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Abstract We study the admissible growth of initial data of positive solutions of dyu—Au+ f(u) =0
in Ry x RY when f(u) is a continuous mildly superlinear function at infinity, the model being
f(u) =uln®(u) with 1 < a < 2. We prove that if the growth of the initial data is too strong, there
is no more diffusion and the corresponding solution satisfies the ODE problem ;¢ + f(¢) = 0 on
R with ¢(0) = occ.
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1 Introduction

Let h be a continuous nondecreasing function defined on R and vanishing only at 0. It
is well known that for any continuous and bounded function g belonging to C’Ij (RN), the



cone of bounded nonnegative continuous functions on RY, there exists a unique weak
solution u := u, € C;f (R4 x RY) of

Ou — Au~+ uh(u) =0 in Q% =Ry xRY
1.1
PI% u(t,.) =g locally uniformly in RV, (1.1)
e

Furthermore, the solution u satisfies
0< u(x,t) < (I)”g”Loo (t) V(t,x) € QIEPN’ (1.2)
where @, is the restriction to Ry of the maximal solution of

Oy + Ph(P) =0 on R
a.

o (1.3)

When ¢ ceases to be bounded, the existence of a solution holds provided

> ds
/a Sh(s) < 00, (1.4)

for some a > 0. Furthermore there exists a minimal solution u, which is the limit, when
n — oo, of the solutions ug, of

Oru — Au + uh(u) in Qpy

=0
limu(t,.) = gxg, locally uniformly in RY,

t—0

(1.5)

where B,, denotes the open ball of radius n and x4 is characteristic function of the set A.
Furthermore there holds

0 < uy < O (1.6)
We first prove a uniqueness result

Theorem A Assume r +— rh(r) is conver and satisfies, for some a > 0,

oo d S

/ ° < oo where H(t) = / th(t)dt, (1.7)
a H(S) 0

then for any g € CT(RY), ug is the unique nonnegative solution of (1.1).

When h is a power the class of existence and uniqueness is much larger and is asso-
ciated to the notion of initial trace which has been thoroughly studied by Marcus and
Véron [3], [4] and Gkikas and Véron [2].

When

*  ds
/a 70 =00 Ya > 0, (1.8)



uniqueness may not hold in the class of unbounded solution. If, for any b > 0, V}, denotes
the maximal solution of the following ODE

Vir + #VT —Vh(V)=0 on (0,R,)
V() =0 (1.9)
V:(0) =0

then R = oo (see e.g. [7]). Furthermore, Nguyen Phuoc and Véron proved in [5] that if g
satisfies
V(al) < g(a) < Vi(lz]) Vo € RN (1.10)

for some b > ¢ > 0, then there exists at least two different solutions of (1.1) defined in

Qpn: the minimal one u, which satisfies

ug(z,t) < Poo(t) V(z,t) € Qxw, (1.11)
and another one uy such that
Ve(lz]) < ug(z,t) < Vo(lz])  V(=,t) € Qpn- (1.12)

Actually it is not clear wether there exists a maximal solution or not. However, if
g satisfies (1.10), then there exists a minimal solution u, ., and a maximal one ., in
the class €.3(g) of solutions of problem (1.1), satisfying inequalities (1.12). These two
solutions can be constructed by the following approximate scheme. Let us define sequence
{u,,} of solutions of the Cauchy-Dirichlet problem

Ou — Au~+ uh(u) =0 in QF =Ry x B,
u(t,z) = Ve(n) in 0,Q%, =Ry x 9B, (1.13)
u(0,.) =g in By,.

Then it is easy to check using comparison principle that the sequence {u,,} is increasing
and converges to u, .. Similarly, the sequence {my} of solutions of the same equation in
Q%, with the same initial data and boundary value Vp(n) is decreasing and converges to
Ug.c,be

When the initial data g growth at infinity faster than any function V, with arbitrary
b < oo we prove that such a solution cannot exist: For any a > 0 we denote by u := uq
the solution of

Ou — Au~+ uh(u) =0 in QF =Ry x By,
u(t,z) = Vg(n) in 0,Q%, =Ry x 9B, (1.14)
u(0,.) = min{V,, g} in B,

Theorem B Assume r — rh(r) is conver and satisfies (1.4) and (1.8). If g € CT(RN),
satisfies
. _9(@)
lim
|z|—o0 Va(|£ﬂ|)

—c0  Va>0, (1.15)



then the sequence {uqntnen, decreases and converges to a solution u, of (1.1) with initial
data min{Vy, g}. Furthermore u,(t,z) — oo for any (t,r) € QFy as a — oo,

A fundamental example of equations with nonlinearities satisfying (1.4) and (1.8) is
provided by
Ou — Au~+uln®(1+u) =0 in Qv (1.16)
with 1 < a < 2. With this specific type of nonlinearity we prove:

Theorem C Assume 1 < o < 2 and g € CH(RY), satisfies (1.15). Then the minimal
solution u, of (1.16) with initial data g is Poo.

