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ABSTRACT
Purpose Within-subject dependency of observations has a
strong impact on the evaluation of population pharmacoki-
netic (PK) and/or pharmacodynamic (PD) models. To our
knowledge, none of the current model evaluation tools
correctly address this issue. We present a new method with a
global test and easy diagnostic plot which relies on the use of
a random projection technique that allows the analysis of
dependent data.
Methods For each subject, the vector of standardised
residuals is calculated and projected onto many random
directions drawn uniformly from the unit sphere. Our test
compares the empirical distribution of projections with their
distribution under the model. Simulation studies assess the
level of the test and compare its performance with common
metrics including normalised prediction distribution errors and
different types of weighted residuals. An application to real data
is performed.
Results In contrast to other evaluated methods, our test
shows adequate level for all models and designs investigated,
which confirms its good theoretical properties. The weakness
of other methods is demonstrated and discussed.

Conclusions This new test appears promising and could be
used in combination with other tools to drive model evaluation
in population PK/PD analyses.

KEY WORDS GUD .model evaluation or diagnostics .
nonlinear mixed effects models . normalised prediction
distribution errors NPDE . weighted residuals

NOTATIONS
KS Kolmogorov-Smirnov
VPC visual predictive check
GUD global uniform distance

INTRODUCTION

Population pharmacokinetic (PK)/pharmacodynamic (PD)
models are widely used by the pharmaceutical industry to
model dose/concentration/effect relationships, to assess
between-subject variability and to support decision making
(1–3). Regulatory authorities (FDA, EMEA) greatly encour-
age the use of these models to identify differences in drug
safety and efficacy among population subgroups (e.g.
elderly, children, renally impaired) and to facilitate the
drug development process (3–6). At the same time, FDA
and EMEA guidance documents (5,6) stress the need for
model evaluation depending on the purpose of the analysis:
if population PK/PD models are used simply to describe
the data, then basic evaluation methods can be applied.
However, if models are used to predict drug exposure and
effects in the target patient population with an impact on
drug labelling as it is more and more the case (4,7), then
more advanced and objective methods are needed.

The problem with population PK/PD models is that
evaluation of them is not easy. Indeed, they are nonlinear
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mixed effects models, and the classical evaluation methods
developed for linear Gaussian models cannot be used in a
straightforward manner. For standard linear Gaussian
models, model evaluation relies mainly on the inspection
of studentised or weighted (standardised) residuals, which
should be centred, homoscedastic, independent and distrib-
uted according to a Student distribution. Actually, when
the number of observations is large enough, this Student
distribution is close to N(0,1). In the case of nonlinear mixed
effects models, weighted residuals do not have the same
theoretical properties because individual vectors of obser-
vations are not Gaussian. The non-normality of observa-
tions is constitutive of nonlinear mixed effects models
(observations are a nonlinear function of Gaussian random
variables), and this is why the estimation is so difficult. The
result is that weighted residuals cannot be normally
distributed and independent under the model as commonly
assumed (8,9). Of course, it can be verified that their mean
is zero and their variance is 1, but as the shape of their
actual distribution is unknown and as the effect of
dependence cannot be easily anticipated, it is quite difficult
to evaluate the overall adequacy of the model. Interpreta-
tion of residual plots is therefore very much dependent on
the experience of the modeller, and, even though Monte
Carlo simulations can be used to obtain reference patterns
and improve decision making (10), they are not an optimal
tool for the evaluation of population PK/PD models. On
top of this, weighted residuals may not be properly
calculated. In some cases (WRES, CWRES), they are
computed using the expectation and variance-covariance
matrix of observations derived from an approximated
model (first-order linearisation around the null value of
random effects or around their individual predictions),
whatever the method of estimation. Simulation studies have
shown that wrong decisions could be taken with these types
of residuals, i.e., the correct model could be rejected while
strong model misspecifications could be missed (9–11). A
better way to compute weighted residuals is to use the
expectation and variance-covariance matrix of observations
estimated from Monte Carlo simulations, provided enough
simulations are performed (11). This is a better method in
the sense that there is no approximation of the model.
PWRES (displayed by MONOLIX software (12) or
EWRES (displayed by NONMEM version 7 (13)) are
examples of such Monte Carlo-generated residuals.

In that context, more advanced evaluation tools have
been proposed such as visual predictive checks (VPCs) and
normalised prediction distribution errors (NPDE) (11).
VPCs graphically compare observations with their predic-
tive distribution under the model and are quite helpful in
identifying misfits and suggesting model improvements
(Karlsson and Holford. PAGE meeting 17 (2008) Abstr
1434). However, their interpretation remains subjective as

no strict rule of decision exists. One usual approach consists
in computing prediction intervals from model predictions at
each time point and assessing whether the percentage of
observations outside these prediction intervals matches the
theoretical coverage. The problem is that no classical test
can be applied due to the data dependency within subjects,
e.g. a major increase in type I errors (around 13%) was
reported for the exact binomial test applied to VPCs (14).

Data dependency within subjects is a real issue for the
evaluation of nonlinear mixed effects models when there is
more than one observation per subject. The reader may be
more familiar with the term “data correlation,” which is
widely used by the PK/PD community, but clearly these
two terms are not synonymous. Independence implies
decorrelation, while the reverse is not true: decorrelation
implies independence only when it is applied to Gaussian
variables. The difference between the two can be shown
graphically after plotting one time component vs. another
(e.g. data at 1 h vs. data at 4 h). If no particular pattern is
observed, this means that the time components are
independent and thus that there is no data dependency
within subjects. In this case, a linear regression through the
data gives a horizontal line, indicating the absence of a
correlation. Conversely, when there is a pattern in the data,
there is data dependency, but still a horizontal linear
regression line may be observed: in that particular case,
data are uncorrelated but dependent. These different
scenarios are further illustrated in the article for some
examples. Note that the data dependency investigated here
is a marginal data dependency that includes the serial
correlation between observations, as has been previously
investigated in ref. (15).

