
HAL Id: hal-01136888
https://hal.science/hal-01136888v2

Submitted on 10 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimization Approach for Automotive Systems
Architecture Driven by Safety and Cost

Mohamed Slim Dhouibi, Jean-Mars Perquis, Laurent Saintis, Mihaela Barreau

To cite this version:
Mohamed Slim Dhouibi, Jean-Mars Perquis, Laurent Saintis, Mihaela Barreau. An Optimization
Approach for Automotive Systems Architecture Driven by Safety and Cost. Congrès Lambda Mu
19 de Maîtrise des Risques et Sûreté de Fonctionnement, 2014, Dijon, France. �10.4267/2042/56185�.
�hal-01136888v2�

https://hal.science/hal-01136888v2
https://hal.archives-ouvertes.fr

An Optimization Approach for Automotive Systems Architecture
Driven by Safety and Cost

Méthode d’optimisation de l’architecture des systèmes automobiles

Dirigée par le coût et la sûreté de fonctionnement


S. DHOUIBI et J. PERQUIS L. SAINTIS et M. BARREAU
VALEO LARIS , Université d’Angers
76 Rue Auguste Perret 62 avenue Notre Dame du Lac
94000 Créteil 49000 Angers

Summary

Safety critical systems are present, today, almost in every car. They ensure different functionalities such as braking, steering and
airbag deployment etc… The failure of these systems could lead to hazardous situations. To ensure that the risk in these
systems is reduced to an acceptable level, the automotive industry refers to ISO-26262. It is the functional safety standard for
electrical and electronic systems in road vehicles. It focuses on the requirements, processes and methods to deal with the effects
of systematic failures and unsystematic hardware failures. Reaching a compliant design is, often, challenging particularly for high
safety constraints systems. It has been also noted that, sometimes, due to safety constraints a design could lead to a cost derive.
Ensuring that the design remains competitive in terms of cost is vital. With the growing complexity in functionalities and in size,
the system design cycle can benefit from an approach that can help the designers make the best architectural choices to reach
an optimal design. In this paper, we propose an approach for system design architecture optimization driven by the safety and
cost constraints. It consists of an architecture synthesis and mapping approach that takes into account the safety constraints in
the ISO 26262 context. It allows, at one hand, to reach a system preliminary architecture by choosing the best component that
reduce the overall cost. On the other hand, it leads to a mapping that respects the safety constraints related to safety levels or to
dependant failures.

Résumé

Les systèmes critiques sont aujourd’hui présents dans la grande majorité des voitures. Ils assurent des fonctions diverses telle
que le freinage, la direction et les airbags etc. La défaillance de ces systèmes peut mener à des situations dangereuses. Pour
assurer que le risque dans ces systèmes est à un niveau acceptable, les acteurs de l’industrie automobile se basent sur le
standard ISO 26262. Il s’agit du standard en vigueur pour les systèmes électriques et électroniques embarqués dans les
véhicules routiers. Ce standard fournit les méthodes et les procédures pour traiter les défaillances systématiques et non
systématiques. Atteindre une architecture respectant les contraintes de sécurité est de plus en plus compliqué,
particulièrement pour les systèmes à un haut niveau de sécurité. Satisfaire ces contraintes a mené parfois à une dérive du coût
au moment où la compétitivité du design au niveau coût est critique.
Avec la multiplication des fonctionnalités critiques et la croissance de leur taille et leur complexité, une approche qui assiste le
processus de conception pourrait aider à atteindre une architecture optimale. Dans cet article, on propose une approche
d’optimisation de l’architecture guidée par le coût et la sureté de fonctionnement. Elle s’agit d’une approche de génération
d’architecture et d’allocation tenant en compte les contraintes de sureté de fonctionnement dans le contexte de l’ISO 26262.
Elle vise, d’une part à atteindre une architecture préliminaire à travers un choix des composants réduisant le cout total. D’autre
part, elle permet de trouver une allocation sur ces composants qui respecte les contraintes liés aux niveaux de sureté.