2 The maximal solution

2.1 Proof of Theorem A

Let u, be the minimal solution of (1.1) and u another solution with the same initial data
g. We set w = u — u,. Since 1+ rh(r) is convex and u — u, is positive,

uh(u) > ugh(u,) + (u — ug)h(u —u,).

Therefore w is a subsolution of problem (1.1), and w(t,x) — 0 as ¢t — 0, locally uniformly

in RV. Let v, be the minimal solution of

—Av + vh(v)

=0
lim v(x) = oc.
|z|—n

in B,
(2.17)

Such a solution exists by [1] or [6] because (1.7) holds, and it is radial as limit of the radial
functions vy, 1, k € N*, which are solutions of (2.17) with finite boundary data v, ; = k on
0B,,. Moreover vy, , and thus vy, is an increasing function of |z|. Then v > 0 and it is a
stationary solution of (1.1) in Q% . By the comparison principle

w(t,z) < vy (x) in Qg .
Furthermore n +— v, is decreasing with limit v, as n — co. The function v, verifies
—Av 4 vh(v) =0 in RY.

Furthermore it is nonnegative, radial and nondecreasing with respect to |z|. In order to
prove that v = 0, we return to v,, which satisfies

Uy p = Tl_N/OrsN_lvn(s)h(vn(s))ds < vn(r)h(vn(T))Tl_N/OrSN_ldS = %Un(T)h(Un(T))-

Thus
_meHMﬂM%&»:E%iwmg(L—%)%&M@MM)

which implies

—%w+%%mM%@»gu



Integrating twice yields

& ds 2
/Un(r) 7_}[(75) > \/;(n — ). (2.18)

where H has been defined in (1.7). If we had v (r) > 0 for any r > 0, it would imply
S > ds S
— >0,
Voo (1) V/ QH(t)

a contradiction. Thus v (r) = 0 and w(t, x) = 0. O

o0

2.2 Proof of Theorem B

We recall that (1.15) holds and that wug, denotes the solution of (1.14). Since V,[gs is
the solution of the Cauchy-Dirichlet problem

Ou — Au~+ uh(u) =0 in QF, =Ry x B,
u(t,z) = Va(n) in QF =Ry x 0B, (2.19)
w(0,.) =V, in By,

it is larger than ug . Thus ug p11 LaZQoBon < Ugn Laf@?n = Vj. Since uq,(0,.) = ugnt1l5,(0,.)
it follows that ugn41 LQoBo < Uugyn. Then {u,,} is a decreasing sequence, and its limit wu,
is a solution of (1.1), which the first claim. By the same argument, g, < upn+1 LQoBo in

OBOn for b > a. Hence u, < up. We introduce the sequence {r,} : r, — o0 as a — o

defined by:
re =1inf{r > 0:g(x) > Vo(x) Vl|z|>r}. (2.20)

and, for n > rq, we set wq ., =V, — uq,n By convexity it satisfies

Orwa,n — Awg p + Wanh(Wen) <0 in QF =Ry x By,
Wan(t, ) =0 in 0,Q%, =Ry x OBy, (2.21)
wan(0,0) = (Va—g)s  in B
Therefore
Wan(t,2) < Poo(t) in Qf, (2.22)

where @, is defined in (1.3) with a = co. Actually,

/OO s __, (2.23)
oot Sh(s) '

Notice also that the sequence {w,} is increasing and it converges, as n — oo, to w, =
V. — uq, which is dominated by ®., Thus

Ug(t, ) > Vo(x) — Poo(t) > a — Poo(t) in Qpn. (2.24)

Letting a — oo implies the claim. O



3 The minimal solution

In this section we consider equation (1.16) with 1 < a < 2.