A recent method was developed to address the issue of
data correlation within subjects and to propose an objective
assessment of the model. This method is based on the
computation of normalised prediction distribution errors
(NPDE), which should follow an N(0,I) distribution under
the model, and a global test (11,16). If the test indicates a
departure from the N(0,1) distribution, the model should be
rejected with a nominal risk of 5%; otherwise, it should not
be rejected. The limitation of this method is that it does not
cope with the issue of data dependency, only data
correlation. This point has been rightly discussed by the
authors (16), but the consequences on model evaluation
have not been thoroughly investigated. Therefore, although
NPDE represent a major improvement over weighted
residuals, both in theory and in practice (11,14,16), they
might not be an optimal tool for the objective assessment of
population PK/PD models.

In the present paper, we thus introduce a new method
for model evaluation that properly handles data dependency
within subjects. The idea is to use a random projection
technique (see (17) for general methodology and (18–21) for
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some applications) that allows the analysis of dependent data.
Based on this method, we present a global test, which is exact
whatever the sample size, and an innovative diagnostic graph
that does not require any subjective interpretation. Several
simulation studies were performed under different models to
assess the level of the test and to compare the performance of
our method with those of NPDE and commonly used
weighted residuals obtained by model linearisation (WRES,
CWRES) or Monte Carlo simulation (PWRES).

Background

This section provides the notations used throughout the
paper and gives details of the computation of NPDE and
weighted residuals assessed in the simulation studies. All
computations were done in Microsoft Visual C++ 6.0.

Notations

We consider the general mixed effects model:

Y i ¼ fi ðxi ; q; hiÞ þ Γ iðxi; q; hi; sÞ"i ð1Þ

where Yi ¼ ðYijÞj¼1:::ni
is the ni-vector of observations in

subject i (i = 1…N), xi is the vector of independent variables
for subject i, θ is an unknown p-vector of fixed parameters
(or fixed effects), ηi is a q-vector of real random effects
associated with subject i and accounting for interindividual
variability, and "i ¼ ð"ijÞj¼1:::ni

is a vector of random
variables accounting for residual error (model misspecifica-
tion, analytical error), σ being a real constant. In this
model, Γi is a known positive diagonal ni×ni-matrix depend-
ing on xi, θ, ηi and σ, while fi denotes a known real vector-
valued function depending on xi, θ and ηi. For nonlinear
mixed effects models, fi depends nonlinearly on ηi. We
assume that ηi is independent and identically distributed
(i.i.d.) Np(0,Ω) and that εi is i.i.d. Nð0; I niÞ. We also assume
that ηi and εi are independent.

All model evaluation tools described hereafter are
usually calculated conditionally to model parameter esti-
mates (bq, bΩ and bs), and all expectations/variances
appearing in the text are conditional expectations/varian-
ces. To simplify the notations, these conditional expect-
ations/variances are denoted E()/Var(). However, as the
aim of the paper was not to discuss parameter estimations,
all the calculations were done assuming that the param-
eters θ, Ω and σ were known.

Calculating Weighted Residuals

Three types of weighted residuals were selected for the
comparison with our method, namely WRES, CWRES and
PWRES. They are all calculated in different manners: either

by linearisation of the model (WRES, CWRES) or through
Monte Carlo simulations (PWRES), and are all commonly
used for the evaluation of population PK/PD models. WRES
is the default provided by all versions of NONMEM (22),
which is the gold standard software for population PK/PD
analyses. CWRES is provided by the latest (7th) version of
NONMEM (13) or can be computed using verbatim code in
NONMEM and a post processing step implemented in either
R or MATLAB (9). PWRES is provided by Monolix software
using default settings (12) and is also available from NON-
MEM version 7 under the name of EWRES (13) (with some
possible difference in computation depending on the software
and the number of simulations used).

Currently, all these residuals are obtained with the same
general formula:

Wi ¼ VarðY iÞ�1=2 � ðY i � EðY iÞÞ ð2Þ

where Wi denotes the vector of weighted residuals in subject
i, E(Yi) is the expectation vector of Yi, and Var(Yi) is the full
variance-covariance matrix of Yi. In the present paper,
VarðYiÞ1=2 refers to the Cholesky decomposition of Var(Yi).

What differs between WRES, CWRES and PWRES is
the way E(Yi) and Var(Yi) are obtained. For PWRES, E(Yi)
and Var(Yi) are estimated empirically over K simulations of
the study design without any approximation of the model
(here, K = 2,000). In the case of WRES, E(Yi) and Var(Yi)
are computed using the first-order (FO) approximation of the
model, while for CWRES, E(Yi) and Var(Yi) are computed
using the first-order conditional estimation (FOCE) approx-
imation to the model, which is a less crude approximation
than FO. In both cases, the model is linearised with respect
to ηi, either around zero (FO) or around their individual
predictions (FOCE). Further details on the computation of
WRES and CWRES are available in ref. (9). By construc-
tion, when E(Yi) and VarðYiÞ1=2 are properly calculated, the
components of Wi are uncorrelated within subject i.

Calculating NPDE

NPDE, developed by Brendel et al. (11) and first presented
under the name of NPDEYS, compare, for each subject i
and each j = 1…ni, the observation Yij with its predictive
distribution under the model. In order to remove part of
the data dependency within subject i, weighted residuals Wi

are computed from Yi using Eq. 2 and Monte Carlo
simulations so that Wi components are uncorrelated within
subject i. In that case, Wi is equivalent to PWRES. Let Fij
denote the cumulative distribution function (cdf) of the
predictive distribution of Wij under the model for all i =
1…N and all j = 1…ni. By construction of the cdf, Fij(Wij)
should follow a uniform distribution over [0,1] when the
model is correct. Normalised prediction distribution errors,
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NPDEij, are then obtained from Fij(Wij) by applying the
inverse of the standard normal cdf Φ as follows:

NPDEij ¼ Φ�1ðFijðWijÞÞ: ð3Þ

By construction, NPDEij are thus expected to follow an
N(0,1) distribution under the model. This does not imply,
however, that the overall joint distribution of NPDE is
standard Gaussian. In order to have NPDE∼N(0,I), all Wi

components must be independent for all i = 1…N and all
subjects must be independent. While subject independence
is a reasonable assumption, the independence of Wi

components can only be achieved when Yi is normally
distributed because in that case, data decorrelation leads to
data independency. As Yi is not normally distributed for
nonlinear mixed effects models, we do not expect the joint
distribution of NPDE to be an N(0,I).