Introduction

The design cost is a crucial parameter for any project particularly for automotive embedded systems. During the design process,
the architectural choices and decisions are, often, guided by their impact on the overall cost. For critical systems, safety
constraints are having an increasing influence on the design and cost. In the context of ISO 26262, the safety levels (ASILs)
allocations and decompositions choices have a considerable impact on the architecture. These choices can be translated into
functional decompositions at functional level and as a mapping and redundancies choices at physical level. These choices could
lead to lowering the development cost or to incurring unnecessary extra-costs. It is necessary, today, to take, efficiently, these
constraints into consideration during the design process to reach a compliant and competitive solution.
Currently, finding the solution that make a compromise between the different constraints (functional, safety and cost) is based on
the engineer expertise. Since such approach remains error prone and does not guarantee the optimality of the retained solution,
an automated approach is, in our opinion, needed to reach alternative cost optimal solutions.
In this article, we propose an optimization approach driven by safety and cost. It aims at reaching a compliant design without
incurring unnecessary costs.

The paper is organized as follows: first, we discuss the state of the art and the related works. In the second section, we give a
description of the notation and definitions of the different elements used along the paper. We fix the objective of the approach
presented in this paper in the third section followed by an overview of its steps approach. A use case example is presented in the
fifth section. The paper ends with a conclusion and the future works.

Related Works

The design optimization motivated multiple works. Multiple approaches have been proposed to reach optimal design taking into
account various parameters such as cost, reliability and safety. These approaches target different industries.
Some targeted the System-On-Chip and they are referred to as Electronic System-Level (ESL) synthesis approaches. They aim
at providing and supporting with tools a design process leading to generating SOC architecture: ―The task of ESL synthesis is
then the process of selecting an appropriate platform architecture, determining a mapping of the behavioral model onto that
architecture, and generating a corresponding implementation of the behavior running on the platform‖. We may cite for example
Daedalus(Nikolov and Thompson 2008), SystemCoDesigner (Keinert et al. 2009), System-On-chip Environment (Dömer et al.
2008) . Based on a functional model and using design exploration approach, these approaches reach a mapping of the functional
architecture on a platform. The platform is consisting of processing elements, communication elements and bus databases. The
reader can refer to (Gerstlauer and Haubelt 2009) for a detailed description of these approaches and detailed comparison
between them. As far as we are concerned, these approaches cannot be used for automotive systems. The approach remains
domain specific, mainly for SOC or MPSOC.
In the automotive domain context, Archeopterix (Aleti and Bjornander 2009) adopted a slightly similar approach to ESL synthesis
methodologies. It aims at finding a cost optimal mapping of Software functions on a network of ECUs. The approach takes into
account multiple parameters such as CPU load, network bandwidth, reliability. The safety constraints are, though, not taken into
account. Co-localization constraints, that could be used to express a safety constraint, were introduced in the approach amongst
the mapping constraints. But we are convinced that using a Co-localization will not be enough to express all the safety
constraints. For example, it is not possible to verify the conditions for mixed ASIL levels cohabitation requirements or
independency requirements in respect to the standard.
While the approaches presented above focus on optimizing the mapping, the approach proposed by HIP-HOPS (Papadopoulos
et al. 2011) focus on the redundancies introduction and the ASIL allocation as an optimization approach. It is more safety
oriented than the previously presented works through automatic Fault tree analysis (FTA). But, it can be applied at a single level:
functional or physical. Since, it does not support the link between these levels; it is often used at the physical level. ASIL are
allocated to the failures modes of the components and different redundancy patterns are used. Unfortunately, redundancy at this
level is not often the favorite choice for automotive systems designers. Many alternative solutions may also be missed where the
redundancy is only at functional level.
The approach we are proposing in this paper takes efficiently the safety constraints and cover the functional and physical level. It
is inspired from the works on ESL approaches where an architecture is generated and a mapping is specified. It differs by taking
into account the safety levels. On the other hand, while it may still introduce redundancies in the architecture, it remains different
from HIP-HOPS approach since the redundancies is not systematically introduced but results from the combination of functional
decomposition, ASIL allocation and mapping onto an element.

Basic Notations and Definitions

To ease the reading, this section introduces definitions of the notations that are used in the rest of the paper.

A functional architecture of a critical system can be described as several functions interacting between each other to guarantee a
set of services which are the functionalities of the system in question. A Functional architecture can, thus, be described as:
FA= {S1, S2,…,Sn}, a set of services ensured by the system.

