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Abstract. This paper presents a new rainfall estimation is still a sensitive issue (Tefft et al., 2006). The global ground
method, EPSAT-SG which is a frame for method design. Theobservation network is by no mean sufficient as it lacks the
firstimplementation has been carried out to meet the requireadequate density and data quality. Moreover such a network
ment of the AMMA database on a West African domain. is costly to operate and only few land area, mostly concen-
The rainfall estimation relies on two intermediate products:trated in mid-latitude, are properly covered. This issue is
a rainfall probability and a rainfall potential intensity. The very sensitive in inter-tropical area where early warning sys-
first one is computed from MSG/SEVIRI by a feed forward tems, crop monitoring and hydrological models require ac-
neural network. First evaluation results show better proper-curate estimation of an highly variable phenomenon. A more
ties than direct precipitation intensity assessment by geostedetailed discussion about rainfall variability and its impact
tionary satellite infra-red sensors. The second product camn runoff estimates can be found in Balmes et al. (2006).

be interpreted as a conditional rainfall intensity and, in the To overcome this limitation, meteorological satellite infor-
described implementation, it is extracted from GPCP-1dd.mation has been integrated in rainfall estimation procedures.
Various implementation options are discussed and compariThe Goes Precipitation Index (GPI) (Arkin, 1979; Arkin et
son of this embedded product with 3B42 estimates demonal., 1987), has been the first widespread rainfall estimation
strates the importance of properly managing the temporamethod which is based on satellite data. It uses the geosta-
discontinuity. The resulting accumulated rainfall field can tionary thermal infrared channel 10.8 um. A fixed temper-
be presented as a GPCP downscaling. A validation based oature threshold (235K) acts as rain/no rain indicator, then
ground data supplied by AGRHYMET (Niamey) indicates a fixed rain rate is applied to compute a rainfall intensity.
that the estimation error has been reduced in this procesExperimental rain rate observations have given estimates be-
The described method could be easily adapted to other geaween 2.9 mm/h and 3.7 mm/h and a mean value of 3mm/h
graphical area and operational environment. has been selected for the operational product. This method is

Keywords. Meteorology and atmospheric dynamics (Pre- often ref_erred to as a Cold Qloud Durgtion (CCD): the rain-
cipitation; Tropical meteorology; Instruments and tech- fall duration on a given area is proportional to the number of
niques) pixels whose brightness temperature in the 10.8 um channel

is lower than the threshold. GPI can be obviously computed
and extended to geostationary satellites other than GOES.
Nevertheless it relies on rough hypothesis and its validity is
limited to the large time and space scales. In some extent
c}his method has been enhanced by making global parame-

environment monitoring. For example, early warning sys- ters region dependent and merging with ground data (Milford

tems in agronomy and epidemiology rely mainly on precipi- a?dt Di%?d?r:]e’ﬂligoﬁ AtnA(;:?ernnaEfln?n;Ienwa\l/s beenré to;r::;:—
tation mapping and, despite a deep international commitmeng'arc fformation abou can Lasterly Waves and sto

in this domain, getting this information timely and accurately type (Grimes and D|.op., 2003). ) )
Note that the main improvement has been integration of

data from Low Earth Orbiting (LEO) satellites microwave

Correspondence tal. C. Bergs sensors. These sensors allow for a more direct rainfall rate
BY

(jean-claude.berges@univ-paris1.f)  estimation based on absorption and scattering properties of

1 Introduction

Rainfall is a key parameter both for energy cycle studies an
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water and ice particles. Grody (1991) developed one of thdrom May to October 2004 and 2006. On this domain all the
first algorithms of this kind. Many further developments MSG infrared channels have been collected in full resolution.
were brought in the framework of the Tropical Rainfall Mea- A rainfall reference value collocated with MSG dataset is
surement Mission (TRMM) including methods using data requested to implement the EPSAT-SG method. Because of
bases obtained from radiative transfer model coupled withthe scarcity of the West African ground radar network, one
cloud models (Kummerow et al., 1996, 2001; Viltard et al., can only rely on a satellite product and a TRMM product
2006). has been selected. The precipitation radar (PR) has been
However microwave based algorithms raise two main is-preferred to the passive microwave sensor (TMI) for its bet-
sues: retrieval quality over land and a poor temporal samter accuracy. Moreover using an estimator based on passive
pling. Whereas geostationary satellite last generation offergnicrowave should introduce a discontinuity on shoreline as
a 15-min repetitiveness, at most one microwave measureenly the 85 GHz is usable on land. This choice has positive
ment is available every three hours. Combining these twoadvantages: the view angle is similar between MSG and this
data sources appears as immediate improvement in rainfalhstrument, the studied area is completely covered and the
estimation. Jobard and Desbois (1994) developed the Raispatial resolution of the PR instrument is comparable to the
and Cloud Classification method. More recent developmentdSG resolution (5 km versus 3 km at the nadir sub-satellite
of combined methods are using motion vectors (Joyce et al.point). The precipitation data are extracted from the 2A25
2004; Takahashi et al., 2006) or neural networks techniqueproduct (Iguchi et al., 2000). To avoid geo-localization er-
(Hsu et al., 1997, 1999; Coppola et al., 2006). rors due to geometry or time shift between TRMM and MSG,
Most of recent satellite precipitation algorithms are com- PR space resolution has been downscaled to 10 km using an
bining all possible data sources: microwave data from LEOaveraging filter and each TRMM grid cell was associated
satellites, infrared data from GEO satellites and surface datavith the MSG pixel closest to its center. When interpret-
provided by radars or rain-gauges (Adler et al., 2003; Her-ing this product as a rainfall presence indicator, all non zero
man et al., 1997; Huffman et al., 2007; Kubota et al. 2007).values are considered as rainy. Despite the narrow swath of
A more complete review of global precipitation products canthe PR instrument (around 250 km) the resulting collocated
be found in Gruber and Levizzani (2008) and in Levizzani etdatabase are large enough to extract valid statistical trends.
al. (2007). For each rainy season this database contains more than 5 mil-
This paper will present EPSAT-SG (Estimation of Pre- lion records for the AMMA area and 20 million for the Africa
cipitation by SATellite-Second Generation), a new methodarea.
frame for rainfall estimation procedures and then its firstim- Two coarse scale gridded rainfall intensity products are
plementation for the AMMA experiment. AMMA (African used: the GPCP-1dd and the TRMM 3B42 products. The
Monsoon Multi-scale Analysis) is an international scientific GPCP-1dd product (Huffman, 2001) is a global precipita-
group focusing on the West African Monsoon and the relatedtiion product delivered on an operational basis in the frame
interactions at different scales. Intensive observation periodsf the Global Precipitation Climatology Project (GPCP). It
have been carried out in 2006 on various West-African sitesintegrates infrared data from GEO and LEO satellites, pas-
As a key element of water cycle analysis a fine scale rainfallsive microwave data from LEO satellites and raingauge net-
intensity product has been elaborated to be integrated in thevork analysis from the product of the Global Precipitation
database. Climatology Center (GPCC). This product can be obtained
After a presentation of the data, the general frame of thdn various resolution. The 3B42 is a similar global rainfall
method will be described and finally the AMMA implemen- product giving more weight to TRMM data (Huffman et al.,
tation will be detailed in three sections: input predictors se-2007).
lection, statistical procedure design and rainfall potential in- The validation rain-gauges data, provided by the Regional
tensity computation. The last sections will be dedicated toAGRHYMET Center are described in Sect. 8.
the actual rainfall estimation and its validation.