As for E(Yi) and Var(Yi), Fij is determined empirically over K
simulations of the study design. Let Yi,sim(k) denote the vector of
simulated “observations” in subject i for the kth simulation
(k = 1…K) with the tested model. The corresponding vector of
weighted residualsWi,sim(k) is then calculated as VarðYiÞ�1=2 �
ðYi;simðkÞ � EðYiÞÞ according to Eq. 2, and Fij is obtained as
the empirical cdf ofWij,sim(k) over the K simulations (see (16) for
further details). Here, we chose K = 2,000.

MATERIALS AND METHODS

In the first part, we present our newmethod for the evaluation
of population PK/PD models, which is based on the use of a
random projection technique and on the calculation of a
global uniform distance abbreviated GUD. Based on this
distance, we then propose a global test (the GUD test) and a
new diagnostic graph (the Q-Q ring plot). In the second part,
we present the different simulation studies carried out to assess
the level of our test and compare its performance with those of
NPDE and different types of weighted residuals (PWRES,
WRES, CWRES). Finally, we illustrate the use of our method
by applying it to the evaluation of a previously developed
model built on real clinical data.

All calculations were done in Microsoft Visual C++ 6.0
using a Dell Precision M6300 laptop (Intel Core2 Duo,
T9500, 2.60 GHz, 3.5 Go RAM with Windows XP SP3)
except for the application to real data where some Monte
Carlo simulations were done with NONMEM software.

Random Projection Concept

Let us first explain the basic idea that makes the random
projection technique work. The distribution of a random
vector X of dimension n is fully characterised by its
projection on all vectors t∈Rn. The projection of X on t is

defined as the scalar product X ; th i ¼ Pn
i¼1

X i ti. When X has

a variance-covariance matrix equal to identity, the distribu-
tion of X is then fully characterised by its projection on all
vectors t of unit norm that define the unit sphere. In other
words, projecting X on the unit sphere suffices to completely
characterise its distribution. In practice, we cannot project X
on an infinite number of directions but randomly draw a
“sample” of t in the unit sphere according to the uniform
distribution, and calculate the projection X ; th i for all t
sampled. Here, the size of this sample is denoted B.

For the following test, we only consider the distribution
of projections regardless of the sampled directions t. The
result is that our method does not fully but “partially”
characterises the distribution of X, i.e., it is expected to
separate distributions that are sufficiently different.

Application of Random Projections to Model
Evaluation

In the present case, X refers to the vector of weighted
residuals Wi computed for each subject i according to
Eq. 2. As for NPDE, E(Yi) and Var(Yi) used for the
calculation of Wi are determined empirically over K (=
2,000) simulations of the study design performed with the
tested model. W is thus equivalent to PWRES. Subjects
are random, so Wi is random and we can “partially”
characterise the distribution of Wi by projecting it onto B
random directions drawn uniformly from the unit sphere
of Rni since all components of Wi have variance 1.
Practically, we generate, for each subject i, B independent
vectors aib�Nð0; I niÞ of dimension ni with b = 1…B (here
we choose B = 100). Then, as the unit sphere is defined
by a set of vectors with an L2 norm equal to 1, we
normalise aib in order to obtain B vectors of unit norm

eib ¼ aib

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni
j¼1

aibj2
s,

. The projection of Wi on eib is

denoted Pib ¼ Wi; eibh i ¼ Pni
j¼1

Wijeibj: In the end, we obtain

for each subject i a single object that is the empirical
distribution of random projections (Pib)b=1…B denoted

PiðxÞ ¼ 1
B

PB
j¼1

dPibðxÞ, where dPib is a Dirac mass at Pib. The

sample is then defined by a mixture of individual random

projection distributions with distribution P xð Þ ¼ 1
N

PN
i¼1

PiðxÞ.
We can compute the empirical cdf of this mixture, which is
denoted C.

Global Test Based on the Calculation of the Global
Uniform Distance (GUD)

Our test compares the empirical cdf curve C obtained for
the sample to its distribution under the model, which is
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assessed by Monte Carlo simulation. Practically, M repli-
cates of the study design are simulated (here, M = 5,000).
Let Yi,sim(m) denote the vector of “observations” simulated in
subject i for the mth simulation (m = 1…M). We then
proceed exactly as described above, i.e. for each simulation m,
we compute for each subject i = 1…N the vector of weighted
residuals Wi;simðmÞ ¼ VarðYiÞ�1=2 � ðYi;simðmÞ � EðYiÞÞ and
project this vector onto B (= 100) random vectors drawn
uniformly from the unit sphere. We recall that E(Yi) and Var
(Yi) are determined empirically over K (= 2,000) simulations
of the study design. We then obtain, for each simulation m,
an empirical cdf Csim(m) characterising the mixture of
individual random projection distributions in the simulated
sample. In the end, we getM cdf curves corresponding to the
M simulations of the study design. The distribution of these
curves is summarised by computing a uniform 95%
prediction area A. For the calculation of A, we assess for
each cdf curve its maximal absolute distance to the mean cdf

curve Cmean with Cmean ¼ 1 M= � PM
m¼1

CsimðmÞ. This distance

corresponds to the sup-norm and is called GUDsim(m) (for
Global Uniform Distance):

GUDsimðmÞ ¼ CsimðmÞ � Cmean

�� ��
1 ¼ sup

x
CsimðmÞðxÞ � CmeanðxÞ
�� �� ð4Þ

Based on this distance, we then select 95% of the cdf curves
that are the closest to Cmean. Practically, GUDsim(m),m=1…M

values are sorted and 95% of the cdf curves with the lowest
GUD values are selected, enabling calculation of the 95%
prediction area A as follows:

U ðxÞ ¼ sup
s¼1:::intð0:95�5000Þ

ðCsimðsÞÞðxÞ ð5Þ

LðxÞ ¼ inf
s¼1:::intð0:95�5000Þ

ðCsimðsÞÞðxÞ ð6Þ

where int(a) is the integer part of a, U(x) defines the upper
limit of A, L(x) defines the lower limit of A, and
CsimðsÞ;s¼1:::intð0:95�5000Þ correspond to the 95% selected cdf
curves for M = 5,000. Here, x ranges from −5 to 5 with
steps of 0.01. Our test evaluates whether or not the sample
cdf curve C is fully contained in A. By construction, this
should happen in exactly 95% of cases when the model is
correct (null hypothesis or H0). Under the correct model,
comparing C to A is completely equivalent to comparing the
GUD value obtained for the sample (¼ C � Cmeank k1) to its
“theoretical empirical” distribution. In that case, a p value
can be calculated:

p ¼ 1� perc ð7Þ
where perc corresponds to the number of GUDsim(m),m=1…M

below the GUD value obtained for the sample, divided by

M. This test will be referred to as the GUD test in the rest of
the article.

GUD-Based Diagnostic Plot (Q–Q Ring Plot)

Q–Q plots are commonly used to compare two probability
distributions. Here, the objective is to compare the
empirical distribution of random projections obtained for
the sample (characterised by its cdf C) to its theoretical
distribution under the model (characterised by the mean
cdf Cmean). To do the Q–Q plot, quantiles are calculated for
the sample (Q sample) and from the lower/upper limits of A
(Q lower A/Q upper A respectively), using the inverse of the mean
cdf denoted Cmean

�1:

Q sampleðxÞ ¼ Cmean
�1 CðxÞð Þ ð8Þ

Q lower AðxÞ ¼ Cmean
�1 LðxÞð Þ ð9Þ

Q upper AðxÞ ¼ Cmean
�1 U ðxÞð Þ ð10Þ

Figure 1 shows the resulting Q–Q plots for a correct and
an incorrect model. As it is difficult to see what happens
around zero, we decided to create a new plot, which we
called the “Q–Q ring plot.” This plot is also a quantile vs.
quantile plot but uses polar coordinates to transform
the 95% prediction area A into a ring delimited by two
circles of radii 1 and 2. The inner circle is defined by
Cartesian coordinates (xlower ¼ cos 2p � ðxþ 5Þ 10=ð Þ;
ylower ¼ sin 2p � ðxþ 5Þ 10=ð Þ), while the external circle is
defined by Cartesian coordinates (xupper ¼ xlower � 2;
yupper ¼ ylower � 2). Recall that x ranges from −5 to 5 so
that 2p � ðxþ 5Þ 10= ranges from 0 to 2π. Regarding the
sample curve, it is obtained with the following co-
ordinates : (xsample ¼ xlower � radiusðxÞ; ysample ¼ ylower�
radius ðxÞ) w i t h radius ðxÞ ¼ max 0 ; 1þ QsampleðxÞ�

��
Qlower RðxÞÞ Qupper RðxÞ � Qlower Rðx

� �� Þ. An illustration of
the Q–Q ring plot is given in Fig. 1 for a correct and an
incorrect model.

Assessment of the Level of the Test and Comparison
with Other Evaluation Tools (NPDE and Weighted
Residuals) Through Simulation Studies

Three models were used for the simulation studies: one
linear Gaussian model, one very simple population PK
model and one standard population PD model. Observa-
tions simulated with these models are shown in Fig. 2 for a
representative sample. Further details on the models and
designs used in the simulation studies are provided below.
Briefly, 5,000 replicates of the study design were simulated
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per model and study design. For each replicate, the GUD
distance was calculated together with weighted residuals
(WRES, CWRES, PWRES) and NPDE (details on the
calculation of weighted residuals and NPDE are provided
in the sections “Calculating Weighted Residuals” and
“Calculating NPDE”). As the objective of the article was
to compare the different methods for model evaluation
apart from model estimation issues, no estimation of model
parameters was carried out. Weighted residuals, NPDE and

GUD distance were thus calculated using the true values of
model parameters and the model was linearised around the
true values of ηi for the computation of CWRES. The
Kolmogorov–Smirnov (KS) test was then applied to NPDE
and weighted residuals to test for a departure from the
N(0,1) distribution. The GUD test was performed in
parallel. For each test, the type I error was computed as
the percentage of simulated datasets for which the test was
significant (α=0.05). For the GUD test and the KS test

Fig. 1 Classical Q–Q plot on the
left with the corresponding Q–Q
ring plot on the right for the
correct model (top) and an incor-
rect model (bottom). On both
plots, the black curve refers to the
observations, while the grey area
delineates the 95% prediction
area A under the model. When
the black curve is fully contained in
the grey area, the model is not
rejected; otherwise, it is rejected
with 5% risk of being wrong.
Observations were generated
for 100 i.i.d. subjects (four
measurements per subject)
using the population PK model
(one-compartment model with
intravenous bolus administration).
The incorrect model was obtained
by multiplying the geometric
mean of clearance (θ1) by two.

Fig. 2 Simulated data for one representative sample in the different simulation studies with i.i.d. subjects (100 subjects, four measurements per subject).
Left: linear Gaussian model. Middle: population PK model (one-compartment model with intravenous bolus administration). Right: population PD model
(sigmoidal Emax model).
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applied to NPDE, probability–probability (P–P) plots were
additionally done to see whether the 5,000 p values
obtained for each test over the 5,000 replicates followed a
uniform distribution over [0,1]. Indeed, if the level of the
test is correct, 5% of the p values are expected to lie below
0.05, 10% below 0.10, 50% below 0.50, and so on. The
resulting data points on the P–P plots (corresponding to the
5,000 p values obtained for the 5,000 replicates) should be
distributed along the identity line. In order to account for the
uncertainty related to the number of replicates, a 95%
confidence interval was calculated and added to the P–P
plots. This interval was derived from the Dvoretzky–Kiefer–
Wolfowitz inequality, which measures how close an empirical
distribution function is to its expectation (23). In the present
case, this 95% prediction interval was equal to
½x� " ; xþ "�x2 0;1½ � where " ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�logð0:025Þ 2n=

p � 0:0192,
n being the number of replicates (= 5,000). As the number of
replicates was very large, the 95% prediction interval was
quite narrow.

Linear Gaussian Model

A drug effect was simulated for 100 subjects with four
observations per subject using the following model:

fi ðxi ; q; hiÞ ¼ y1i � xi þ y2i and Γ iðxi ; q; hi; sÞ ¼ diag sð Þ;
with y1i ¼ q1 þ h1i and y2i ¼ q2 þ h2i, where xi was the
vector of measurement times in subject i. Measurement
times were the same in all subjects with xi=(0.5,1,2,4)
hours. The model parameter values were (θ1,θ2) =

(30,100), Ω ¼ 36 0
0 100

� 	
and σ=10.