Each Service is described using a Data Flow Graph (DFG) graph: G= {V,E} where,

- V = {f1…fn} is a set of functions
- E = {fl1…flm} is a set of flows connecting the functions

We chose to use DFG because it is particularly adapted for this case. The main advantage of data flow graphs over other
models is their compactness and the easiness of the interpretation. That is, the translation from the conceived system to a DFG
is straightforward and, once accomplished, it is equally straightforward to determine by inspection which aspects of the system
are represented.

The flows connect the functions to describe the data dependency. A flows is defined as FL = (T,FS,FT) where T is the type of
flow exchanged, FS is the function source of the flow, FT is the function target of the flow.

The Functions represents the elementary tasks of the system. They are defined as a tuple F =(A,H,SS) where A is the ASIL
allocated to the function, H is the set of possible hosts of the functions, SS is the set of subsystems that could implement the
function.

The hosts are the physical components that implement the functions. A sensor for example is a possible host for an acquisition
function. A host is defined as tuple H = (A,C,SF,CI,F,FM) where , A is the highest ASIL that can be reached by the component, C
is the cost of the component, SF is the separation feature that could allow hosting mixed safety levels functions, CI is the
communication interfaces that could be implemented by the component, F is the set of functions allocated to this host and FM is
the set of failure modes of the host.

The subsystems are the main constituents over which the system functionalities are distributed. The subsystems are defined as
SS = (C,H,F) where C is the cost of the subsystem, H is the set of hosts added to the subsystem, F is the set of functions
implemented by the subsystem.

A physical architecture is the result of successful mapping. It is defined as PA = (SS,B) where SS is the set of subsystems in the
architecture and B is the set of buses ensuring the flows exchange between the subsystems.

A bus is the implementation of the functional architecture flow at physical level to ensure the communication between the
subsystems. A bus allows the communication between the functions that are allocated to different subsystems. It is defined as B
= (FL,P,FS, FT) where FL is the sets of the flows exchanged through the bus, P is the communication protocol. FS and FT are
the communicating hosts.

Objective

Our objective is to demonstrate that the problem of finding optimized system architecture, i.e. finding a suitable (safety-related)
physical architecture and its corresponding functions mapping, can be solved jointly and correctly.

Therefore the goal is to reach functions and flows mapping that respects the available resources and the safety constraints and

optimizes the design cost. This mapping includes the spatial allocation of the functions and the flows in form of their deployment to

hardware resources and to subsystems considering the safety constraints.

The problem can be described as follows:

The joint HW resources choice and mapping problem consists of determining a suitable choice of the subsystem configuration and

HW resources as well as the functions allocation. It consists of finding an architecture containing a set of subsystems {SS1,

SS2,…SSn} connected using a set of Buses {B1…Bk} where each subsystems SSi contains a set of HW resources {H1,H2…Hm}

implementing a set of functions from the functional architecture. In the end, it comes to finding a mapping where:

 For each functions F, the tuple (ss,h) specifying to which subsystem and host the function is allocated, is determined

 For each flow FL the bus B that will carry the flow is determined

 The safety constraints due to the safety levels values are respected

In this paper, we propose a simple formalization of the joint architecture synthesis and mapping problem to explore the design

solution space and find the cost optimal solution.

Approach Overview

This section provides an overview of the approach and the different steps of the process.
We propose here an approach that allows to automatically reaching from a functional description, an optimal physical
architecture taking into account the safety constraints due to the allocated ASIL.
The approach, as shown in Figure 1, covers a part of the design process that was often manually done allowing the exploration
of different alternatives and eventually reaching an optimal design. It consists of five main steps: Functional architecture, SIL
allocation, Safety constraints extraction, Mapping and cost estimation.

Figure 1. Optimization Flow Overview

1- Main Steps:

 a Functional Model

The first step is to model the functional architecture. The functional model aims to describe how the functionalities (services) are
ensured by the system. It allows describing the functional decomposition and functional redundancies introduced, if any. In order
to ease the usage of the functional model for next steps of the approach, we added few rules on the granularity level and the
flows. The functional model can be used for input for the mapping process only if it is described at a level where the nodes can
only be allocated to a single host. Figure 2 shows an example of functional model that could be exploited in the next steps.