3 EPSAT-SG concept
2 Data

EPSAT-SG concept relies on the fact that whereas geosta-
The geostationary satellite data are provided by Meteosationary satellite infrared sensors are a valuable tool for cloud
Second Generation (MSG) Spinning Enhanced Visible ancclassification, the statistical relation between rainfall inten-
Infrared Imager (SEVIRI). Two area will be considered: a sity and top cloud temperature is weak and unstable as there
large one covering the central part of MSG field of view is no direct relation between rain rates and IR satellites
(40° N-40° S/40 W-40 E) and a smaller one correspond- brightness temperatures. However, there is a close relation-
ing to the AMMA sub-regional window (Z5N-0°/25° W— ship between IR information and presence of rainfall espe-
25° E). Hereafter the first area will be referred to as Africa cially over tropical area (Arkin, 1979) where the most part
and the second one as AMMA. The observation period runof rainfall comes from convective clusters with cold tops.
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Fig. 1a. Empirical relationship between precipitation (rain rate and Fig. 1b. Variation coefficient for the rainfall intensity (red curve)
number of events) and 10.8 um brightness temperature. The meaand the rainfall probability (green curve) versus 10.8 um brightness
precipitation rate (red curve) is in mm/h and the mean number oftemperature.

rainfall events (green curve) is in percent. Both curves are plotted

in logarithmic scale.

ficient and the minimal value of these two coefficient ratios

is close to 2. This feature suggests that, in our database, the

More direct measurements based on microwave Sensors Qfstimation of rainfall probability from cloud temperatures is
rain-gauge networks prov_lde_much bette_r estlma_ltes. But the, ,ch less noisy than for precipitation intensity.

ge(_)stanonary da_ta sampll_ng_ls far superior bo_th in space and Therefore the estimation is split in three steps: the pro-
in time and r_eal—nme vaUIS't'On of thesg dat_a Is easyto MaNy \ction of a rainfall probability based on IR channels, the
age. Thg am of a blgnded r:?unfa}II estimation method is tOestimation of rainfall potential intensities by a downscaling
ingest this fine scale information into a coarser scale and/%rocess and the production of the accumulated rainfall. The
d|scpnt|nuou_s precipitation estimate. In some extents t.h IS 1S ainfall potential intensity is a mean precipitation intensity
sue is very similar to empirical downscaling of global circu- conditioned by rain probability. Should the implementation
lation models on regional areas (von Storch et al., 2000). The )

main difference lies on nature of fine arid inout parameters use only one reference dataset for rainfall intensity the last
. - > 9 put pa " step is straightforward. Otherwise the various potential in-
Assuming a sufficient database size, an empirical relatio

b ted betw nfrared bright ¢ 0 rlensity fields have to be merged. In an algorithm very similar
can be computed between infrared brightness temperaturgg GPCP, the merging is then dependent on estimation vari-
and rainfall intensities. Using a ground radar network, Vi-

: : . This| f the algorithm will I i
cente et al. (1998) fit an exponential model through a loga ance. This last part of the algorithm will not be developed in

A . i ) IUthi r.
rithmic transformation. However this method raises the is- S pape

sue of the variance estimation error which is important for

high precipitation rates. A way to mitigate this effect is to

carry out the estimation on rainfall probability and not on 4 Input data selection

rainfall intensity. On Fig. 1a the empirical relation between

rain intensity and rainfall probability versus 10.8 um temper- To implement this global frame the first step is the selection
ature is displayed with a logarithmic scale. The computa-Of an input predictor set. The predictors selection is deeply
tions have been carried out on the 2006 whole African areaglependent on the observation system and on the study area,
and, for sampling and significance considerations, only theand this part describes the algorithm implemented for the
interval 200 K—273K has been considered. In this interval, AMMA experiment. These predictors are selected from the
the shapes of these two curves look very similar and are conl? visible and infrared channels of the SEVIRI radiometer
sistent with an exponential model for a temperature loweron-board MSG.

than 260 K. The corresponding coefficient of variation, ratio The 10.8 um channel is used as a first order temperature
of the standard deviation by the mean is plotted in Fig. 1b.factor. Located in a spectral window, its brightness tempera-
This non-dimensional coefficient allows to compare the sig-ture allows for a direct retrieval of cloud top altitude. More-
nal to noise ratio of statistical relation. In the full range of over all the meteorological satellite infrared sensors offered
temperature the coefficient of variation associated with themeasurements in this wavelength and it was the base of the
rainfall intensity is always greater than the probability coef- first results on satellite rainfall estimation (Arkin, 1979).

www.ann-geophys.net/28/289/2010/ Ann. Geophys., 28, 2882010
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Fig. 2a. Difference of the mean value of 08.7 um and 12.0 um Fig. 2b. Difference of the mean value of 6.2 pm and 7.3 pm channels
channels between non rainy and rainy pixels plotted versus 10.8 prbetween non rainy and rainy pixels plotted versus 10.8 um bright-
brightness temperature in red and green respectively. Curves anmeess temperature in red and green, respectively. Curves are plotted
plotted with error-bars. Both scales are in Kelvin. with error-bars. Both scales are in Kelvin.

At a first glance integrating information about solar
backscattering radiation should enhance rainfall probability mﬁmﬁm
estimation. However the discontinuity between day and night, f* gx*gxmx%
should introduce a bias at the level of the diurnal cycle. Asg sl - ¥
the temporal integration of validation data is scarcely shortels xﬁ z
than one day correcting this bias should be a sensitive issu¢z | | * z
Thus the three channels at 0.6 um, 0.8 um and 1.6 um havg I %
not been selected. The 3.9 um channel has been discard
also because of the different type of information provided £
during day and night-time, and of highly reflective back-
ground problems due to sun glint, bare soils or deserts. More §
over this channel accuracy is poor over cold clouds and thu! 5|
it should introduce extra-noise in the statistical estimation.

SEVIRI integrates two split window channels: 8.7pm 4
and 12.0ym. The 12.0pm channel, primarily designed or
the Tiros-N series, for sea surface temperature retrieval has
demonstrated its efficiency for nephanalysis. It can helpFig. 2c. Difference of the mean value of 9.7 pm and 13.4 um chan-
in discriminating semi-transparent cirrus as their brigthnesg€ls between non rainy and rainy pixels plotted versus 10.8 um
temperature should be lower for 12.0 pm than for 10.8 umbrightnes_s temperature in red and green respectively. Curves are
(Derrien et al., 1993). It has been used by Inoue (1987) as aflotted with error-bars. Both scales are in Kelvin.
input for a statistical rainfall assessment. The 8.7 um chan-
nel can be used in association with 10.8 um for high altitude
cirrus screening (Schmetz et al., 2002). Moreover it addssidering the 8.7 um (resp. 12.0 um), on the whole range of
facilities to identify cloud phase (Wolters et al., 2008). 10.8 um temperatures the mean value for rainy pixels is al-

