that finally each pixel was assigned a probability of pres-

ence and amodelled deviance.

STEP 5: FORECASTS

Each SDMwas used to produce forecasts for the period 2081–2100, for

the two scenarios A1Fi and B2. Yearly outputs of LPJ and PHENO-

FIT were averaged over this period to yield their final output; STASH

directly outputs a growth efficiency index over the considered period.

Model outputs were transformed into presence/absence using the SPT

(step 3).

For each species and each climatic scenario, pixels were assigned to

one of eight subsets (S) according to the combinations of {STASH,

LPJ, PHENOFIT} projected occurrence (as in step 3), and were attri-

buted the species’ probability of occurrence pS while deviance

was extrapolated based on eqns (2–3) and on forecasted climatic

descriptors.

STEP 6: MODEL EVALUATION AND COMPARISON

In addition to the ‘conditional’ consensus model presented above, we

generated three consensus models for each species, using methods

described in Marmion et al. (2009). The first two methods (i.e. Mean

andMedian) assign to each pixel its computed value (mean or median)

from the three SDMs outputs. The third one (WA consensus) com-

putes the average of the three SDMs outputs, weighted by their Area

Under the Receiver Operating Characteristic curve (AUC, a measure

of discriminative power; Swets 1988).

We then compared the accuracy of the projections of all three

SDMs and all four consensus models over the historical period for

each couple model/species, using various criteria: AUC, the pro-

portions of well-predicted pixels (accuracy), of false positives (com-

mission error) and of false negatives (omission error), once applied

the SPT. Note that all these measures rely on discretizing the con-

tinuous output of each SDM into binary data. Hence, they only

estimate the discriminating power of the model’s output (Lobo,

Jim�enez-Valverde & Real 2008).

All computations from step 2 onwards were conducted using R (R

Development Core Team 2011); scripts and data are provided as

SupplementaryMaterial.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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Results

ACCURACY MEASURES OF THE PROJECTIONS OF SDMS

AND THE CONSENSUS MODELS OVER THE HISTORICAL

PERIOD

SDM projections for current distributions are shown on

Fig. 2. Their AUC values are relatively high (Table 1), consid-

ering that the three studied species are widely distributed and

occur in a wide range of environments, spanning most of the

study area (Lobo, Jim�enez-Valverde & Real 2008; Grenouillet

et al. 2011). Overall, STASH and LPJ show higher AUC and

accuracy (i.e. proportion of well-projected pixels) than

PHENOFIT.

The conditional consensus model projects high probabilities

of occurrence over most of the observed distribution range of

all three species (Fig. 3, left column). The conditional consen-

sus shows AUC values comparable or higher than the best

SDM and the other consensus models for F. sylvatica and Q.

robur, and outperforms them forP. sylvestris, the species worst

projected by all SDMs (Table 1).

DIVERGENCE AND UNCERTAINTY IN PROJECTIONS OF

CURRENT DISTRIBUTIONS

While the three SDMs capture relatively well the upper

and lower boundaries of the distributions at the broad

scale, regional discrepancies are noticeable (Fig. 2). When

transformed into presence/absence using the SPT, SDMs

projections mismatch for 25%–35% of the pixels. These

discrepancies are partly attributable to bioclimatic limits

in STASH and LPJ leading to too important contrasts,

and to the weak representation of water stress in all mod-

els. Furthermore, the coarse spatial resolution of occur-

rence data, and to a lesser extent of climatic data

(particularly in contrasted areas such as mountain ranges),

lead to mismatches between projected and observed distri-

butions.

In light of these mismatches, identifying which SDM (s)

fail to model the occurrence of which species, and under

which conditions, becomes a primary goal. The spatial

variation in the deviance of the projected probability of

occurrence to observed data yields insight into this ques-

tion (Fig. 3, middle column). Note that deviance does not

depend upon whether models agree with each other, but

on whether they agree with observed data. The observed

deviance is relatively low, indicating high confidence in

the projections of the conditional consensus model. How-

ever, it tends to be higher towards the margins of the dis-

tributions, where SDMs disagree.