Population PK Model

Drug concentration data were simulated for 100 subjects
with two to four observations per subject using a one-
compartment model with a single intravenous bolus
administration and first-order elimination. The model was
parameterised in clearance (CL) and volume of distribution
(V), with exponential interindividual variability set on CL
and V and a proportional residual error:

fi ðxi ; q; hiÞ ¼
D
Vi

� expð�CLi Vi � xiÞ= and Γ iðxi ; q; hi; sÞ

¼ diag s � fi ðxi ; q; hiÞð Þ;
D was the dose administered to each subject at time zero
(D = 50,000) and xi was the vector of measurement times in
subject i. Two different cases were addressed: one case
where subjects were i.i.d. and one case where they were
not. In the i.i.d. case, measurement times were the same in
all subjects with xi = (1,2,6,8) hours, and no covariate was
included in the model, i.e. CLi ¼ q1 � expðh1iÞ and

Vi ¼ q2 � expðh2iÞ. The model parameter values were

(θ1,θ2) = (40,100), Ω ¼ 0:49 0
0 0:04

� 	
and σ = 0.10. In

the non-i.i.d. case, measurement times could differ between
subjects with xi = (1,2,6,8) hours in 20% of subjects, xi =
(4,8) hours in 40% of subjects, and xi = (3,6) hours in the
rest of the subjects. In addition, one continuous covariate,
creatinine clearance (CrCL), was included in the model as
follows: CLi ¼ ðq1 þ q3 � ðCrCLi � 75ÞÞ � expðh1iÞ and
Vi ¼ q2 � expðh2iÞ where 75 is the population median of
CrCL. Individual CrCL values were generated according to a
uniform distribution over [30;120]. The model parameter

values were (θ1,θ2,θ3) = (38,100,0.4), Ω ¼ 0:25 0
0 0:04

� 	
and σ = 0.10.

Population PD Model

A drug effect was simulated for 100 subjects with four
observations per subject using a standard sigmoidal Emax

model. Exponential interindividual variability was set on
Emax and EC50 and an additive residual error was used.

fi ðxi ; q; hiÞ ¼
Emax;i � xig

EC50;i
g þ xig

and Γ iðxi; q; hi ; sÞ ¼ diag sð Þ;

with EC50;i ¼ q1 � expðh1iÞ, Emax;i ¼ q2 � expðh2iÞ, and
γ=θ3, where xi was the vector of drug concentrations in
subject i. In this simple example, xi was the same in all subjects
with xi=(15,20,30,40) mg/L. The model parameter values

were (θ1,θ2,θ3) = (30,100,4), Ω ¼ 0:49 0
0 0:01

� 	
and σ=5.

Application of the GUD Test to Real Pharmacokinetic
Data

To illustrate the use of our method, we applied it for the
evaluation of a previously developed model (16) built on the
well-known dataset for theophylline, an anti-asthmatic
agent. Theophylline concentration-time data were obtained
from a PK study reported by Boeckmann, Sheiner and Beal
(22). In this experiment, the drug was given orally to twelve
subjects, and drug serum concentrations were measured at
ten time points per subject over the subsequent 25 h. The
model under consideration was a one-compartment model
with first-order absorption and elimination, parameterised
in elimination rate constant (k), apparent distribution
volume (V) and absorption rate constant (ka) as follows:

fi ðxi; q; hiÞ ¼
Di � kai

Vi � ðkai � kiÞ � expð�ki � xiÞ � expð�kai � xiÞð Þ;

Γ iðxi; q; hi; s1; s2Þ ¼ diag s1 � fiðxi; q; hiÞ þ s2ð Þ with σ1
and σ2 two real constants, ki ¼ q1 � expðh1iÞ, ka i ¼
q2 � expðh2iÞ and Vi ¼ q3 � expðh3iÞ. xi was the vector of
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real measurement times in subject i and Di was the dose
(mg/kg) given to subject i on a per-weight basis. Details of
the estimation method and final parameter estimates are
available in (16). Our method was applied with the
following settings: B = 100, K = 2,000 and M = 5,000.
NPDE were calculated as well with K = 2,000. All
computations were done in Microsoft Visual C++ 6.0,
except for the K and M Monte Carlo simulations, which
were carried out in NONMEM version 7. As for model
estimation, the concentration measurements at time zero in
the original dataset were removed for model evaluation.

RESULTS

The results of the simulation studies are summarised in
Table 1. This table presents the type I errors obtained for
the GUD test and for the KS test applied to NPDE and
weighted residuals and testing for an N(0,1) distribution.
For the linear Gaussian model, all the methods showed a
good performance as type I errors were all within the 95%
confidence interval of [4.4;5.6]% derived from the normal
approximation to the binomial distribution B(5,000;0.05)
where 5,000 refers to the number of replicates and 0.05 is
the nominal risk. These results support a standard Gaussian
distribution of WRES, CWRES, PWRES and NPDE and
suggest that all the methods can be used equivalently for
the evaluation of these types of models.

For the population PK and PD models, however, the
methods were not equivalent. Very high type I errors were
obtained for the KS test applied to weighted residuals,
irrespective of the model. The performances of WRES
were particularly poor with type I errors around 100%. It
thus appears that neither WRES, CWRES nor PWRES
followed a standard Gaussian distribution under the tested
models. By comparison, NPDE and GUD gave more

reasonable results. Type I errors were very close to 5%
for the GUD test. The results were less clear for NPDE
with type I errors outside the 95% confidence interval of
[4.4;5.6]%, either below for the PK model or above for the
PD model. This prompted us to go further in the
investigations and examine the distribution of p values over
the 5,000 replicates of the study design. As previously
mentioned, if the tests perform well under the model, the p
values should follow a uniform distribution over [0,1]. This
was assessed through P–P plots which are shown in Fig. 3
for NPDE and Fig. 4 for the GUD test. In the case of
NPDE, the p values did not follow a uniform distribution
over [0,1] whatever the model investigated: data points
were not distributed along the identity line and some of the
points were outside the 95% prediction interval. We recall
that this interval, derived from the Dvoretzky–Kiefer–
Wolfowitz inequality, is quite a rough (wide) interval
because it is adapted to all possible distributions. Therefore,
any data point out of this interval clearly indicates a strong
departure from the expected distribution. In the case of the
GUD test, all data points were distributed along the
identity line and were within the 95% prediction interval.
This supports a uniform distribution of p values over [0,1] for
all models investigated and confirms the good theoretical
properties of the GUD test under H0. It is interesting to note
that for the population PK model, type I errors were less for
CWRES and PWRES in the non-i.i.d. case compared with
the i.i.d. case, with a slightly better P–P plot for NPDE.
However, given the nonlinearity of the model and the
complexity of the data dependency phenomenon, it would
be hazardous to convert this observation into a general
result.