As a first assessment of the split window channels effi-ways smaller (resp. greater) than for non rainy ones. The
ciency, the whole dataset has been split in rainy and nodnaxima of these curves indicate the area of best discrimi-
rainy pixels according to TRMM/PR. For each subset thenation ef‘ficiency. Note that these maxima area are S|Ight|y
mean brightness temperature for the 8.7 pm and the 12.0 pghifted, the 8.7 um discriminating better at lower tempera-
channel has been computed, then the difference of these twigires than the 12.0 ym.
mean temperatures has been plotted versus the 10.8 um tem-The first water vapor channel has been introduced on
perature in Fig. 2a. The red curve represents the 8.7 unTiros-2 in 1960 to provide information about water vapor
channel and the green the 12.0um. The effects are oppaeontent. Two SEVIRI channels are located inside of the wa-
site but these two curves show similar patterns. When conter vapor absorption band: 6.2um and 7.3um. In a mean
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tropical atmosphere the peaks of their weighting functions
are at 350 hpa and 500 hpa. Although these channels hay
been designed to measure water vapor content at differen
levels they also contain information about cloud height (Nie-
man et al., 1993). Moreover, the difference between these
two channels, correlated with water vapor content at the at
mosphere higher levels, can be interpreted as a cloud pre
cipitable water content (Schmetz et al., 2002). A complete
description of these two channels can be found in (Santurett
and Georgiev, 2005). =
Figure 2b is similar to Fig. 2a; the difference for the 6.2 um iy
channel is plotted in red and for the 7.3 um channel in green
Due to the low layers absorption the higher temperatures ar
not significant. Elsewhere they display the same trend, con™==
tinuously growing from 200 K until 255 K. In this interval the

order of magnitude of the difference is almost twice as mucht':hig'83'7-|—he 5h% higpest local éarlizi?lc\lelzvgllxslgev\?lofﬁﬁd :n reld on
as for the split-window channels. e 8.7m channel image (28 B )- The loca

. . variance has been computed onxa33window.
The 9.7 um channel belongs to the ozone absorption line; P

it offers facilities to evaluate the content of this component.

But it can also be combined with other channels to evalu-
ate the height of clouds and the air mass temperature (Kerkt-Ion process between the global temperature factor and each
mann et al., 2005: Lattanzio et al., 2006). In a similar Waythermal infrared channel. The choice of the reference chan-

the 13.4pm channel has been primarily designed fop CO nel does not influence the learning process of the peural net-
content observation. The difference between 13.4 um and/0'k- As mentioned above, the 10.8 um channel is selected
10.8 um channels can be used to discriminate convective cell@S & Main temperature factor.
from other clouds. Eyre and Menzel (1989) demonstrated A local variance indicator of the 10.8 um channel is of-
that the combination of 13.4um and 11.1um channels often used in order to discriminate convective cells from non
NOAA-7 satellite can be used in order to estimate cloud-rainy clouds (Adler and Negri, 1988; Jobard and Desbois,
top pressure which is highly correlated with altitude. It is 1992). Underlying hypothesis is that top of clouds limited
particularly efficient to evaluate mid-level cloud heights. An by an inversion layer would look flat whereas deep convec-
important characteristic of these two channels is that the peakon should be associated with a non-uniform cloud top tem-
of their weighting function is lower than those of water va- Perature. A local variance or a slope are currently used as
por channels. In the same conditions as above, the maximur@n input for rainfall estimation models, but the actual effi-
of CO, channel is obtained at 830 hpa and the maximum ofciency appears as moderate (Ba and Gruber, 2000). As a
ozone channel at the ground pressure. Thus they can Supp|yfﬁatter of fact the hlgh variance values are mainly associated
complementary information in the troposphere lower layers.With cloud boundaries (Fig. 3) because of the contrast with
Figure 2c displays the difference graph for channelsthe ground. In some extent, this feature is related to rainfall
8.7um (red) and 13.4um (green). Once again the differ-2s the more active cells are generated in the front of convec-
ence sign is constant on the whole temperature interval bu‘ive systems, but the relation is still very indirect. In order to
the behavior of these two curves is rather different. Wherea®vercome partially this effect, other information have been
the red curve has a clear maximum around 250K, the greeﬁ.hosen as inputs in the neural network. Both local variance of
curve is almost flat. This feature should suggest that eacd-0.8 pm thermal IR channel and of 6.2 um water vapor chan-
channel has some capacity to filter non rainy events but théel are used. The absorption by water vapor in this channel
underlying phenomena are different. is very high so that the surface and the lower layers of the at-
Because of their relationship with cloud properties, all the mosphere are totally masked, reducing the contrast of cloud
SEVIRI thermal infrared channels (6.2 um, 7.3 pm, 8.7 pm,edges. Also, the maximum temperature value in the 5 pixel
9.7 um, 10.8 um, 12.0 um, and 13.4 um) are selected as inx © piXEl window is selected in order to discriminate hlgh
put predictors. All these channels are highly correlated tovalues of spatial variance due to the contrast between clouds
a general temperature factor. It has to be underlined tha@nd ground (or high and low clouds) and those due to convec-
multi-spectral thermal properties act as a second order effedive cells. Moreover, both local variance of 10.8 pm thermal
against this factor. To improve the convergence efficiency,|R channel and of 6.2 um water vapor channel are used.
one of the channels is chosen as reference and as first in- In the life cycle of a convective cell the maximum of pre-
put and the differences between this channel and the othersipitation occurs during the growing phase (Redelsperger,
are considered as inputs for the neural network. The use 0£997). This time evolution is represented by a cooling index,
these differences can be considered as a naive orthogonalizdifference between two successive 10.8 um images. Among

www.ann-geophys.net/28/289/2010/ Ann. Geophys., 28, 2882010
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the previous one. For the second, a 273 K threshold has been

Table 1. Neural network input list. The SEVIRI channels are de- . TR - :
applied eliminating almost all direct ground signal and for

noted following the Eumetcast standard (i.e.1B8 means infrared

10.8 um). the third matrix the threshold has been set to 233K in order
to focus on convective processes. The discrepancy between

SEVIRI multi-spectral indicators  IR08 these three matrices appears clearly (Table 2b). Even if only
IR_108 - WV_062 atmospheric phenomena are considered no regular patterns

IR_108 - WV_073 are observed and the extracted PCA factors would be highly

IR-108 - IR087 dependent on the selected threshold. Replacing the predic-

:Ejgg i :2(1)2(7) tor set with the first PCA factors would suppress some sig-

IR.108 - IR 134 nificant information for the low temperatures. It is a direct

consequence of the the non linearity issue which has been

Temporal difference indicator LRO8 - prec(IR108) previously mentioned

Local variance indicators Var. 5x5 WU62
Max. 5x5 WV_062
Var. 5x5 IR.108

Max. 5x5 IR 108 5 Statistical procedure design
Altitude Digital elevation model (SRTM)