The synthetic environmental descriptors appear to be good

predictors of the variation of deviance (Fig. 3, right column),

even though some regions of high deviance are not captured by

the models, such as the Alps for F. sylvatica. In this case, how-

ever, all models rightly predict the absence of the species, while

the AFE data set, because of its coarse resolution, inaccurately

describes the species as present. Deviance to actual occurrence

data should therefore be low for F. sylvatica in theAlps.

Table 1. Accuracy measures of the projections of the three species’ current distribution by STASH, LPJ, PHENOFIT and four consensus models:

ours (Conditional) and the Mean, Median and Weighted Average (WA) of Marmion et al. (2009). Species Presence Threshold (SPT): threshold

maximizing the sum of sensitivity and specificity, above which model outputs were considered to indicate species occurrence. AUC: Area Under the

Receiver Operating Characteristic curve. Accuracy: proportion of correctly projected pixels (true absences + true presences). Commission/omission

error: proportion of false positives (respectively of false negatives) over the whole simulation window. For each descriptor of accuracy, the best

performingmodel is highlighted in bold face

Species Model SPT AUC Accuracy (%)

Commission

error (%)

Omission

error (%)

Fagus sylvatica SDMs STASH 0�27 0�834 74�9 3�8 21�3
LPJ 0�76 0�872 83�7 9�4 6�8
PHENOFIT 0�13 0�787 72�4 9�2 18�4

Consensus Conditional 0�52 0�876 84�0 9�5 6�5
Mean 0�35 0�857 80�7 6�9 12�4
Median 0�27 0�847 80�1 5�8 14�1
WA 0�34 0�858 80�5 6�6 12�9

Quercus robur SDMs STASH 0�08 0�853 82�5 5�2 12�3
LPJ 0�67 0�830 78�0 11�5 10�5
PHENOFIT 0�58 0�798 76�0 9�0 15�0

Consensus Conditional 0�66 0�854 82�5 5�2 12�3
Mean 0�39 0�852 81�3 5�2 13�5
Median 0�33 0�828 80�8 4�2 15�0
WA 0�37 0�853 81�4 4�7 13�9

Pinus sylvestris SDMs STASH 0�30 0�638 75�6 6�9 17�5
LPJ 0�59 0�687 73�6 2�6 23�9
PHENOFIT 0�70 0�685 66�8 18�7 14�5

Consensus Conditional 0�75 0�744 76�4 7�2 16�4
Mean 0�54 0�683 70�0 13�1 16�9
Median 0�31 0�669 71�6 4�8 23�6
WA 0�55 0�684 69�9 13�3 16�9

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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FORECASTS AND ASSOCIATED UNCERTAINTY

Under both scenarios, the suitable areas for all three species

are projected to shift towards the North-East and towards

higher elevations, both by the conditional consensus model

(Fig. 4) and the SDMs (Supplementary Material). While the

size of the suitable area for F. sylvatica and Q. robur will

remain approximately stable or increase, that of P. sylvestris

is projected to decrease, albeit less intensely under scenario

B2 (Fig. 4). Projected probabilities of occurrence are overall

lower under the A1Fi scenario than under the B2 scenario.

Large areas of uncertainty appear towards the trailing edges

of the distribution for all three species, and over large areas

in Central and Eastern Europe for F. sylvatica, especially in

regions where the projections of the SDMs disagree (Fig. 4;

Supplementary Material). These regions show a partial

overlap with the least analogous projected climates (not

shown).

Discussion

Wepropose a simple framework to estimate consensual projec-

tions of species distributions, while jointly assessing their

uncertainty as a function of synthetic environmental descrip-

tors. This framework can be applied to any number of SDMs

(provided each combination of SDM projected presence or

absence gathers a large enough number of points), and is par-

ticularly well-suited for process-based SDMs, whose errors are

expected to be environmentally clustered, and whose projec-

tions do not (or not only) rely on observed distributions. Con-

sensus projections generated by this approach are not affected

by the introduction of poorly predictive models. We illustrate

its use by associating a spatialized quantification of the uncer-

tainty to the forecasts of the future distribution of suitable hab-

itats of three emblematic European forest trees, under two

climatic scenarios and making use of the projections of three

very different SDMs.