Residual plots were investigated for a sample of
simulated datasets. Figure 5 illustrates the case where the
GUD test and the KS test applied to NPDE do not reject
the model while wrong visual patterns appear on the
diagnostic plots. In the present example, WRES are clearly
not centred on zero and are not homoscedastic. CWRES
are not centred on zero as well. PWRES look much better,
but an asymmetric distribution is observed at small values
of the independent variable x. Finally, a clear trend appears
on the plot of NPDE vs. model predictions. Thus, it turns
out that only the plot of NPDE vs. x looks adequate. In this
example, p values were 0.91 for the GUD test and 0.69 for
the KS test on NPDE.

The pattern observed in the plot of NPDE vs. individual
model predictions is explained by the dependency of NPDE
data within subjects. This dependency is shown in Fig. 6 by
plotting one component of the independent variable x
against another (depending on the model, x refers to time
after dose or to drug concentrations). If the data are truly
independent, a rounded shape should be observed with no
particular pattern. In contrast, if a particular pattern

Table 1 Type I Errors (%) Obtained for the GUD Test as well as the
Kolmogorov–Smirnov (KS) Test Applied to NPDE or Weighted Residuals
(WRES, CWRES, PWRES) in the Different Simulation Studies for a
Nominal Level of 5%

Linear Gaussian
model

Population
PK model

Population
PD model

i.i.d. case i.i.d.
case

non-i.i.d.
case

i.i.d. case

GUD test GUD 4.94 4.84 4.88 5.00

KS testa NPDE 4.60 3.54 3.80 7.50

WRES 4.88 100 99.8 100

CWRES 4.88 50.1 19.2 13.5

PWRES 4.50 69.3 22.3 62.0

a The reference distribution for the KS test is the N(0,1) distribution.
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appears in the data, this means that the data are not
independent. For the PK and PD models tested, Fig. 6
shows that weighted residuals (PWRES) were uncorrelated
but not independent. It results that NPDE were not
independent, and Fig. 6 shows that some correlation could
re-appear during the computation of NPDE from weighted
residuals (i.e. the linear regression line through the data was
clearly not horizontal). This correlation was globally
negative for the PK model and globally positive for the
PD model. With the linear Gaussian model, PWRES and
NPDE were both uncorrelated and independent. This is in
line with the theory that says that when observations are
Gaussian, data decorrelation implies data independence.

Finally, the GUD test was applied to the evaluation of a
previous population PKmodel developed on the theophylline

data supplied with NONMEM. Fig. 7 shows theophylline
concentration-time data vs. their predictive distribution
under the model, which is summarised by a 90% prediction
interval at each of the following time points which appeared
to be the nominal times in the original study: 0.25, 0.50, 1,
2, 3.5, 5, 7, 9, 12 and 24 h. It appears from this plot that the
model predicts the data reasonably well, even though
interindividual variability is slightly overestimated. Fig. 7
also gives the Q–Q ring diagnostic plot obtained with our
method. We can see here a very small departure of the black
curve (representing the sample) from the ring (representing
the 95% prediction region under the model), which indicates
that the model should be rejected. In contrast, the KS test
performed on NPDE was not significant (p=0.28), suggesting
that the model could not be rejected.

Fig. 3 P–P plot of the p values obtained for the KS test on NPDE to check for a uniform distribution over [0,1]. Left: population PK model (i.i.d. case).
Middle: population PK model (non i.i.d. case). Right: population PD model. The dashed grey line y = x is shown to evaluate the adequacy between the
theoretical and observed distribution. We can see that the p-values do not follow a uniform distribution as the data are not fully contained within the 95%
prediction interval derived from Dvoretzky-Kiefer-Wolfowitz inequality (delineated by the black dotted lines).

Fig. 4 P-P plot of the p values obtained for the GUD test to check for a uniform distribution over [0,1]. Left: population PK model (i.i.d. case). Middle:
population PK model (non i.i.d. case). Right: population PD model. The dashed grey line y = x is shown to evaluate the adequacy between the theoretical
and observed distribution. We can see that the p-values do follow a uniform distribution, irrespective of the model. Indeed, data points are all contained
within the 95% prediction interval derived from Dvoretzky-Kiefer-Wolfowitz inequality (delineated by the black dotted lines).
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DISCUSSION

In this article, we propose a new method and global test
(the GUD test) for the evaluation of population PK/PD
models that correctly handle the issue of data dependency
within subjects. Several simulation studies were conducted
under the null hypothesis (H0) that the tested model is
correct to assess the level of our test and compared its
performance with commonly used weighted residuals and
NPDE.

A common belief is that weighted residuals (8,9) and
NPDE (11,16) are N(0,I) distributed under the true model.
Our simulation studies show that this is only true for linear
Gaussian models, not for nonlinear mixed effects models.
These results directly corroborate the theory, i.e. for linear
Gaussian models, individual vectors of observations are
Gaussian; therefore, weighted residuals are Gaussian and
are independent (decorrelation implies independence for
Gaussian data). Their joint distribution under the model is
thus an N(0,I). As NPDE are computed from independent
weighted residuals, they are also independent and their

joint distribution is also an N(0,I). It is noteworthy that in
that case, the FO/FOCE linearisation does not result in
any model approximation since the model is already linear
in ηi. CWRES are therefore identical to WRES, and E(Yi)
and Var(Yi) are accurately calculated for all types of
residuals, either explicitly or by the means of simulations.
For nonlinear mixed effects models, however, the distribution
of observations is rarely Gaussian, which implies that the joint
distribution of weighted residuals (PWRES) or NPDE cannot
be an N(0,I). The high type I errors observed for WRES and
CWRES in our simulation studies were mainly due to model
approximation. The GUD test was the only one of the
evaluated tests to show adequate type I errors for all models
and designs investigated.

