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Abstract

The Whitham equation was proposed as an alternate model equation for the simplified
description of uni-directional wave motion at the surface of an inviscid fluid. As the Whitham
equation incorporates the full linear dispersion relation of the water wave problem, it is
thought to provide a more faithful description of shorter waves of small amplitude than
traditional long wave models such as the KdV equation.

In this work, we identify a scaling regime in which the Whitham equation can be derived
from the Hamiltonian theory of surface water waves. The Whitham equation is integrated
numerically, and it is shown that the equation gives a close approximation of inviscid free
surface dynamics as described by the Euler equations. The performance of the Whitham
equation as a model for free surface dynamics is also compared to two standard free surface
models: the KdV and the BBM equation. It is found that in a wide parameter range of
amplitudes and wavelengths, the Whitham equation performs on par with or better than
both the KdV and BBM equations.

1 Introduction

In its simplest form, the water-wave problem concerns the flow of an incompressible inviscid
fluid with a free surface over a horizontal impenetrable bed. In this situation, the fluid flow is
described by the Euler equations with appropriate boundary conditions, and the dynamics of
the free surface are of particular interest in the solution of this problem.

There are a number of model equations which allow the approximate description of the
evolution of the free surface without having to provide a complete solution of the fluid flow below
the surface. In the present contribution, interest is focused on the derivation and evaluation of
a nonlocal water-wave model known as the Whitham equation. The equation is written as

ηt +
3

2

c0
h0

ηηx +Kh0
∗ ηx = 0, (1)

where the convolution kernel Kh0
is given in terms of the Fourier transform by

FKh0
(ξ) =

√

g tanh(h0ξ)
ξ , (2)
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g is the gravitational acceleration, h0 is the undisturbed depth of the fluid, and c0 =
√
gh0 is

the corresponding long-wave speed. The convolution can be thought of as a Fourier multiplier
operator, and (2) represents the Fourier symbol of the operator.

The Whitham equation was proposed by Whitham [26] as an alternative to the well known
Korteweg-de Vries (KdV) equation

ηt + c0ηx +
3

2

c0
h0

ηηx +
1

6
c0h

2
0ηxxx = 0. (3)

The validity of the KdV equation as a model for surface water waves can be described as
follows. Suppose a wave field with a prominent amplitude a and characteristic wavelength l is
to be studied. The KdV equation is known to produce a good approximation of the evolution of
the waves if the amplitude of the waves is small and the wavelength is large when compared to
the undisturbed depth, and if in addition, the two non-dimensional quantities a/h0 and h20/l

2

are of similar size. The latter requirement can be written in terms of the Stokes number as

S =
al2

h30
∼ 1.

While the KdV equation is a good model for surface waves if S ∼ 1, one notorious problem with
the KdV equation is that it does not model accurately the dynamics of shorter waves. Recogniz-
ing this shortcoming of the KdV equation, Whitham proposed to use the same nonlinearity as
the KdV equation, but couple it with a linear term which mimics the linear dispersion relation
of the full water-wave problem. Thus, at least in theory, the Whitham equation can be expected
to yield a description of the dynamics of shorter waves which is closer to the solutions of the
more fundamental Euler equations which govern the flow.

TheWhitham equation has been studied from a number of vantage points during recent years.
In particular, the existence of traveling and solitary waves has been established in [10, 11]. Well
posedness of a similar equation was investigated in [16, 17], and a model with variable depth has
been studied numerically in [2]. Moreover, it has been shown in [15, 25] that periodic solutions
of the Whitham equation feature modulational instability for short enough waves in a similar
way as small-amplitude periodic wave solutions of the water-wave problem. However, it appears
that the performance of the Whitham equation in the description of surface water waves has
not been investigated so far.