This study only considers uncertainty due to species distri-

bution models. However, uncertainties also arise because the

occurrence data used to parameterize the correlative and

hybrid models may be inaccurate or too coarse, because pro-

cesses are calibrated on too narrow an environmental range,

because of the choice of the occurrence threshold, and because

of uncertainties in the climatic and land use scenarios (Beale &

Lennon 2012). Because SDM type has often been found to be

the main source of variation between forecasts, as compared

with other sources of uncertainty (Dormann et al. 2008;

Buisson et al. 2010; Nenz�en & Ara�ujo 2011), we chose to deal

first with reconciling model projections and assessing their

uncertainty.
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Fig. 2. Projections of the species current distribution (1981-2000) by the individual SDMs (STASH: growth efficiency; LPJ: LAI (leaf area index);

PHENOFIT:mean fitness).
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FORECASTING THE DISTRIBUTION OF THREE

EUROPEAN TREE SPECIES

In agreement with earlier studies (Kramer et al. 2010; Cheaib

et al. 2012;Meier et al. 2012), suitable habitats for the temper-

ate deciduous speciesQ. robur and F. sylvatica are projected to

shift towards the North-East, and their potential range to

increase slightly, while that of P. sylvestris is projected to con-

tract. Compared with earlier studies, our results highlight

regions whose future suitability is most questionable, notably

towards the trailing edge of their distributions, and in large

regions of central and Eastern Europe for F. sylvatica.

High uncertainty does not necessarily reflect SDMs dis-

agreement. For example, as compared with the AFE occur-

rence data, all three SDMs wrongly project the current

presence of F. sylvatica just south of the Alps and close to the

French Atlantic coast (Fig. 2 and Fig. S1).Models of deviance

based on three composite environmental descriptors capture

this discrepancy (Fig. 3). Thus, in regions presenting future cli-

matic condition analogous to the conditions currently

observed along the French Atlantic coast or south of the Alps

(e.g. east of the Baltic Sea under the A1Fi scenario for year

2100), where all three models project a future occurrence of

F. sylvatica, the conditional consensus model associates large

uncertainties to this species’ projected occurrence. This error

pattern is commonly observed (Hanspach et al. 2011) and can

be attributed to the coarse resolution of both occurrence data

(Rocchini et al. 2011) and climatic data, stressing the need for

accurate occurrence and climatic data (Austin & Van Niel

2011). Uncertainties uncovered for future distributions do not

only reflect discrepancies between SDMs’ projections, but also

weaknesses common to all SDMs included in the consensus

approach.

Current species distributions might not fill their potential

range (Svenning & Skov 2007; Dormann et al. 2012), and

because none of the three models (at least as they were used

here) accounts for dispersal, land use nor interspecific competi-

tion, the maps shown here only indicate potentially suitable

habitats. In this regard, our projections are arguably too opti-

mistic: whether the species can migrate towards newly avail-

able habitats, or establish there, is highly uncertain. When

dispersal limitation and land use are taken into account, effec-

tively accessible suitable sites are much scarcer than potentially

suitable sites (Meier et al. 2012). However, other factors usu-

ally not taken into account by correlative SDMs, such as local

adaptation or phenotypic plasticity,may help species copewith

climate change. Process-based and hybrid models provide less

alarmist forecast of species range shift than correlative SDMs,

which can thus be argued to be overly pessimistic (Morin &

Thuiller 2009; Cheaib et al. 2012). Overall, actual shifts in dis-

tributions are likely to lie between our projections and those of

Meier et al. (2012). This stresses the fact that providing con-

sensual projections of species range changes should not prevent

from reducing individual SDMs errors. Incorporation of real-

istic dispersal models is a step towards such improvements.

Other advances could be gained from including the representa-

tion of other processes, such as biotic interactions (e.g. Davis

et al. 1998) increases in atmospheric CO2 (as in LPJ) or a finer

representation of local adaptation than what is currently

implemented in PHENOFIT.

MORE THAN A DEMOCRATIC VOTE

Improving the reliability of SDMs, ultimately aiming at

developing reliable, integrated or hybrid models (Morin &

Lechowicz 2008; Thuiller et al. 2008) requires much detailed

information on the studied species. Amore tractable approach

is to establish consensus projections from already existing

models, and take advantage of the strength of each model.