Estimating rainfall occurrence from this set of input predic-
tors can be described as a non linear extension of a regres-
sion analysis or a multidimensional extension of histogram
other factors, a decrease of the local brightness temperatum@atching. Kiruno (1998) had to solve a similar problem
may be related to a convective cloud expansion phase andhen he designed an estimation process to retrieve precip-
then to higher probabilities of rainfall while an increase of itation from three satellite channels. A discretization inter-
the local brightness temperature may correspond to a corval has been set on each component to compute a three-
vective cloud dissipation phase and to lower probabilities ofdimension table. This simple method estimates a precipi-
rainfall. tation rate for each node but is difficult to extend as the table
Orographic effects can produce rainy events with specificsize increases quickly with the predictors number and there-
patterns. In order to take into account this phenomenon, théore a stable estimation would require a huge learning set.
altitude information is selected as an input. Altitude dataBy contrast a linear regression would produce a stable but
are extracted from the digital elevation model based on thealso inaccurate result. The number of degrees of freedom
Shuttle Radar Topography Mission (SRTM). highlights this difference. Let be the number of input pre-
The selected predictors are summarized in Table 1. Irdictors, the regression haslegrees of freedom whereas the
some extent this set has some redundancy and the estimatidfultidimensional histogram matching hg_, , lev(i) de-
procedure has to cope with this feature. But the importantgrees of freedom wherev(i) is number of bins for the-th
fact is that each input is related to rainfall and does not intro-predictor.
duce significant noise. Feed forward neural networks appear as a compromise as
As far as a statistical process is involved, a Principal Com-their number of degrees of freedom is intermediate and de-
ponent Analysis (PCA) could be used to reduce the numbependent on the network architecture. Figure 4 is a graphical
of input predictors. This preliminary transformation would presentation of such a network. A set of hidden nodes acts as
both enhance the computation speed and the results stabign intermediate between the predictors and the output of the
ity. But the PCA relies on linear correlation relevance and innetwork. The input of each hidden node is a linear combina-
order to assess its liability correlation coefficients have beertion of the input predictors, this value is then transformed by
computed with different stratifications. In Table 2a, correla- an activation function. The network output itself is a linear
tion matrices computed according to a two months temporaktombination of the hidden nodes output. Once the network
stratification are displayed. These matrices are computed oarchitecture is designed, the linear combination coefficients
the seven SEVIRI channels from 6.2 um to 13.4 um for thehave to be set in order to fit at best with the learning data set.
whole African continent. At a first glance, these results look The number of coefficients to estimate can be related to the
consistent, both signs and magnitude of correlation coeffi-degree of freedom of the model, in a feed forward network
cients are conserved among these three matrices. Howevdris mn +m wherem is the hidden nodes numbers. The
this is a global feature which should be significant if precipi- universal approximation theorem (Hornik, 1991) states that
tation were highly correlated with this main trend. A second such a network could approximate any continuous function
stratification, based on a temperature threshold, has been invith one hidden layer and a finite number of hidden nodes.
troduced. Computation has been carried out on the same ar&izhe key point is that the activation functions are continuous
from May to October 2006. The first matrix has been com-and non linear; the sigmoid function has been selected for
puted without any filtering and is therefore very similar to EPSAT-SG implementation.

Ann. Geophys., 28, 28308 2010 www.ann-geophys.net/28/289/2010/



J. C. Ber@gs et al.: EPSAT-SG 295

Table 2a. Correlation matrices for three periods.

May—Jun

WV_ 062 1.000 0970 0.682 0.865 0.920-0.051 0.931
WV_073 1.000 0.680 0.852 0.886 0.012 0.960
IR_087 1.000 0.748 0.713 —0.487 0.651
IR_097 1.000 0.930 —-0.311 0.893
IR-108 1.000 —-0.220 0.904
IR_120 1.000 0.054
IR_134 1.000
Jul-Aug

WV_062 1.000 0.966 0.654 0.840 0.905 0.134 0.922
WV_073 1.000 0.666 0.831 0.868 0.209 0.952
IR_087 1.000 0.720 0.703 —0.315 0.643
IR_097 1.000 0.941 -0.156 0.889
IR-108 1.000 —-0.087 0.900
IR_120 1.000 0.212
IR_134 1.000
Sep—Oct

WV_.062 1.000 0.972 0.646 0.891 0.950 0.072 0.944
WV_073 1.000 0.620 0.848 0.910 0.177 0.965
IR_087 1.000 0.712 0.678 —0.433 0.591
IR-097 1.000 0.943 -0.176 0.881
IR_108 1.000 -0.041 0.914
IR_120 1.000 0.216
IR-134 1.000

\Various combination )
of geostationary |[——> . X% X

satellite channels 3
used as inputs .

. — ;

in the feed forward Xy
neural network

6 —— Rainfall probability

Qutput node

Hidden nodes

Fig. 4. Schematic representation of a feed forward neural network.

Setting the number of hidden nodes is mainly an heuristicthe number of hidden nodes could produce a network over-
issue. It is usually presented as a trade-off between resulraining. A comprehensive discussion on this topic can be
accuracy versus network training time and error propagatiorfound in Walczak and Cerpa (1999). Due to the learning set
due to truncated computer arithmetic. Moreover increasingsize, these side effects are unlikely to occur and the hidden
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Table 2b. Correlation matrices computed with three different thresholds. Same layout as in Table 2a.

330K
WV_062 1.000 0.969 0.660 0.861 0.922 0.051 0.932
WV_073 1.000 0.655 0.841 0.885 0.130 0.959
IR-087 1.000 0.727 0.697 —-0.417 0.627
IR_.097 1.000 0.937 —-0.223 0.884
IR_108 1.000 -0.120 0.904
IR-120 1.000 0.160
IR_134 1.000
273K
WV_062 1.000 0.958 0.262 0.841 0.909 0.384 0.914
WV_073 1.000 0.188 0.770 0.835 0.493 0.942
IR_087 1.000 0.605 0.478 —0.546 0.070
IR_.097 1.000 0.965 0.033 0.748
IR-108 1.000 0.178 0.824
IR-120 1.000 0.615
IR_134 1.000
233K
WV_062 1.000 0.891 -0.377 0.741 0.845 0.568 0.847
WV_073 1.000 -0.218 0.703 0.770 0.482 0.778
IR_087 1.000 0.159 -0.022 -0.710 -0.464
IR_.097 1.000 0.969 0.127 0.611
IR-108 1.000 0.285 0.722
IR-120 1.000 0.712
IR_134 1.000

189
5 : " LEARNING DATASET ——
VALIDATION DATASET

188

....................................................................

ROOT MEAN SQUARE ERROR (%)

0 100 200 300 500

LEARNING ITERATIONS

400

hart et al., 1986). After a random network initialization, each
element of the training set is considered in a two-step com-
putation. An error is computed by the difference between
the network estimated value and the actual rainfall occurence
value. Then this error, multiplied by a decaying impact co-
efficient, is used to correct the network coefficient according
to their relative importance in final output. This algorithm
should converge on a local minimum of the error function
provided it is repeated several times on the training set. As it
is a step by step method the records order in the training set
is not indifferent and the best results are obtained with a uni-
form distribution error in this set. Therefore to suppress the
correlation effect linked with remote sensing image coher-
ence, a data scrambling where records are randomly ordered
is performed before training.