Figure 2. Functional Architecture Example

 b Safety Levels allocation

A safety analysis based on the functional model leads to obtaining the minimal cut sets leading to the violation of the safety
goals. These MCS are used to retrieve a possible ASIL allocation to the different functions. Due to the decomposition
patterns defined in the standard, different combinations are possible. In a previous article (Dhouibi et al, 2014), we have
studied the safety levels allocation problem and proposed an approach to retrieve the different possible combinations. These
combinations are first filtered to remove the least practical solution. The designer chooses the best fitted solutions. These are
further investigated in the next steps.

In the case of the example provided in figure 2, with a safety goal of an ASIL B consisting of sending the correct data, we
choose the following allocations:

Function Acquisition 1 Acquisition 2 Process Send

ASIL A A B B

Table 1. ASIL allocations

c Safety constraints extraction

ASIL decomposition allows reducing the SIL of the redundant functions. But, the challenge in applying it does not consist in the
redundancy introduction, but in the requirements that need to be respected afterwards. The redundant elements concerned by a
decomposition need to verify:
- The absence of common cause failures
- The absence of cascading failures
In order to ensure that during the mapping these requirements are respected, the next step of mapping will take them as inputs.
This step provides, thus, the set of constraints with the concerned functions.

On the previous example, the constraint would be to ensure that functions (Acquisition 1, Acquisition 2) are implemented by
independent elements where no common cause would lead to the failure of these hosts and the violation of the safety goal.

d Mapping

The mapping of the functional architecture onto a physical element consists of choosing a subsystem (if any) and a possible host
for each function. A successful mapping is the set of choices of components and allocations that respects the different
constraints. The mapping process sets up also, at a second level, the buses between the subsystems. In the next sections we
will detail how each constraint is verified during the mapping.
A mapping solution verifies:

Fig 3 presents an example of a possible mapping solution for the example of Fig 2.

{1}

Figure 3. Mapping Example

e Cost Estimation

The mapping process is expected to provide multiple solutions. Making a choice between them can be guided by the cost. We
choose to approach the design cost as the cost of the generated physical architecture. A solution’s cost is the sum of the hosts
cost as well as the subsystems and the buses:

2- Safety Constraints

To ensure that the architecture respects some preliminary ISO 26262 compliance issues we verify that the following checks are
good:

 SIL level check :
The functions are allocated to the hosts. The functions are tagged with an ASIL while the hosts are tagged with the
highest ASIL they can reach. A good mapping should verify that functions allocated to each component of the physical
architecture respect this SIL constraint:

 Mixed SIL cohabitation:
The standard allows allocating functions of different SIL to the same component. It requires though ensuring the
freedom from interference of low ASIL functions with higher ASIL functions. The freedom from interference is
threatened by cascading failures. It is possible to ensure this requirement with built in features in some components.
For example, for software functions it is possible to ensure the non interference with good scheduling and presence of
Memory Management Unit.
We consider that a mapping of functions with different ASILs to a component is still correct if this component have the
needed features to ensure the non interference. The constraint is verified if:

 Independence check:
The decomposition choices at functional level should be respected at physical level. This is translated by the need to
map the concerned functions to sufficiently independent elements as required by the standard. From the standard
point of view, the independency can be threatened though common cause failures. Consequently, The mapping of
concerned function is good if no CCF could be found between their respective hosts.

To ensure the absence of CCF, we start from the MCS over which the decomposition is made. We transform this MCS
from the functional level to the physical level by linking the failures modes of the functions to the failure modes of their
hosts. The obtained MCS contains the set of hosts’ failures modes that jointly lead to the violation of the safety goal.
We compare the causes of these failures modes to identify CCFs.

{2}

{3}

{4}

{5}

Algorithm:

Loop in the Constraint set

Transform the MCS at functional level to MCS at host level
Compare the set of causes of the failure modes of the new MCS
If a common cause exist

 Constraint is not verified
Else Constraint is verified
End if

End loop

The transformation consists of replacing in the MCS the failure mode at the functional level with its matching failure
modes at host level. The matching between the failure modes is based on their impact on the output flow. For example,
if a sensing function is allocated to a sensor. The loss of data flow from the acquisition function can be matched with
the loss of the sensor output at the physical level.