More or less refined ways have been proposed to combine the

outputs of individual SDMs to improve their reliability, from

the single vote to weighted averages of each SDM output

(Marmion et al. 2009). To our knowledge, such consensus

methods have only been conducted on correlative distribution

models. Here, we have combined the outputs of three concep-

tually different SDMs: a correlative model with physiological

grounds, a hybrid model and a process-based model. Because

these SDMs do not output probabilities of occurrence, the

classical consensus methods were not expected to accurately

describe the patterns of species occurrence. Indeed, classical

consensus methods are sensitive to the addition of non-predic-

tive models, or of models consistently producing lower- or

over-than-average scores. Therefore, the Mean, Median and

WA consensus models performed worse than the conditional

consensus model for the poorly projected species (P.

sylvestris).

While projections of the three SDMs mostly differ at the

regional scale for the historical period, their forecasts strongly

differ at the continental scale for 2081–2100, regardless of the

climatic scenario. This calls not only for a consensus modelling

of the probability of occurrence but most importantly for

quantifying uncertainty. So far, uncertainty has been consid-

ered as the variance between the projections of SDMs, all of

the same family (e.g. linear models, Hartley, Harris & Lester

2006). However, we argue that uncertainty should be seen as

the spatially explicit deviance of predictions to the observa-

tions. Indeed, models from a given family, or models using a

certain set of processes or of environmental variables, are likely

to produce (possibly cryptically) environmentally clustered

errors, which can only be detected through comparison with

observed occurrences, and neither through inter-model

variance, nor through global quality estimators such as AUC.

When SDMs are based on biological processes, uncertainty

is likely to vary with abiotic variables, and to be highest in

regions where a weakly modelled process is crucial to explain

the species’ occurrence. For example, the version of PHENO-

FIT presented here uses a simplistic representation of water

stress, and is thus expected to yield poor predictions in dry

areas. If all SDMs were given a constant weight in a consensus

model (i.e. a constant confidence, for example proportional to

their AUC;Marmion et al. 2009), this weight for PHENOFIT

would strongly rely upon the proportion of dry pixels over the

simulation window. In contrast, in our conditional consensus

model, the contribution of PHENOFIT to the consensual

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution
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projection of the probability of occurrence depends on the out-

put of the other two models and on the realized distribution,

while confidence into its projections relies upon climatic vari-

ables.

L IMITATIONS OF THE CONDITIONAL CONSENSUS MODEL

A useful perspective would be to make use of the continuous

outputs of the individual SDMs to generate the consensus

model: for instance, instead of coercing the individual SDM

outputs into binary occurrences, one could consider more sub-

sets, through incorporating classes of low, medium and high

outputs for each model. This could help account for gradual

response curves of the species to abiotic variables (Meynard &

Kaplan 2012). We chose to use only two classes of outputs for

each model, to avoid over-fitting: obviously, such an approach

is limited by the amount of available data as the more subsets

are used, the more likely it is that one of the subsets corre-

sponds to fewer pixels than necessary to statistically assess the

link betweenmodel deviance and environmental variables.

The modelling of uncertainty (step 4) might be improved by

incorporating non-climatic variables, such as soil quality; and

by taking spatial autocorrelation into account so as to reduce

uncertainty in parameter estimation. Various methods have

been developed (Dormann et al. 2007; Beale et al. 2010) to

account for spatial autocorrelation in data; however, the most

efficient ones (Moran eigenvector approaches, generalised lin-

ear model with explicit spatial covariance) are still too com-

puter-intensive to be tractable on large numbers of points.

Because we have not accounted for the effect of spatial auto-

correlation in step 4, we expect (i) unbiased estimates of model

coefficients but; (ii) larger standard errors of these estimates

around the expected value (McGill 2012); and (iii) a slight

tendency for model comparison procedures to favour over-

parameterized models (as both model uncertainty and the

variables used for regression are spatially autocorrelated).