It is noteworthy that a global test on weighted residuals is
seldom performed in everyday practice and that modellers
rely much more on the inspection of the residual plots
where they search for trends. As illustrated by Fig. 5, we
show that these diagnostic plots can be quite misleading.
For WRES and CWRES, residuals may not be homosce-
dastic and centred on zero as a consequence of the

Fig. 5 Plots of weighted residuals vs. the independent variable x (top left: WRES, top middle: CWRES, top right: PWRES) and NPDE vs. x (bottom left) or
individual model predictions (bottom middle) for a data set simulated with the population PD model. The last plot (bottom right) is the Q–Q ring plot
obtained for the same simulated data set. As the black curve, representing observations, is fully contained in the ring (grey area), the model is not rejected
with our method.
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approximation of the model. This approximation can be very
crude for WRES, which makes WRES a very poor diagnostic
tool, as has also been reported by previous studies (9,11,14).
By construction, PWRES are expected to be homoscedastic
and centred on zero; however, the non-normality of the data
and their dependency within subjects might create artificial
patterns (e.g. asymmetric distribution, presence of outliers).
Many different kinds of residuals are provided by population
PK/PD software, especially NONMEM version 7, which

proposes an extensive list including NWRES, WRESI
CWRES, CWRESI, EWRES, ECWRES (13). Actually,
the distribution of these residuals under the model is a priori
unknown (it depends on the model and study design), and
unless simulations are done to give some indication of this
distribution and improve decision making (10), it is quite
difficult to interpret residual diagnostic plots in a straight-
forward manner. Note that weighted residuals are sometimes
called “standardised prediction errors” in publications. The

Fig. 6 Illustration of data dependency within subjects for the different models investigated: the linear Gaussian model (top), the population PK model
(middle) and the population PD model (bottom). The graphs shows from left to right the plots of weighted residuals (PWRES) vs. the independent variable
x, PWRES at one value of x vs. PWRES at another value of x, and NPDE at one value of x vs. NPDE at another value of x (the last two graphs were
performed in 5,000 subjects instead of 100 to clearly illustrate data dependency). The dashed line refers to a linear regression line through the data. A
horizontal dashed line indicates that the data are uncorrelated. A rounded shape for the data indicates that the data are independent.
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term “weighted residuals” is usually employed when residuals
are computed with the dataset used for model estimation,
while standardised prediction errors are computed using a
different dataset in the context of external model evaluation
(11).

Regarding NPDE, using two simple models revealed
their limitations, and one may wonder what happens with
more complex models. It is nonetheless true that NPDE
should work in several situations, as indicated by previous
studies (11,14,16). The problem is that detecting situations
where they work is not so easy. From our experience, this
depends on the dependency structure of NPDE. We have
found in additional studies (not shown) that a negative
correlation of the data leads to a decrease in type I errors
for the KS test, while a positive correlation of the data leads
to an increase in type I errors. We have also found that the
extent of increase/decrease in type I errors depends on the
magnitude of the correlation. This supports what we have
observed in the present simulation studies, i.e. for the PK
model, the decrease in type I errors for NPDE was
associated with a negative correlation of NPDE, while for
the PD model, the increase in type I errors was associated
with a positive correlation of NPDE. As the sign and
magnitude of NPDE correlation seem to depend both on
the model and the study design, it may be very difficult to
predict what will be the level of the test because it varies
between models and datasets. The impact of data depen-
dency on NPDE performance has been rightly discussed by
the authors (16) but no real solution has been proposed.
When there is some departure from the standard Gaussian
distribution, it is advocated that the NPDE distribution be
inspected graphically to see whether, in spite of a significant
p value, the model may be considered as sufficient to
describe the data. More precisely, it is recommended to
plot NPDE vs. x (time) or vs. model predictions, assuming
that no trend should be visible on the plots with the correct

model (16). Although this assumption holds for the first plot
(as subjects are independent, NPDE are expected to follow
an N(0,I) distribution at any value of x), this is not true for
the plot of NPDE vs. model predictions as shown by Fig. 5.
Indeed, due to NPDE dependency within subjects, we
expect some pattern in the data provided the number of
observations in the sample is large enough to detect such a
pattern. It is noteworthy that by plotting NPDE vs. time or
model predictions, we then come back to a subjective
evaluation of the model and in that sense do not perform
better than weighted residuals.

It is thus crucial to handle properly the issue of data
dependency within subjects for the evaluation of population
PK/PD models. The only way to get independent data is to
reduce the dimension of each individual vector of observa-
tions to one. Dimensionality reduction has been a hot topic
for the past few decades, and one of the most popular and
contemporary techniques is the use of random projections.
Random projections have been successfully applied to
many different areas such as imaging, text processing,
machine learning, optimisation, genomics and data mining
in general (see 18–21 for some applications). Contrary to
traditional dimensionality reduction methods, this tech-
nique is data independent. The idea is simply to project the
data onto a chosen subspace of lower dimension: in the
present case, we have chosen to project individual vectors of
observations (standardised residuals to be exact) onto the
unit sphere in many directions. We hence transform each
individual vector of observations into a random variable
whose distribution “partially” characterises the distribution
of the observation vector provided enough projections are
performed. We then obtain for the sample a mixture of
individual distributions of random projections, and even in
the case where subjects are non-identically distributed (e.g.
with different measurements times and covariates), it is
possible to determine the law of this mixture by computing