3.1 The stationary problem

Proposition 3.1 Assume 1 < o <2, a > 0 and V, is the solution of

N -1
Vir + " V,=Vh*(V+4+1)=0 in Ry
V,(0) =0 (3.25)
V(a) = a.
Then )
V(r)= ear?=+0(1) as r — 0o, (3.26)

2
where ¢, = (Q_TO‘) 2-a

Proof. We write W = In(V + 1). Since V is increasing W > 0, W, > 0 and
N -1

Wy + W2 + — W, - 1—e"W*=0 inR,. (3.27)

Thus
W +W2—(1—eV)yWwe <o.

If we set p =W and p(p) = W,.(r), then p € [a,00) and
' +p°—(1—eP)p* <0.
This is a linear differential inequality in the unknown p?. Integrating yields

P
p(p) < 26_2p/ (e — e%)s%ds = p® + O(1). (3.28)

Thus W,(r) < W2 (r) + O(1) as r — oo which implies
W(r) < cOﬂ“ﬁ +O(1) as r — 00. (3.29)

Due to (3.29), relationship (3.28) yields also the following inequality

|2

o

0< W, <cgrz=a(1+o(1)).

Since W(r) — oo as r — oo it follows from equality (3.27) by using of relation (3.28) that
for any € > 0 there exists r. > 0 such that

Wy + W2 > (1 — €)W on [re,00).



Integrating this ordinary differential inequality by standard way we get
W(r) > (1—€))ear?a(l+o(l))  as r— oo. (3.30)
Since € is arbitrary, we derive
W(r)= car%(l +o0(1)) as r — 0o. (3.31)
From the above estimates, we can improve (3.30). Using (3.28) and (3.31) we deduce from
(3.27):

N-1
pp' PP = (1= P)p — ——W, > (1= P)p* —ep* !,
T

from which it follows easily
P
p(p) > 26_2"/ e* (s — s Nds = p* + 0(1), (3.32)
a
by I’'Hospital rule. Combined with (3.31), (3.29) it implies

W(r) = carﬁ +O(1) as r — 0. (3.33)

Returning to V,, we derive

_2
Vo(r) = e 0 a5 1 o0, (3.34)

Remark. If o = 2, the same method yields

Vo(r) = e FOW as r — 00. (3.35)

3.2 Proof of Theorem C

We recall that the minimal solution w, is the limit, when n — oo of the (increasing)
sequence of solutions {uy, } of

Ou — Au+uln®(u+1) =0 in Qpy
(3.36)
u(O, ) = 9gXB,, in RN,

where {¢,,} is any increasing sequence converging to co. Furthermore if we replace g by it
maximal radial minorant defined by §(r) := minj—, g(7), it satisfies also (1.15). Because
of (1.15) there exists a sequence {r,} tending to infinity such that

rp =1nf{r > 0:g(s) > V,(s) Vs > r},

then g(ry) = Vy,(ry).



Step 1: Estimate from below. Put

an(lz)) = { mindg(ra), g(le))} if [z] <,
' 9(rm) it a| >
Let Uy, be the minimal solution of
ou—Au+uln®(u+1)=0 in QX
t v v (3.37)
u(07 ) = 0n in RV,

Then u,, < ®. For any sequence {{;} converging to infinity and any fixed k, there exists
ng such that for n > ny, there holds 9X By, < Yn- Since the sequence {an} is increasing,

its limit uq, is a solution of (1.3) in Q]&N which is larger than wuy, for any £, and therefore
larger also than Ug. However, since g, < g, s < Ug. This implies

Next, since u, (0,7) < g(ry) it follows that u, (t,r) < g(rs). Let wp = @), ie. the
solution of be the solution of (1.3) with a = g(ry,), then w,, satisfies

/g(rn) ds _,
wa(t) Sh(s) 7

and Uy, = Wp where w,, is the minimal solution of

w — Aw +whn“(w, +1) =0 in Qpn
(3.39)
w(0,.) = gn in RV,
If we set wy,(t,x) = e~ I In®(wn(s)+1)ds (¢ ), then
Oszp — Azp =0 in Q5
t<~n n RN (340)
zn(0,.) = gn in RY.
Since
1 _lz—yl?
Zn(t’x) = N € 4 gn(y)dy,
(4nt)z JRN
we can write wy,(t,z) = I,,(t, z) + Jp(t, z) where
e fot In®(wn (s)+1)ds lo—yl2
L(t,z) = i e” # gn(y)dy, (3.41)
(47'('t)3 Iy‘ST'n

and t
e Jo 0 () +Dds g ~lazyl?