The main strength of the conditional consensus model is to

characterize uncertainty in a spatially explicit, environment-

dependent way. However, this approach can only be used with

models that are thought to be extrapolable to future condi-

tions. We chose not to include purely correlative models in our

approach, despite their high accuracy in projecting historical

distributions. First, their errors are unlikely to be environmen-

tally clustered, as all available potentially explanatory layers

would already have been included in designing the model. Sec-

ondly, finding the right amount of model complexity, leading

both to accurate projections of current conditions and to ex-

trapolable relationships between climate and occurrence is a

perilous task. The consensus approach presented here is sensi-

tive to the addition of overfitted models – which would drive

the outputs of the consensusmodel, to the detriments of locally

less accurate, butmaybemore robust models –, but helpsmake

rid of consistently inaccuratemodels.

SDMs relying on physiological processes may bemore plau-

sibly extrapolated to non-analogous conditions because, even

though the reaction norms of trees’ physiological traits to cli-

mate may evolve within a few generations; they are likely to be

conserved in the next few decades (Dormann et al. 2012).

However, despite being realized for a wide range of climatic

conditions, parameterization of process-based SDM may also

be inaccurate under the novel combinations of environmental

conditions expected for the coming century (Williams, Jackson

&Kutzbach 2007). For example, phenological models in PHE-

NOFIT are parameterized using empirical relationships

between time-series observations of phenological events in nat-

ural populations and daily temperatures and photoperiod. As

these two factors are broadly correlated in nature, their relative

importance is difficult to capture: different parameter sets may

describe current phenologywith equal likelihood; yet their pro-

jections to future conditions may vary. This is why this kind of

models constantly need refining through the incorporation of

experimental data (Caffarra, Donnelly & Chuine 2011; Basler

& K€orner 2012). The increase in atmospheric CO2 also gener-

ates non-analogue conditions, and its impact on vegetation

dynamics, functioning and distribution remains under debate,

calling for ecophysiological experiments (K€orner 2000;

Prentice &Harrison 2009).
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Supporting Information

Additional Supporting Information may be found in the online version

of this article.

Appendix S1. Two R scripts and data are provided to reproduce the

results of the paper.

Figure S1.Current distributions of the three species studied (Tutin et al.

1964–85; completed byLaurent et al. 2004).

Figure S2.Map of Europe indicating the frequency at which Pinus syl-

vestris is projected by STASH to be present or absent. The species is

projected to be present in all 100 re-samplings for dark red pixels; in no
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re-samplings for dark blue pixels. Only a very small proportion of pix-

els, towards the margins of the projected distribution, are not consis-

tently projected as either present or absent. The same applied to all

three scenarios and all three species.

Figure S3. Binary STASH output for Pinus sylvestris. Red pixels indi-

cate locations where the species is considered ‘present’ and blue pixels

those where the species is absent. Overlaid black dots represent the

Atlas Flora Europaeamap forPinus sylvestris.

Figure S4. Correlation circles of the principal components analysis for

current climates, 2100 A1Fi scenario, 2100 B2 scenario and all climates

together.

Figure S5.Coordinates of current (left column) and future (middle and

right columns) climates in the principal components analysis. Axis 1

corresponds mostly to temperatures, with higher values denoting

colder climates. Axis 2 corresponds to total precipitation, with higher

values denoting wetter climates. Axis 3 is mostly carried by the season-

ality of precipitations, with high values denoting regular amounts of

precipitation across seasons.

Figure S6.ROCplot for the projection ofPinus sylvestris byLPJ.

Figure S7.Data subsets obtained forPinus sylvestris.

Figure S8.Projected probability of occurrence forPinus sylvestris.

Figure S9. Observed deviance (left) and modelled standardized devi-

ance (right), forPinus sylvestris.

Figure S10. Observed occurrence (top left), modelled occurrence (top

right), observed (bottom left) and modelled deviances (bottom right).

This figure is provided by line 87 of the ‘ConsensusModel.R’ script,

using function CurrentPoccAndDevPic (Code: dataCurrent <- pred-

STDDevianceFunc(1, AkaikeweightsPinus, spec); CurrentPoccAnd-

DevPic(spec)).

Figure S11. SDMoutputs for theA1Fi scenario (period 2080–2100).

Figure S12. SDMoutputs for the B2 scenario (period 2080–2100).

Figure S13. Projected occurrences and projected deviances for all cli-

matic datasets. This image is generated by function ProjectedPoccAnd-

DevPic.
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