3- Solving Approach

At the mapping step, the functional model is tagged with the SIL and with the possible subsystems and hosts for each function.
These are the inputs to generate a physical level and map the functions onto its components. We have opted for an exhaustive
approach allowing finding all the possible solutions.
Each function can be allocated to a subsystem and a host. This allocation must of course verifies and ensure the different
constraints developed earlier. Yet, for this allocation to be acceptable, it must also be possible to map the flow.

The approach is described as followed:

While subsystems mapping combinations left not checked loop
Add the subsystems to the physical architecture
Allocate the functions to the subsystems
While hosts mapping combinations left not checked loop

Add the hosts to the subsystems
Allocate the functions to the corresponding host
If the constraints are not all verified

Go to next combination
End if
While flows allocation combinations left not checked loop

Allocate the flows to Bus
Add the Bus to the architecture
If the flows allocation don’t respect all constraints

Go to next combination
 End if

Estimate the cost of the physical architecture
Add to the solution set

End loop
End loop

End loop

The flows mapping approach is described as follows:

Loop in the set of the functional flows
If the target and source are allocated to the same subsystem

If not in the same host
Add flow to the subsystem

End if
Else

add flow to the physical architecture
End if

End loop

The flows are implemented at subsystem level or at physical architecture level depending on the mapping of the flow exchanging
functions. If both of the functions are allocated to different subsystems, a bus is needed to be set up at this level. But in case,
they are allocated to the same subsystems and to different hosts the implementation is different. For the functions allocated to
the same hosts, no bus is needed since often the communication is ensured by memory access mechanisms.
For safety matters, the flows implementation must also verify the safety constraints in the same way it is done for functions
allocation.

Example Use-Case

In this section we use a use case example to illustrate the approach. For this purpose we use a simple example inspired by real
world systems. It consists of two services and two safety goals rated ASIL D and ASIL A. The system’s main functionalities are to
correctly drive an actuator and to display information about the system state. The bad actuation is rated ASIL D. As for the
omission of the display, it is rated ASIL A. The functional architecture proposed is described by the following figure:

Figure 4. Use-case example with two services

The system consists of a set of 9 functions and 8 flows. We provide a set of 7 hosts with their failure modes and their causes and
3 potential subsystems. We introduced CCFs between some of the hosts and the buses to check the if the efficiency of the
approach in respecting the independency constraints.
The decomposition from the first functionality resulted in 16 independence constraints to be verified. Since, ASIL decomposition
is made over the two channels, all the function of both channels must be implemented by independent elements eg : acquisition
1 and acquisition 2 must be implemented by independent elements where no common cause will lead to failures modes
associated to a bad value.

The ASIL allocation and the possible hosts for each function are as follows:

Function ASIL Possible hosts Possible
subsystems

Acquisition 1 B S1,S2,S3 SS1

Acquisition 2 B S1,S2,S3 SS1

Data Processing 1 B C1,C2,C3 SS2,SS3

Data Processing 2 B C1,C2,C3 SS2,SS3

Decision 1 B C1,C2,C3 SS2,SS3

Decision 2 B C1,C2,C3 SS2,SS3

Command B C1,C2,C3 SS2,SS3

Enable B C1,C2,C3 SS2,SS3

Drive D C4 SS3

Check condition A C1,C2,C3 SS2

Display A C1,C2,C3 SS2

Table 2. Functions definitions

The hosts’ properties are specified in the next table. It is to be noted that the failures modes and their causes are not presented
in details. For simplicity, we only specify the hosts presenting a CCF that could violate the independency requirement.

Host ASIL max Cost

Sensor 1 C 10

Sensor 2 B 8

Sensor 3 B 6

MC 1 A 8

MC 2 B 10

MC 3 C 15

Actuator - 10

Table 3. Hosts definitions

As mentioned earlier the objective is to find a mapping that respects the constraints from the provided hosts. In our example,
multiple solutions were found. The mapping showing the lowest cost is the following:

Mapped to

Function host subsystem

Acquisition 1 S2 SS1

Acquisition 2 S3 SS1

Data Processing 1 C3 SS2

Data Processing 2 C2 SS2

Decision 1 C3 SS2

Decision 2 C2 SS2

Command C2 SS3

Enable C2 SS2

Drive C4 SS3

Check condition C3 SS2

Display C3 SS2

Figure 5. Obtained Solution

The found solution successfully provided an acceptable solution avoiding the CCF of the hosts and the buses. We can see that
the two channels are implemented by independent elements. The flows are also implemented with different buses to avoid CCF.
The safety levels are also respected for the components choice and during the mapping. The retained solution has a cost of ―65‖
consisting of the cost of the components with the cost of the subsystems and the buses. It is reached in a very short time given
the limited size of the example.
We used the approach on larger industrial examples with multiple services and safety goals. Even though for these examples,
the exhaustive approach provided acceptable solutions, the scalability is becoming an issue to be addressed in the future works.