To assess the reliability of the neural network chosen ar-
chitecture, the co-located pixels dataset has been divided into
two subsets: a learning database (75% of the cases) and a test

Fig. 5. RMSE is plotted against number of learning step iterations. database (25% of the cases). The first one is used to com-
Learning (resp. validation) dataset is plotted in plain (resp. dashedpute the coefficients values and the second one is dedicated to

line.

nodes number is set to twice the input nodes number.

validate these coefficients with an independent dataset. The
Root Mean Square Error (RMSE) between reference and es-
timation is calculated for all iterations of the learning phase

The error back-propagation algorithm is perhaps the mos({Fig. 5). On this graphic, the two curves are similar even if
widespread method to set the network coefficients (Rumelthe RMSE is slightly higher for the independent validation

Ann. Geophys., 28, 28308 2010
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Table 3. Neural network estimation errors on different dataset
(columns) versus training set (rows).

2004-mj  2004-jas  2006-mj  2006-jas

2004-mj 0.002889 0.004416 0.003016 0.004986
2004-jas 0.002895 0.004342 0.003027 0.004923
2006-mj 0.002957 0.004518 0.002975 0.005012
2006-jas 0.002995 0.004421 0.002964 0.004871

16°Ng

&N

22 hidden nodes, then the mean quadratic error of this model
has been computed for all the learning sets. The results are
summarized in Table 3 where the lines are indexed by the
estimated models and the columns by the learning sets. The
interpretation of the matrix diagonal is slightly different as
it represents a model bias and not an estimation bias. Nev-
ertheless the results look as consistent: the values are more
homogeneous among columns than among lines. This should
suggest that an estimated network shows very similar perfor-
mances on different periods and there is no real benefit to
‘ expect in retraining the network once is has been estimated
: on a significant dataset. The main error should be much
0.00 o6 00 50.00  75.00 100.0 % more dgpendent on thg metgorologlcal pheno.m(.ana distribu-
' ' ' - - tion which could explain the inter columns variation. It can
be noticed that the columns smaller values are, except one, on
the main diagonal. As expected the method performs better
when using actual data rather than a previous estimation, but
this advantage is minor and in one situation the estimation
. i ) . local minimum has been out performed by an other model.
dataset. The second relevant information on this graphic is As suggested by these results, the relationship between in-

that the RMSE does not increase even after 500 learning 'ter'rared brightness temperatures and precipitation cannot be

ations suggesting t_hat there is no over-fraining effect and tha|Empr0ved by a simple temporal or spatial stratification. This
the neural network is properly sized. As the RMSE Olecrease?\ypothesis is confirmed by the classification carried out on

very slowly after 200 iterations, there is no interest in usingthe global dataset. This dataset has been split in two peri-

more iterations. Finally, the RMSE for the learning dataset is .
. S ods (May to July and August to October) and according to
about 18.25% and only 0.10% higher for the validation one.. » regular grid. On each box an empirical rainfall prob-

This RMSE value represents the uncertainty of the rl"“nf"’lnability function is computed. For a statistical stability rea-

probability mean value. son only one channel (10.8 um) is considered and the boxes
Applying the resulting neural network coefficients to every jth less than 3000 rainfall detections are discarded. Then
MSG pixels of the studied area, instantaneous rainfall prob4 non-supervised classification in four clusters is performed
ability images are provided with the MSG time and spacefor each period. This classification is based on a K-means
resolutions. In Fig. 6 an estimated rainfall probability field algorithm: a number of clusters is set, then an iterative pro-
(in gray tones) is superimposed with a coincident TRMM/PR cess splits the dataset in oder to minimize the intra-cluster
track where rainy pixels are plotted in red and non-rainy inygariances. The variance computation relies on a simple Eu-
green. The active cells appear as clearly delineated by thgjigian distance . This classification is purely statistical and
rainfall probabilities. On this situation the main features of gges not integrate any input based on aerologic parameters,
the precipitation field as detected by TRMM/PR are properly nevertheless it could be expected that some of the main cli-
reproduced by the neural network output. matic zones would match with generated classes. Figure 7a
In order to assess to which extent the estimated rainfal(resp. 8a) displays the four class centers and Fig. 7b (resp.
probability is environment specific, four learning sets have8b) the spatial class repartition. At a first glance the center
been extracted on the AMMA area for 2004 and 2006. Twoclass distribution are differentiated by their kurtosis, from a
monsoon pre-onset datasets from 1 May to 30 June and twquasi linear relation (green curve) to a relation looking as
monsoon post-onset datasets from the 15 July to 15 Septena power law (purple curve). But even these two classes do
ber. On each learning set a neural model has been fitted withot show any regularity in their spatial distribution and are

4°N

e [127E

Fig. 6. EPSAT-SG rainfall probability estimate (gray scale) collo-
cated with TRMM/PR.
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Fig. 7a. Pre-onset period: mean probability function for classes 0,
1, 2, 3. Temperature is coded in degree C.

Fig. 7b. Pre-onset period: Spatial repartition of the four classes
deeply different from one period to an other. None of the syn-computed by non supervised classification. Same color code as in
optic scale atmospheric phenomena or agro-climatic zone§ig. 7a.
can be identified on the classifications. The only identifiable
pattern is the quasi-linear class (green code) which is in some . . . o
extent associated with mountainous area. Precipitation en@"d an associated space-time validity domain size , RPI can
hancement linked with relief and elevation is well known but P& €stimated by the formula:
this observgtlon is shghFIy different: when orographic effects Rpotint(B) = [ Rret/ | Rprob o)
are predominant, cloudiness could not be used as a proxy for B B

rainfall as the empirical relationship itself appears as orogray, ware g is a spatio-temporal domain whose sizing is im-

phy dependent. But despite this local effect which should be ortant for final product accuracy amtler an accumulated

confirmed by further studies, these observations suggest th :I;linfall field which is intermittent and/or defined at a coarser

using these boxes as a stratification basis would not enhancsecale. It has to be noticed thatis not necessarily a regular

the estimation sensitivity but would only reduce the samplebox and should the rainfall reference be extracted from LEO

Size. microwave dataB would be a time buffer around the satel-
lite swath inside a surrounding box. The issue is to derive
RPI at the fine satellite resolution scale from RPI on the inte-

6 Rainfall potential intensity gration domainB. A simple non overlapping set of domains
could be considered and a RPI constant value computed for

As written in Sect. 3, the EPSAT-SG rainfall estimaie{) each element of this set. But such a process would produce
is the product of the Rainfall ProbabilitieRgop), by rainfall rough bqundary gffect when down'scalln'g. To ""_VO'd 'Fh's ef-
potential intensity Rpotn) Maps: fect, B will be defined as a three-dimensional slide window.

The Eq. (2) is then used to compute RPI on the center of the
box which is defined as identical Rpotint(B).
Rest= Rprob¥ Rpotint (1) Setting the size of this slide window is mainly a statistical
issue, the larger this size the greater the influence of rainfall
whereRest, Rprob and Rpotint are functions defined in space probability field. Obviously a window size identical to the
and time. resolution of Rpotint Would produce aRest field identical to
The rainfall potential intensity (noted RPI below) is esti- Ryes field. For the implementation of EPSAT-SG in AMMA
mated by a downscaling method which is a way to includedatabase, some operational considerations have lead to se-
small scale variability extracted from geostationary sensorslect the GPCP product as the reference accumulated rainfall
The Rainfall Probability can be computed with the time andfield. The window size has been set according to Richard
space resolution of GEO satellite which is far smaller thanand Arkin (1981) which state that the maximum of corre-
the statistical validity scale of any rainfall estimation prod- lation between cold cloud duration and precipitation occurs
uct. But assuming selection of a rainfall reference productfor a window of one month by 2°5n latitude and longitude.
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Fig. 8a. Post-onset period: mean probability function for class O,

1, 2 and 3. Although this classification is independent from the

previous one, color code is selected to get maximum similarity with

Fig. 7a. Temperature is coded in degree C. Fig. 8b. Post-onset period: Spatial repartition of the four classes
computed by non supervised classification. Same color code as in
Fig. 8a.