The purpose of the present article is to give an asymptotic derivation of the Whitham
equation as a model for surface water waves, and to confirm Whitham’s expectation that the
equation is a fair model for the description of time-dependent surface water waves. For the
purpose of the derivation, we introduce an exponential scaling regime in which the Whitham
equation can be derived asymptotically from an approximate Hamiltonian principle for surface
water waves. In order to motivate the use of this scaling, note that the KdV equation has the
property that wide classes of initial data decompose into a number of solitary waves and small-
amplitude dispersive residue [1]. For the KdV equations, solitary-wave solutions are known in
closed form, and are given by

η =
a

h0
sech2

(
√

3a
4h3

0

(x− ct)
)

(4)

for a certain wave celerity c. These waves clearly comply with the amplitude-wavelength relation
a/h0 ∼ h20/l

2 which was mentioned above. It appears that the Whitham equation - as indeed do
many other nonlinear dispersive equations - also has the property that broad classes of initial
data rapidly decompose into ordered trains of solitary waves (see Figure 1). Quantifying the
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Figure 1: Left panel: Formation of solitary waves of the Whitham equation from Gaussian
initial data. Right panel: Curve fit for the Whitham regime and for the Boussinesq regime
to amplitude/wavelength data from Whitham solitary waves. The wavelength is defined as
l = 1

a

∫∞

−∞
η(x)dx.

amplitude-wavelength relation for these solitary waves yields an asymptotic regime which is
expected to be relevant to the validity of the Whitham equation as a water wave model.

As the curve fit in the right panel of Figure 1 shows, the relationship between wavelength
and amplitude of the Whitham solitary waves can be approximately described by the relation
a
h0

∼ e−κ(l/h0)ν for certain values of κ and ν. Since the Whitham solitary waves are not known
in exact form, the values of κ and ν have to be found numerically. Then one may define a
Whitham scaling regime

W(κ, ν) =
a

h0
eκ(l/h0)ν ∼ 1, (5)

and it will be shown in sections 2 and 3 that this scaling can be used advantageously in the
derivation of the Whitham equation. The derivation proceeds by examining the Hamiltonian
formulation of the water-wave problem due to Zhakarov, Craig and Sulem [7, 28], and by re-
stricting to wave motion which is predominantly in the direction of increasing values of x. The
approach is similar to the method of [5], but relies on the new relation (5).

First, in Section 2, a Whitham system is derived which allows for two-way propagation of
waves. The Whitham equation is found in Section 3. Finally, in Section 4, a comparison of
modeling properties of the KdV and Whitham equations is given. The comparison also includes
the regularized long-wave equation

ηt + c0 ηx +
3

2

c0
h0

η ηx −
1

6
h20 ηxxt = 0, (6)

which was put forward in [23] and studied in depth in [3], and which is also known as the BBM
or PBBM equation. The linearized dispersion relation of this equation is not an exact match
to the dispersion relation of the full water-wave problem, but it is much closer than the KdV
equation, and it might also be expected that this equation may be able to model shorter waves
more successfully than the KdV equation. However, as will be seen, solutions of the Whitham
equation appear to give a closer approximation to solutions of the full Euler equations than
either (3) or (6) in most cases investigated.

3



2 Derivation of evolution systems of Whitham type

The surface water-wave problem is generally described by the Euler equations with slip con-
ditions at the bottom, and kinematic and dynamic boundary conditions at the free surface.
Assuming weak transverse effects, the unknowns are the surface elevation η(x, t), the horizontal
and vertical fluid velocities u1(x, z, t) and u2(x, z, t), respectively, and the pressure P (x, z, t). If
the assumption of irrotational flow is made, then a velocity potential φ(x, z, t) can be used. In
order to nondimensionalize the problem, the undisturbed depth h0 is taken as a unit of distance,
and the parameter

√

h0/g as a unit of time. For the remainder of this article, all variables
appearing in the water-wave problem are considered as being non-dimensional. The problem
is posed on a domain

{

(x, z)T ∈ R
2| − 1 < z < η(x, t)

}

which extends to infinity in the positive
and negative x-direction. Due to the incompressibility of the fluid, the potential then satis-
fies Laplace’s equation in this domain. The fact that the fluid cannot penetrate the bottom is
expressed by a homogeneous Neumann boundary condition at the flat bottom. Thus we have

φxx + φzz = 0 in −1 < z < η(x, t)

φz = 0 on z = −1.

The pressure is eliminated with help of the Bernoulli equation, and the free-surface boundary
conditions are formulated in terms of the potential and the surface excursion by

ηt + φxηx − φz = 0,
φt +

1
2

(

φ2
x + φ2

z

)

+ η = 0,

}

on z = η(x, t).