Conclusion

In this paper we proposed an approach to the combined synthesis of architecture synthesis and mapping that respects the safety

constraints in the context of ISO 26262 and optimizes the cost. This paper proves that the proposed approach can be used

efficiently to reach a preliminary architecture for critical automotive systems at the FSC level.

The approach helps to synthesize a physical architecture and map the functions over its elements. It has the advantage of

treating at the same time the different services and taking into account the different safety goals. Unlike the manual process

where each safety goal is treated separately, it ensures the compatibility of the choices made to deal with each and the respect

of the constraints resulting from.

The exhaustive approach implemented and presented earlier helped to retrieve the solutions with the best cost. But with larger

examples with multiple services and multiple safety goals, the exhaustive approach seems not adapted to deal with the large

possible combinations to be checked. The computation time becomes unpractical especially if multiple ASIL allocations needed

to be checked.

For the cost estimation, we used for now only the cost of the components to rate the solutions. This estimation lacks though

precision. The software, a considerable part of the design, development cost is not taken into account.

For our next works, we are planning to tackle these limitations by using advanced design space exploration techniques. As for

the cost estimation we are planning to implement a software cost estimation model such as COCOMO II. To improve the

precision of the solution we plan also to add mechanisms to take into account performance parameters into account such as the

CPU, Memory and network load. We will aim also to implement an approach for metrics evaluation to automatically introduce

safety mechanisms where needed in the architecture which can impact the final cost of the design.

References

Aleti, A, and S Bjornander. 2009. ―ArcheOpterix: An Extendable Tool for Architecture Optimization of AADL Models.‖ …
Embedded Software, …. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5069138.

Dhouibi, MS, JM Perquis, Laurent Saintis, and Mihaela Barreau. 2014. ―Automatic Decomposition and Allocation of Safety
Integrity Level Using System of Linear Equations.‖ … in Complex Systems and …, no. c: 1–5.
http://www.thinkmind.org/index.php?view=article&articleid=pesaro_2014_1_10_60029.

Dömer, Rainer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu, Samar Abdi, and DanielD Gajski. 2008.
―System-on-Chip Environment: A SpecC-Based Framework for Heterogeneous MPSoC Design.‖ EURASIP Journal on
Embedded Systems 2008 (1): 647953. doi:10.1155/2008/647953. http://jes.eurasipjournals.com/content/2008/1/647953.

Gerstlauer, Andreas, and Christian Haubelt. 2009. ―Electronic System-Level Synthesis Methodologies.‖ … -Aided Design of …,
1–14. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5247153.

Keinert, Joachim, Martin Streubūhr, Thomas Schlichter, Joachim Falk, Jens Gladigau, Christian Haubelt, Jūrgen Teich, and
Michael Meredith. 2009. ―SystemCoDesigner—an Automatic ESL Synthesis Approach by Design Space Exploration and
Behavioral Synthesis for Streaming Applications.‖ ACM Transactions on Design Automation of Electronic Systems 14 (1):
1–23. doi:10.1145/1455229.1455230. http://portal.acm.org/citation.cfm?doid=1455229.1455230.

Nikolov, H, and M Thompson. 2008. ―Daedalus: Toward Composable Multimedia MP-SoC Design.‖ … the 45th Annual Design
…, 574–79. http://dl.acm.org/citation.cfm?id=1391615.

Papadopoulos, Yiannis, Martin Walker, David Parker, Erich Rüde, Rainer Hamann, Andreas Uhlig, Uwe Grätz, and Rune Lien.
2011. ―Engineering Failure Analysis and Design Optimisation with HiP-HOPS.‖ Engineering Failure Analysis 18 (2): 590–
608. doi:10.1016/j.engfailanal.2010.09.025. http://linkinghub.elsevier.com/retrieve/pii/S1350630710001779.