This choice is conservative and a more sophisticated imple-

mentation would have to deal with a window size which is

dependent on an estimation error. Sahelian region than close to the South coast. For all these

Among the GPCP products the daily drid has been ex- €asons, it seems more appropriate to use a rainfall potential
tracted and interpolated at the scale of the MSG pixel to conintensity value, which is varying in time and space, rather
stitute theRyef fields. The Eg. (3) is then the discrete transla- than a constant rain rate value.

tion of Eq. (2): Figures 9 to 12 present four daily 2006 PRI images com-
puted by different methods. The rain rates are expressed in
millimeters per hour and it can be noticed that for all figures
> Ruef the PRI falls in a range of 0 to 6 mm/h. Those values are close
31Days\ 2.5deg res

(3) to the GPI rain rate (3 mm/h). However, the fact that there is
a maximum value of 6 mm/h is one of the limitations of the
b) EPSAT-SG method: high precipitation rates and short-time
rainfall events cannot be properly retrieved with this algo-
where « is a correction coefficient set to counterbalance rithm. This weakness is encountered in many methods based
missing slots. From Eq. (3) a daily image of PRI is com- on geostationary satellite IR data. For some part it is linked
puted at the GEO satellite spatial resolution. According toto the low frequency of high intensity event and thus to the
this equationRpotintimages are the results of a 31-day rain- difficulty to retrieve them from a statistical process. But it
fall accumulation (in millimeters) divided by a rainfall dura- can be mainly related to the indirect nature of the measure-
tion as expressed by the accumulated rainfall probability. ment. The neural network inputs are thermal infrared bright-
Equation (1) can be presented as an extension of the GRiess temperatures and therefore inform about cloud canopy
(Arkin, 1979). But, whereas the rainfall probability part is properties and not about intense precipitation location as in-
only represented by a simple threshold, which provides 0%dicated by radar data. The thermal infrared information ap-
or 100% probabilities in the GPI method, the values of thepears as smoothed compared with microwave information.
rainfall probability maps calculated by the feed forward neu- In some extent the rainfall probability downscales the GPCP
ral network are varying from 0% to 100%. In a same way, information but fails to render fine scale structures and thus
the 3mm/h rain rate value proposed by Arkin could be ap-attenuate the highest rainfall intensities.
plied, but the rainfall efficiency obviously is changing in ac-  Figure 10 is computed according to Eq. (3). A sliding
cordance with the geographic situation or the season. Raingpace window is applied with a shift of one MSG pixel. Each
events on the Guinean Coast are much more frequent, budbtained value of the right side of the Eq. (3) is set to the cen-
less intense than those which occur in the Sahelian regiortral position of the 2.5 degrees integration area. Therefore the
Moreover, with the latitudinal gradient of humidity, the evap- integration zone is a disc of 42 pixels radius corresponding
oration phenomenon below clouds is more important in thenearly to a 2.5 degrees diameter. Then, the sliding windows

Rpotint=a x

< Z RPro

31Days\ 2.5deg res

www.ann-geophys.net/28/289/2010/ Ann. Geophys., 28, 2882010



300 J. C. Bergs et al.: EPSAT-SG

r.#&rf "'q-.rq-l‘
H

“”"."%._@iq

LONGITUDE LONGITUDE
Potential rainfall intensity for the lst of june 2006 using GPCP (mm/L) Potential rainfall intensity for the 10th of july 2006 using GPCP (mm/h)
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Potential rainfall intensity for the 20th of august 2006 using GPCP (mm/h) Potential rainfall intensity for the 30th of september 2006 using GPCP (mm/h)

Fig. 9. Rainfall potential intensity maps computed without spatial integration window.

are applied in time and space and the final RPI products are When comparing Fig. 10 and Fig. 11, similar patterns ap-
provided with the time resolution of the reference dataset (1pear with very comparable values. There is an exception con-
day with GPCP-1dd) and the space resolution of the geostacerning the 30 September 2006 (Figs. 10d and 11d). This dif-
tionary satellite (3km for MSG). On the contrary Fig. 9 is ference is due to a very late rainy season over West Africa in
computed without spatial integration. A comparison of these2006, which cannot be satisfactorily reflected by the clima-
two figures demonstrates clearly the benefits of using a spatology. But the values remain stable with a maximum close
tial integration area. On one hand the artifacts created’by 1to 6 mm/h. Anyway the rainfall probabilities correspond to
grid boundaries disappear. On the other hand some physthe 2006 rainy season situation and cloud trajectories and not
cal discontinuities are better delineated. On the 1 June 20060 the climatology. This feature makes the images presented
the Guinean shoreline effect appears more clearly in Fig. 10@n Fig. 11 patchier than those on Fig. 10. Although inte-
than in Fig. 9a. grating directly a rainfall climatology could produce some
The Inter Tropical Convergence Zone (ITCZ) evolution provisional results it appears much more appropriate to use
can be clearly observed consistently with the season: orm PRI climatology computed on coincident rainfall probabil-
Fig. 10a the largest values are located over ocean just oities and rainfall reference intensities.
south of the Guinean coast and these values are going north-
ward during the rainy season (July and August) before goingo

balc If{ soutthwart(;l]_ln Sept)';]ergb.er. tional . tmicrowave from LEO satellites. Contrary to the GPCP which
n egtrha ing |sfme do | art1 operational ?nl\l/lro?mer is highly dependent on rain-gauges data, this data-source is
raises the Issue of producing a temporary raintall esimalor,, ;apje in near real-time. To test this alternative a PRI

if the GP;:P' data aref no'F avalla::_)le In Idue—t'lme. I(T ofrder tOE:Fig. 12) is computed from the 3B42 product which is mainly
assess the impact of using a climatology instead of actua) alibrated by passive microwave data.

data, Fig. 11 is computed replacing 2006 GPCP data with an

8-year climatology (1997 to 2005). Several remarks arise from the comparison between
Figs. 10 and 12. First of all, RPI have again the same range
from 0 to 6 mm/h which reinforces the idea of stability of this

An other way to reduce the product delivery delay would
e to select a reference rainfall data-source based on passive

Ann. Geophys., 28, 28308 2010 www.ann-geophys.net/28/289/2010/
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Fig. 10. EPSAT-SG daily rainfall potential intensity.