The total energy of the system is given by the sum of kinetic energy and potential energy, and
normalized such that the potential energy is zero when no wave motion is present at the surface.
Accordingly the Hamiltonian function for this problem is

H =

∫

R

∫ η

0
z dzdx+

∫

R

∫ η

−1

1

2
|∇φ|2 dzdx. (7)

Defining the trace of the potential at the free surface as Φ(x, t) = φ(x, η(x, t), t), one may
integrate in z in the first integral and use the divergence theorem on the second integral in order
to arrive at the formulation

H =
1

2

∫

R

[

η2 +ΦG(η)Φ
]

dx. (8)

This is the Hamiltonian formulation of the water wave problem as found in [7, 24, 28], and
written in terms of the Dirichlet-Neumann operator G(η). As shown in [21], the Dirichlet-
Neumann operator can be expanded as a power series as

G(η)Φ =

∞
∑

j=0

Gj(η)Φ. (9)

In order to proceed, we need to understand the first few terms in this series. As shown in [5, 7],
the first two terms in this series can be written with the help of the operator D = −i∂x as

G0(η) = D tanh(D), G1(η) = DηD −D tanh(D)ηD tanh(D).

Note that it can be shown that the terms Gj(η) for j ≥ 2 are of quadratic or higher-order in η,
and will therefore not be needed in the current analysis.
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It will be convenient for the present purpose to formulate the Hamiltonian in terms of the
dependent variable u = Φx. To this end, we define the operator K(η) by

G(η) = DK(η)D.

As was the case with G(η), the operator K(η) can be expanded in a Taylor series around zero
as

K(η)ξ =
∞
∑

j=0

Kj(η)ξ , Kj(η) = D−1Gj(η)D
−1. (10)

In particular, note that K0 = tanhD
D . In non-dimensional variables, we write the operator with

the integral kernel Kh0
as K =

√

tanhD
D , so that we have K0 = K2. The Hamiltonian is then

expressed as

H =
1

2

∫

R

[

η2 + uK(η)u
]

dx. (11)

The water-wave problem can then be written as a Hamiltonian system using the variational
derivatives of H and posing the Hamiltonian equations

ηt = −∂x
δH

δu
, ut = −∂x

δH

δη
. (12)

This system is not in canonical form as the associated structure map Jη,u is symmetric:

Jη,u =

(

0 −∂x
−∂x 0

)

.

We now proceed to derive a system of equations which is similar to the Whitham equation
(1), but allows bi-directional wave propagation. This system will be a stepping stone on the
way to a derivation of (1), but may also be of independent interest. Consider a wavefield
having a characteristic wavelength l and a characteristic amplitude a. Taking into account the
nondimensionalization, the two scalar parameters λ = l/h0 and α = a/h0 appear. In order to
introduce the long-wave and small amplitude approximation into the non-dimensional problem,
we use the scaling x̃ = 1

λx, and η = αη̃. This induces the transformation D̃ = λD = −λi∂x. If
the energy is nondimensionalized in accord with the nondimensionalization mentioned earlier,
then the natural scaling for the Hamiltonian is H̃ = α2H. In addition, the unknown u is scaled
as u = αũ. The scaled Hamiltonian (11) is then written as

H̃ =
1

2

∫

R

η̃2 dx+
1

2

∫

R

ũ
[

1− 1
3λ

−2D̃2 + · · ·
]

ũ dx+
α

2

∫

R

η̃ũ2 dx

− α

2

∫

R

ũ
[

λ−1D̃ − 1
3λ

−3D̃3 + · · ·
]

η̃
[

λ−1D̃ − 1
3λ

−3D̃3 + · · ·
]

ũ dx.