Fig. 7 GUD test applied to the evaluation of a previously developed model built on theophylline concentration-time data. The plot on the left represents
observations (dots) superimposed with their predictive distribution under the model, which is summarised by 90% prediction intervals (grey area) and the
median (dashed line) at each theoretical time point. The Q–Q ring plot is displayed on the right. As indicated by the arrow, the black curve representing
observations is not fully contained within the ring (grey area), indicating that the model is rejected.
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its empirical cdf C. We then compare the cdf obtained for
the sample to its distribution under the model (assessed by
simulation). For that purpose, we need to evaluate the
distance between the sample cdf (C) and the mean cdf
under the model (Cmean). Many metrics exist to express a
distance between two distributions, but we have chosen the
sup-norm (i.e. the maximal absolute distance) as it is easily
and rapidly calculated. Furthermore, using the sup-norm,
we are sure to only reject the model when it is really
inadequate. We called this distance GUD (for Global Uniform
Distance) as it allows the computation of a 95%prediction area
under the model, which is uniform and constitutes the basis of
our test. This test evaluates whether the sample cdf C belongs
to this 95% prediction area. By construction, it is exact at a
finite distance on condition that enough simulations are
performed to determine the 95% prediction area with
sufficient precision. The term “at a finite distance” means
that no asymptotic condition is required to perform the test
and that the level of the test is guaranteed irrespective of the
study design and sample size. These good theoretical
properties were confirmed by our simulation studies. In these
studies, a p-value was calculated by comparing the GUD
value obtained for the sample to its empirical distribution
under the model, which is completely equivalent to compar-
ing the sample cdf C to its empirical distribution under the
model. For all the models investigated (linear or nonlinear)
and all the designs (i.i.d. and non- i.i.d. subjects), the
distribution of the p-values was uniform, which means that
the level of the test was good whatever the nominal level.

It is noteworthy that dimensionality reduction is always
accompanied by a loss of information but the important
point is that random projections retain the approximate
level of separation between the individual vectors of
observations. In other words, individual distributions of
random projections should represent the “fingerprint” of
each subject on the unit sphere. In this respect, the choice
of the distribution for the directions of projection is
important. Here, it appeared natural to select the uniform
distribution because it is isotropic (i.e. each direction has
the same probability to be chosen), although other
distributions could be chosen. With a uniform distribution,
all components of Wi are treated equally. This results in the
distribution of random projections for subject i not being
affected by permuting Wi components, which may result in a
loss of power. Another point is that the test is not performed
on each individual distribution but on a mixture of
individual distributions. Under these conditions, it is likely
that the test will only reject truly inadequate models, and
further work is necessary to assess the power of the test for a
number of alternative hypotheses, using different models and
study designs. We have also assumed that model parameter
estimates are known with certainty. Although this approach
is commonly used for evaluation of population PK/PD

models and may be efficient in some cases (24), this is
obviously not true. Note that it is possible to account for the
uncertainty in parameter estimates bq, bΩ and bs by
computing their posterior distribution and drawing samples
from this distribution when evaluating the 95% prediction
area A. We will not go into details as it is not the scope of the
paper, but the reader can refer to (24) regarding the different
ways to compute the posterior distribution of bq, bΩ and bs.

As for all simulation-based methods, computational
burden may be a limiting factor for the applicability of
our method. Here, the objective was to evaluate precisely
the level of the test, so we deliberately used a very high
number of simulations: K was set to 2,000 based on (16),
while B and M were set to 100 and 5,000, respectively.
With these settings and given our numerical implementa-
tion, computation time was around 3.5 h for the population
PK and PD models tested, with 100 subjects per sample
and four observations per subject. For the application to
real data (12 subjects with ten observations per subject),
computation time was only 14 min. It is obvious that
computation time will be less an issue in the future as the
computational performance of computers increases. Fur-
thermore, B and M can be optimised for large sample sizes,
which will be investigated in further work. Note that part of
the simulations required to do the test can be performed in
population PK/PD software such as NONMEM, as has
been done for the evaluation of the theophylline model.
With complex observational designs (e.g. adaptative
designs, drop-outs, censored or missing data), simulations
per se may be a difficult task, which constitutes another
limitation. In that case however, it seems that all
simulation-based methods would be unhelpful (10).

Finally, the “Q–Q-ring” plot was created to detect a
potential departure from the theoretical distribution under
H0. This plot is a quantile vs. quantile plot but uses polar
coordinates to transform the 95% prediction area A into a
ring. Thereby, each part of the plot is treated equally so
there is more chance to detect a departure from the
theoretical distribution than on a classical Q–Q plot. With
the Q–Q ring plot, model diagnostics is straightforward:
either the sample curve is somewhere outside the ring and
the model is rejected with a 5% risk of being wrong, or the
sample curve is fully contained in the ring and the model is
not rejected. Furthermore, contrary to VPC (10), the Q–Q
ring plot allows global model evaluation whatever the
model (absence or presence of covariates) and the study
design (i.e. doses and measurement times may vary among
subjects). The counterpart is that it does not indicate where
the misfit occurs when the model is wrong. If we use the
terminology of Sheiner (25), the Q–Q ring plot can be
viewed as an evaluation procedure for confirming, while
the VPC is more an evaluation procedure for learning
during the model building process.

1960 Laffont and Concordet



It is obvious that all models are wrong and that all tests will
reject the model when the sample size is large enough. What
actually matters is to select models that predict data
sufficiently well with regard to the objective of the analysis.
In other words, the modeller may not come with the true
model (model building involving many subjective steps) but
this model can nevertheless be considered as useful. One of
the challenges in coming years is thus the development of
“bioequivalence”-like tests that accept useful models while still
rejecting unacceptable ones. Clearly, this cannot be achieved
with approximate methods whose performances vary among
models or study designs. This implies the selection of methods
with good statistical performances and the adaptation of
testing hypotheses according to a bioequivalence approach.
We believe that our method, based on random projections,
could be a reasonable starting point for the elaboration of
such tests as it is objective and as the nominal risk is controlled.

CONCLUSION

We show that data dependency within subjects has a strong
impact on the evaluation of population PK/PD models and
that even NPDE do not correctly address this issue. It is
noteworthy that a global test on weighted residuals is seldom
performed in everyday practice and that modellers rely much
more on the inspection of the residual plots where they search
for trends. However, these plots can be quite misleading and
one single plot with trends might raise doubt about the model
even though the latter is correct. The method we propose is
the first to handle data dependency within subjects with the
construction of an exact test and an easily interpretable
diagnostic plot. The good theoretical properties of our test
were confirmed through simulation studies using different
models and study designs. Further investigations are now
required to assess the power of this test under many different
scenarios. In conclusion, our method allows a global, objective
and easy evaluation of the model and could be used in
combination with other tools to drive model evaluation in
population PK/PD analyses.
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