product. Moreover, the RPI values are still increasing in thebility (Rprop) as the duration of this event. As a single RPI
ITCZ and large climatic regions have more or less the sameas computed for the AMMA implementation, computation of
values. However, if the RPI were very smooth with GPCP-accumulated rainfall is rather straightforward. Once the RPI
1dd they are not with 3B42. This is due to the nature of themaps are computed, the estimated rainfall estimaResy(
respective reference datasets. The GPCP-1dd estimates azan be obtained with the space and time resolution of MSG.
conditioned by geostationary information and ground net-At time ¢ during dayd and pixela the Rgg value can be
work which deliver time continuous data series. By contrastderived from Eq. (1) as follows:

the 3B42 estimator depends highly on the LEO satellite cov-

erage and is greatly influenced by the microwave estimatedEst(@,) = Rprob(a,?) X Rpotint(@,d) (4)

rain rates used as input. The related risk is to overestimat% infall estimat btained with MSG ti d
locally rainfall estimates causing the apparition of high value aintall estimaltes are obtained with > lIme and space
resolution. However, as this method is mainly based on geo-

spots on RPI maps. The spot positions depend on the coS0 i ! ) )
localization of LEO satellite data and rainy events during theStationary satellite data, final estimates have to be integrated
period of study, which is unpredictable. The simple inte- in time and space in order to limit the estimation bias. The
gration frame p,roposed for AMMA implémentation appears principal interest of this fine time and space resolution is its
as more adapted to GPCP than to 3B42. Integrating a miflexibility for the users. It can be integrated in time and space
crowave only product should likely require a more complex to .ﬁt With produc_ts of any other §ca|es or t_)(_)undaries like a
sliding window design associated to an along track productdaIIy period starting at 6 a.m. or like a specific watershed.

rather than to a gridded product. But this should also makeb The ﬁstimated f?jif:a"hacgu”mul_atiofn durilng a perfodan
the implementation much more complex. e easily computed Dy the following formula:

1
Resa, T)==%  Resta,) ®)

7 Estimated rainfall pr

A Rainfall Probability Intensity Rpoting can be interpreted where the coefficient is the same the one in Eq. (3). Indeed,
as the mean rate of a daily rain event and a Rainfall Probathe fact that there are missing probability images leads to an
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Fig. 11. EPSAT-SG rainfall potential intensity computed with a 8-year climatology instead of actual data.

underestimation of rainfall amounts and a correction coeffi-1dd. The discussion highlights the difficulty of fine product
cient is necessary to extend the total rainfall amounts to thénter-comparison based on scarce network.

whole studied period'. When the EPSAT-SG estimates are gridded bytdl fit

. . with the GPCP space resolution (Fig. 13c) some lower values
F'F |glir3eb13 rgp;risents EPls,?T-SG (tl_:lg.t13af) ant?] ngi_lld%f the rainfall amounts can be observed when compared with
(Fig. ) rainfall accumulation estimates for the Y the GPCP estimates on Fig. 13b. This is due to the smooth-

2?2;6'. High rglgf_all pzT_tterns can bti segen don éhiNWESt éoalﬁhg effect induced by the downscaling formula presented in
otuinea and sierra Leone, over the border between Bur Eg. (2). It can be noticed that the main differences occur

ina atnd Mali f’.‘t”d. over tSo;Jtth_:i;]aq. . North OJ N, ralr% th in coastal and mountainous area where the spatial gradient
events are quite Inexistent which Is In accordance wi Cof precipitation is strong and therefore the smoothed gridded
Sahelian climatology. The maximum daily accumulated pre-

initati £ 40 : listic t The fi fruct ¢ precipitation fields are inaccurate.
cipration o mm 1S reaistic too. € Tine structure ot = 1, point the differences between rainfall probability and
convective clouds is clearly apparent on Fig. 13a. Most of

th it be ob q both i More det .Irainfall estimation products, both of them have been repre-
€ palterns can be observed on both images. More detallg, o g Figure 14a shows the mean rainfall probability dur-

can be .observed on EPSAT-SG estimates and they are_alﬁﬂg August 2006 and Fig. 14b corresponds to the rainfall
some differences such as the pattern seen over East-Mali. mount during the same period. These two images contain

:hg c:ngl tﬁvallaﬁlfhgroellmg ?"_’I‘_ta} are the synotptm ;tations.?.'s'similar patterns as it could be expected from the method con-
riouted through the Llobal Telecommunication System | IScept. This similarity can be observed around the west coast.

difficult to assess the relative accuracy of these two prOdUCtsHowever, there are some differences over Guinea and Nigeria

;LWO synopftlt(;] stations, Nar? dar:d T'%rE'SEBZIA_?_rg (I;ocl;atted OWhere rain accumulations are higher than it could be antic-
€ area ot Ine raining spot detected by ) u non?pated from the rainfall probability. On the contrary, above

of thes_e two stations reported any datg. The only ground. "6 N, rainfall accumulations seem to be less important than
formation can be extracted from Mauritanian Nema statlonexpected

which is on the periphery of this spot. The reported 24 h ac-
cumulation of 5mm on the 11 July 2006 morning should be
more consistent with EPSAT-SG estimation than with GPCP-
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Fig. 12. EPSAT-SG daily rainfall potential intensity maps computed with 3B42 product instead of GPCP-1dd.
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Daily rainfall EPSAT-3G accumulation for the 10th of July 2006 (mm)

LONGITUDE
Daily rainfall GPCP—1dd accumulation for the 10th of July 2006 (mm)
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Fig. 13a.Daily cumulated EPSAT-SG rainfall estimation. O 1 234 5 7 9 1113151719 24 3240

Fig. 13b. GPCP-1dd rainfall estimation.
8 \Validation

When validating a downscaling method a first issue is to astegion in West Africa during the 2004 rainy season. A rain-
sess the positive impact on the downscaled information itselfgauge network is managed by the CILSS organism (Gomit
This validation exercise has been performed for the Saheliapermanent Inteétats de Lutte contre la&8heresse au Sahel)
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Fig. 14a. EPSAT-SG rainfall probability field for August 2006. The statistical parameters used to validate these results are
the Bias, the Root Mean Square Difference (RMSD), the
Skill Score Index, and the explained varianRé, The Bias
which concentrates data from nine different countries (Burk-represents the mean error produced by the algorithm accord-
ina Faso, Cap-Verde, Gambia, Guinea Bissau, Mali, Mauritaing to the validation dataset while the RMSD is the average
nia, Niger, Senegal and Chad). The data have been obtainedistance between estimation and its corresponding reference
from AGRHYMET as kriged fields on 10-day periods with in a grid cell. TheR? expresses the degree of agreement be-
0.5 and 1 degree space resolution. The kriging method igween the estimated rainfall accumulation and the reference
described in Ali et al. (2005) and an associated estimatiorones. The Skill Score Index is equal to 1 if estimation and
error of the rainfall amount is provided for each grid box. reference match perfectly and is equal to O if the estimation
This network gathers about 645 stations including 75 synop4s obtained by random distribution. The interest of the skill
tic stations which transmit their data through GTS (Global index is to deal with the assymetric distribution of the esti-
Telecommunication System). Because GPCP integrates thmated variable.
GTS transmitted data in the product, the synoptic stations Because of the spatial heterogeneity of the rain-gauge
have been excluded from the computation of the kriged mapsetwork managed by AGRHYMET, a first study has been
in order to guarantee the independence between estimatigmerformed during the 2004 rainy season in order to assess
data and validation data. Figure 15 represents the CILSS arghe effect on validation of grid cells having few or zero
and the CILSS and synoptic rain-gauges positions. rain-gauges. Table 4 summarizes the validation statistic
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Table 4. EPSAT-SG validation statistic parameters for three Table 5. EPSAT-SG and GPCP-1dd validation statistic parameters
datasets with different minimum number of rain-gauges per grid-fot the AGRHYMET 10-day dataset with a minimum of one gauge

cell. per grid-cell.
Bias rmsd R2 skil n.cells Bias rmsd R2  skill
Allicells 46 209 067 064 14400 EPSAT-SG 55 17.3 0.73 0.70
lgauge 55 173 0.73 070 2787 GPCP-1dd 6.0 240 057 0.42