Let us now introduce the small parameter µ = 1
λ , and assume for simplicity that α = e−κ/µν

,
which corresponds to the case where W(κ, ν) = 1. Then the Hamiltonian can be written in the
following form:

H̃ =
1

2

∫

R

η̃2 dx+
1

2

∫

R

ũ
[

1− 1
3µ

2D̃2 + · · ·
]

ũ dx+
e−κ/µν

2

∫

R

η̃ũ2 dx

− e−κ/µν

2

∫

R

ũ
[

µD̃ − 1
3µ

3D̃3 + . . .
]

η̃
[

µD̃ − 1
3µ

3D̃3 + · · ·
]

ũ dx.
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Disregarding terms of order O(µ2e−κ/µν

), but not of order O(e−κ/µν

) yields the expansion

H̃ =
1

2

∫

R

η̃2 dx+
1

2

∫

R

ũ
[

1− 1
3µ

2D̃2 + . . .
]

ũ dx+
e−κ/µν

2

∫

R

η̃ũ2 dx. (13)

Note that by taking µ small enough, an arbitrary number of terms of algebraic order in µ may
be kept in the asymptotic series, so that the truncated version of the Hamiltonian in dimensional
variables may be written as

H =
1

2

∫

R

[

η2 + uKN
0 (η)u+ uηu

]

dxdz. (14)

However, the difference between K0 and KN
0 is below the order of approximation, so that it

is possible to formally define the truncated Hamiltonian with K0 instead of KN
0 . Hence, the

Whitham system is obtained from the Hamiltonian (14) as follows:

ηt = −∂x
δH

δu
= −K0ux − (ηu)x, (15)

ut = −∂x
δH

δη
= −ηx − uux. (16)

One may also derive a higher-order equation by keeping terms of order O(µ2e−κ/µν

), but dis-
carding terms of order O(µ4e−κ/µν

). In this case we find the system

ηt = −K0ux − (ηu)x − (ηux)xx,

ut = −ηx − uux + uxuxx.

3 Derivation of evolution equations of Whitham type

In order to derive the Whitham equation for uni-directional wave propagation, it is important
to understand how solutions of the Whitham system (15)-(16) can be restricted to either left
or right-going waves. As it will turn out, if η and u are such that η = Ku, then this pair of
functions represents a solution of (15)-(16) which is propagating to the right. Indeed, let us
analyze the relation between η and u in the linearized Whitham system

ηt = −K0ux, (17)

ut = −ηx. (18)

Considering a solution of the system (17)-(18) in the form

η(x, t) = Ae(iξx−iωt), u(x, t) = Be(iξx−iωt). (19)

gives rise to the matrix equation

(

−ω tanh ξ
ξ ξ

ξ −ω

)

(

A
B

)

=

(

0
0

)

. (20)

If existence of a nontrivial solution of this system is to be guaranteed, the determinant of the
matrix has to be zero, so that we have ω2 − tanh ξ

ξ ξ2 = 0. Defining the phase speed as c = ω/ξ,
we obtain the dispersion relation

c = ±
√

tanh ξ
ξ . (21)
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The choice of c > 0 corresponds to right-going wave solutions of the system (17)-(18), and the
relation between η and u can be deduced from (18). Accordingly, it is expedient to separate
solutions into a right-going part r and a left-going part s which are defined by

r =
1

2
(η +Ku), s =

1

2
(η −Ku).

According to the transformation theory detailed in [6], if the unknowns r and s are used instead
of η and u, the structure map changes to

Jr,s =

(

∂F

∂(η, u)

)

Jη,u

(

∂F

∂(η, u)

)T

=

(

−1
2∂xK 0
0 1

2∂xK

)

. (22)

We now use the same scaling for both dependent and independent variables as before. Thus we
have r = αr̃ and s = αs̃. The Hamiltonian is written in terms of r̃ and s̃ as

H̃ =
1

2

∫

R

(r̃ + s̃)2 dx

+
1

2

∫

R

K̃−1(r̃ − s̃)
[

1− 1
3µ

2D̃2 + · · ·
]

K̃−1(r̃ − s̃) dx+
α

2

∫

R

(r̃ + s̃)
(

K̃−1(r̃ − s̃)
)2

dx

− α

2

∫

R

K̃−1(r̃ − s̃)
[

µD̃ − 1
3µ

3D̃3 + · · ·
]

(r̃ + s̃)
[

µD̃ − 1
3µ

3D̃3 + · · ·
]

K̃−1(r̃ − s̃) dx.

Following the transformation rules, the structure map transforms to Jr̃,s̃ = 1/α2Jr,s. In addition,
the time scaling t = λt̃ is employed. Since the focus is on right-going solutions, the equation to
be considered is

λr̃t̃ = − 1

2α2
λ∂x̃K̃

[

δ
(

α2H̃
)

δr̃

]

. (23)

So far, this equation is exact. If we now assume that s is of the order of O(µ2e−κ/µν

), then the
equation for r̃ is

r̃t̃ = −1

2
∂x̃
[

1− 1
6µ

2D̃2 + · · ·
]

{

2r̃ +
α

2

(

[

1 + 1
6µ

2D̃2 + · · ·
]

r̃
)2

+α
[

1 + 1
6µ

2D̃2 + · · ·
]

(

r̃
[

1 + 1
6µ

2D̃2 + · · ·
]

r̃
)

− α

2

(

[

µD̃ − 1
3µ

3D̃3 + · · ·
][

1 + 1
6µ

2D̃2 + · · ·
]

r̃
)2

−α
[

µD̃−1
3µ

3D̃3+· · ·
][

1+1
6µ

2D̃2+· · ·
]

(

r̃
[

µD̃ − 1
3µ

3D̃3 + · · ·
]

[1 + 1
6µ

2D̃2 + · · ·
]

r̃
)

}

+O(αµ2).

As in the case of the Whitham system, we use α = O(e−κ/µν

), and disregard terms of order
O(µ2e−κ/µν

), but not of order O(e−κ/µν

). This procedure yields the Whitham equation (1)
which is written in nondimensional variables as

rt = −Krx −
3

2
rrx.

As was the case for the system found in the previous section, it is also possible here to include
terms of order O(µ2e−κ/µν

), resulting in the higher-order equation

rt = −Krx −
3

2
rrx −

13

12
rxrxx −

5

12
rrxxx.
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4 Numerical results

In this section, the performance of the Whitham equation as a model for surface water waves is
compared to both the KdV equation (3) and to the BBM equation (6). For this purpose initial
data are imposed, the Whitham, KdV and BBM equations are solved numerically, and the solu-
tions are compared to numerical solutions of the full Euler equations with free-surface boundary
conditions. We continue to work in normalized variables, such as stated in the beginning of
Section 2.

The numerical treatment of the three model equations is by a standard pseudo-spectral
scheme, such as explained in [12, 13] for example. For the time stepping, an efficient fourth-
order implicit method developed in [9] is used. The numerical treatment of the free-surface
problem for the Euler equations is based on a conformal mapping of the fluid domain into a
rectangle. In the time-dependent case, this method has roots in the work of Ovsyannikov [22],
and was later used in [8] and [18]. The particular method used for the numerical experiments
reported here is a pseudo-spectral scheme which is detailed in [20].

Initial conditions for the Euler equations are chosen in such a way that the solutions are
expected to be right moving. This is achieved by posing an initial surface disturbance η0(x)
together with the trace of the potential Φ(x) =

∫ x
0 η0(x

′) dx′. In order to normalize the data,
we choose η0(x) in such a way that the average of η0(x) over the computational domain is zero.
The experiments are performed with several different amplitudes α and wavelengths λ (for the
purpose of this section, we define the wavelength λ as the distance between the two points x1
and x2 at which η0(x1) = η0(x2) = α/2). Both positive and negative initial disturbances are
considered. While disturbances with positive main part have been studied widely, an initial
wave of depression is somewhat more exotic, but nevertheless important, as shown for instance
in [14]. A summary of the experiments’ settings is given in Table 1. Experiments run with
an initial wave of elevation are labeled as positive, and experiments run with an initial wave
of depression are labeled as negative. The domain for the computations is −L ≤ x ≤ L, with
L = 50. The function initial data in the positive cases is given by

η0(x) = α sech2(f(λ)x)− C, (24)

where

f(λ) =
2

λ
log

(

1+
√

1/2√
1/2

)

, and C =
1

L

α

f(λ)
tanh

(

L
f(λ)

)

.

and C and f(λ) are chosen so that
∫ L
−L η0(x)dx = 0, and the wavelength λ is the distance

between the two points x1 and x2 at which η0(x1) = η0(x2) = a/2. The velocity potential in
this case is given by

Φ(x) =
α

f(λ)
tanh(f(λ)x)− Cx. (25)

In the negative case, the initial data are given by

η0(x) = −α sech2(f(λ)x) + C.