2gauges 4.8 172 0.73 0.71 899

al. (2010). The inter-comparison is carried out for ten rainfall
parameters with best scores written in bold style, for the full asstimation methods: three regional method specifically im-
dataset and two subsets. These subsets group only grid Ce'b'?emented on the West-African area (EPSAT-SG, TAMSAT
with a minimum of 1 or 2 embedded raingauges . The totalgng RFE.2), three global methods (GPCP-1dd, TRMM-3B42
number of grid cells is 14 400 but only less than 20% have aigng GSMAPMVK) and four real-time methods which are
least one rain gauge, and about 6% have a minimum of 2 rainon|y satellite based (PERSIANN, 3B42-RT, CMORPH and
gauges. The bias does change significantly when compute@py). This comparison is based on 10-day accumulated prod-
on grid cells with 0, 1 or 2 minimum raingauges. However it ycts computed for three rainy seasons in West-Africa. The
appears clearly that the RMSR? and Skill score index val-  main trend is that global methods perform better than real-
ues are improving when the minimum number of rain-gaugesjme ones and they are themselves outperformed by regional
per grid cells increases. However it has been checked that thgethods. Among the regional products, EPSAT-SG gets
improvement is really small when the minimum number is 3 petter results on most of statistical criteria although RFE.2
instead of 2. matches better the validation dataset considering distribution
To improve the reliability of this validation exercise, only gnd bias.
grid cells with at least 1 rain-gauge are taken into account. Using three dense rain-gauge networks implemented for
This validation is done for 10-day periods, as validation dataghe AMMA experiment, Roca et al. (2010) developed an
are only available at this time resolution. The comparisoninnovative approach to compare satellite estimation with
has been made with a space resolution of 0.5 degree in ordjround data taking the various estimation errors into account.
to get enough grid cells to be statistically significant. So the\yhereas their results are consistent with the ones of Jobard et
GPCP-1dd has been interpolated to this final space resoluy, (2010) for 10-day periods, this is not true for shorter peri-
tion. ods. When retrieving the diurnal precipitation cycle, EPSAT-
The validation statistical parameters are presented in TasG appears as less efficient than 3B42. Because of a strong
ble 5 for EPSAT-SG and GPCP-1dd; they have been comthermal infrared contribution EPSAT-SG is sensitive to the
puted on a set of 2787 grid cells containing at least one rainfag between the active convection phase and the development
gauge. EPSAT-SG estimates look better than GPCP-1dd fopf a stratiform tail. Some improvements can be expected
all the criteria. EPSAT-SG gets smaller RMSD value andpy completing the predictor set by some parameters more
higher R? (0.73) and Skill Score index value (0.79) than the closely related to the cloud dynamic. To enhance the diurnal
GPCP-1dd reference dataset (respectively 0.57 and 042) phase estimation, Ba}g et al. (2009) proposed a cloud patch
Scatter plots comparing GPCP-1dd or EPSAT-SG withgrowing rate to be integrated as an input parameter.
rain-gauge kriged data are represented on Fig. 16. As it could
be expected the regression line shows that the two products
underestimate high precipitations and overestimate low one®® Conclusion
However the EPSAT-SG scatter plot (Fig. 16b) appears as
more concentrated around the diagonal than the GPCP scalEPSAT-SG, a rainfall estimation method, has been presented
ter plot (Fig. 16a). Even upscaled to match with the reso-as a concept frame and its first implementation has been
lution of the rainfall reference product, EPSAT-SG performs described and commented. The complexity of rainfall re-
better than GPCP-1dd. Itis obvious that EPSAT-SG is boundated data collection system (satellites, radars and ground
to GPCP-1dd by construction; the correlation coefficient be-networks) compel a production procedure to match with the
tween the two datasets in fact is 0.9 and their close relationactual operational environment.
ship is illustrated by the scatter plot of Fig. 16c. Neverthe- Every rainfall estimation procedure has to consider the
less EPSAT-SG brings a sensible improvement. This resultveakness of the link between infrared signature and precipi-
could look surprising but it demonstrates the interest of usingtation intensity. EPSAT-SG uses GEO data only for a Rain-
a large enough slide window as already discussed in Sect. &all Probability assessment. For the AMMA implementation
A more complete validation comparing EPSAT-SG with these probabilities are estimated through a feed forward neu-
other operational rainfall products can be found in Jobard etal network. The results appear as fairly good and suggest
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Fig. 16a. Scatter-plot of GPCP-1dd versus validation rain-gauge Fig. 16c. Scatter-plot of EPSAT-SG versus GPCP-1dd.
dataset.

ERSAT-S0

T The Estimated Rainfall, which is the product of a Rainfall
regresziont Probability and a rainfall potential intensity, is obtained at
the fine resolution of the GEO satellite (3 km and 15 min for
MSG) . Obviously associated errors should be important at
this scale. But this resolution allows to match with any final
2se | 1 product grid size or any watershed for hydrological models
and crop models.

5 + : 1 The comparison of EPSAT-SG with GPCP-1dd on the
oA . o 2004 rainy season shows sensible accuracy improvements
o . even when accumulating on 10-day periods. This result sug-
. 07 gest that the downscaling procedure is running efficiently and
» i“ﬁ L reduces the error of the ingested rainfall product.

s «*‘i o | After the integration of EPSAT-SG products in AMMA
database, a new implementation has been defined and in-
o M . ‘ . . stalled in AGRHYMET Center. This new version, designed

’ * yesitssion to-tu stinstes oo . *  torunboth in near real time and in differed mode, is currently
under evaluation. Moreover the described method can be
Fig. 16b. Scatter-plot of EPSAT-SG versus validation rain-gauge easily extended to area covered by other GEO satellites than
dataset. MSG. It can also be tuned to integrate other rainfall reference
data sources than GPCP. In the frame of the future Megha-

an interesting stability property: once the network is trained,TrOpIques operational products, the adaptation of EPSAT-SG

its coefficients could be applied to other time periods without'® develope_d toingest all the geostationary satellites covering
significant loss of accuracy. the full tropical bet.

The rainfall potential intensity is a new concept introduced
in EPSAT-SG. The idea beyond this conditional rainfall in- acknowledgementsBased on a French initiative, AMMA was built
tensity is that it takes into account the local aerologic envi-py an international scientific group and is currently funded by a
ronment whereas the Rainfall Probability retrieves the sys{arge number of agencies, especially from France, the UK, the US
tem tracking information. In a simple case, as the AMMA and Africa. It has been the beneficiary of a major financial con-
implementation, it performs a downscaling of a rainfall ref- tribution from the European Community’s Sixth Framework Re-
erence field. But it would also allow to merge various pre- search Programme. Detailed information on scientific coordina-

cipitation intensity fields on the basis of their local estimation tion and funding is available on the AMMA International web site:
error. http://www.amma-international.org

Topical Editor F. D’Andrea thanks two anonymous referees for
their help in evaluating this paper.
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