The definitions for f(λ) and C are the same, and the velocity potential is

Φ(x) = − α

f(λ)
tanh(f(λ)x) + Cx.

In Figure 2, the time evolution of a wave with an initial narrow peak and one with an initial
narrow depression at the center is shown. The amplitude is α = 0.2, and the wavelength is λ =√
5. The time evolution according to the Euler, Whitham, KdV and BBM equations are shown.
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Experiment Stokes number α λ

A 0.2 0.1
√
2

B 0.2 0.2 1

C 1 0.1
√
10

D 1 0.2
√
5

E 5 0.1
√
50

F 5 0.2 5

Table 1: Summary of the Stokes number, nondimensional amplitude and nondimensional wave-
length of the initial data used in the numerical experiments.

It appears that the KdV equation produces a significant number of spurious oscillations, the
BBM equation also produces a fair number of spurious oscillations, and the Whitham equation
produces fewer small oscillations than Euler equations. Moreover, while the highest peak in
the upper panel in Figure 2 is underpredicted by the KdV and BBM equation, the Whitham
equation produces a peak which is slightly too high. In the case of an initial depression, the
Whitham equation also produces some peaks which are too high, but on the other hand, both
the KdV and BBM equations introduce a phase error in the main oscillations.

In the center right panels of figures 3 and 4, the computations from Figure 2 are summarized
by plotting the normalized L2-error between the KdV, BBM and Whitham, respectively, and
the Euler solutions as a function of non-dimensional time. Using this quantitative measure of
comparison, it appears that the Whitham equation gives a better overall rendition of the free
surface dynamics predicted by the Euler equations.

In the center left panels of figures 3 and 4, a similar computation with S = 1, but smaller
amplitude is analyzed. Also in these cases, it appears that the Whitham equation gives a
good approximation to the corresponding Euler solutions, and in particular, a much better
approximation than either the KdV or the BBM equation.

Figures 3 and 4 show comparisons in several other cases of both positive and negative initial
amplitude, and Stokes numbers S = 0.2, S = 1 and S = 5. In most cases, the normalized
L2-error between the Whitham and Euler solutions is similar or smaller than the errors between
KdV, respective BBM and Euler solutions. The only case in this study in which the KdV and
BBM equations outperform the Whitham equation is in the case of very long waves (lower panels
of Figure 3). In this case, we have S = 5, and the main wave of the initial disturbance is positive.
However, even in this case, the Whitham equation yields approximations of the Euler solutions
which are similar or better than in the case of smaller wavelengths. In addition, in the case of
negative initial data, the performance of the Whitham equation is on par with the KdV and
BBM equations in the case when S = 5 (lower panels of Figure 3).

5 Conclusion

In this article, the Whitham equation (1) has been studied as an approximate model equation for
wave motion at the surface of a perfect fluid. Numerical integration of the equation suggests that
broad classes of initial data decompose into individual solitary waves. The wavelength-amplitude
ratio of these approximate solitary waves has been studied, and it was found that this ratio can
be described by an exponential relation of the form a

h0
∼ e−κ(l/h0)ν . Using this scaling in the

Hamiltonian formulation of the water-wave problem, a system of evolution equations has been
derived which contains the exact dispersion relation of the water-wave problem in its linear
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Figure 3: L2 errors in approximation of solutions to full Euler equations by different model equations:
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Figure 4: L2 errors in approximation of solutions to full Euler equations by different model equations:
cases A and B (S = 0.2), cases C and D (S = 1), cases E and F (S = 5), negative.
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part. Restricting to one-way propagation, the Whitham equation emerged as a model which
combines the usual quadratic nonlinearity with one branch of the exact dispersion relation of
the water-wave problem. The performance of the Whitham equation in the approximation of
solutions of the Euler equations free-surface boundary conditions was analyzed, and compared
to the performance of the KdV and BBM equations. It was found that the Whitham equation
gives a more faithful representation of the Euler solutions than either of the other two model
equations, except in the case of very long waves with positive main part.
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