Jn(t,x) = — / e~ & dy. (3.42)
(4:7'('t)7 |y‘>7’n




Clearly

v

— [FIn® (wn (s)+1)ds ~ 2
Jn(tax) - N g(rn)/ 6_%dy
(4mt)=2 ly|>rn+|z]

[ n® (wn (s)+1)ds ~ . N
2 ¢ N g(rn) / e_fidz
(47Tt)7 |2|>7rn+]|z|

This integral term can be estimated by introducing Gauss error function

2 [ _ s
ercf(z) = — e dz.
va /a;

In dimension N, it implies easily

- o ~ n+ |z N
Jo(t,z) > [ In® (wn (s)+1)ds . ( f<7" >> .
(t,z) > e Jo g(ryn) | erc NG

Since )
e—l'

av/t

ercf(z) = (1+0(z7?) as x — oo,

we derive

Taftyz) > — 0o s 2 (1 g (1),

N
2

 ((ra +120)?)
We write g(r) = exp(y(r)) — 1 and set

N (rn + |2])?

An(t,x) = (ry) — /0 In®(wp(s) + 1)ds — m

(3.43)

(3.44)

(3.45)

(3.46)

N
— Nln(ry, + |z|) — 5 Int.

In order to have an estimate on wy(s), we fix ¢ < 1 and g(r,) > 1. There exists ag > 1

such that .
t

min Lmzogtgl,azao > —.

we(t) +1 2

In such a range of @ and ¢,

W Hwh*(w+1) = + WLH(w—i— 1) In®(w+1)

1
>w' + §(w + 1) In%(w+ 1),

which yields
2y~! (7n) ot
2+ (= 1)sy*"(ryp) '

In®*(wn(s) +1) < (

From this inequality, we derive

/Ot In“(wn(s) + 1)ds < /Ot (2 - (57_@;;’:2)_1(%0 Pt .

N v () o
< 274(r,) [ 2+ (@ — 1)) =T dr.
0
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Therefore

N(rn + |2[)

N
pr —Nln(rn—|—|x|)—51nt

Ap(t,x) > y(rn) —
(3.47)

N Y~ (1) N
- 20H7(rn)/ 24+ (a—1)7) a1 dr.
0
Step 2: The maximal admissible growth. We claim that
1|ir|ninf|x|—ﬁ Ing(jz]) > N&=a = lim w, () = ®olt) V(7)€ QRN (3.45)
Tr|—00 n—oo

By replacing 7 — (24 (a — 1)7’)_% by its maximal value on (0, ty*~1(r,)),

N t’yail(T‘n) N
2&17(%)/ 24+ (a—1)7) " a—Tdr < y%(rp)t.
0

Then
Ap(t,z) > y(rp) — N(mT—it—\x])Q — Nln(r, + |z|) — glnt —y¥(rp)t := Bp(t,z), (3.49)
" N(ra tlel)? _ N
OBy (t,x) = n4t2 T Y (Tn)-
Thus
N (rn + |z])

O Bp(t,z) =0and t >0 <=1t :=1, (3.50)

N+ /N2 ANy + [2])2 ()

Therefore A, (t,,z) is bounded from below by the maximum of B, (¢, z) which is achieved
for t = ¢, and

N + /N2 + 4N (ry, + |z])27(ry)
4
_ N(rn + [])?y*(ra) _ ﬁ In N(rn + |2])?
N+\/N2+4N(rn+|x|)270f(r ) 2 N+\/N2+4N(T‘n+|x|)27a(rn) .

Bn(tnyx) = V(Tn) - Nln(rn + ‘.%") -

Since r, — o0 as n — oo it follows from last representation that

2 (rn)

1- 1
Bu(tn, ) = 1073 (1) (7 - —N2(1+un(x))>, (3.51)

where v, (x) — 0 as n — oo uniformly on any compact set in RY. Therefore if g satisfies

lim inf [z =5 In§(|z|) > N==, (3.52)

|z|—o00
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then there holds

In(tn, ) = 00 = lim u, (tn,r) = oo, (3.53)
n—00 tn—0"7"

uniformly on compact subsets of RY. We fix m > 0, denote by \,, the first eigenvalue of
—A in H}(B,,), with corresponding eigenfunction ¢, normalized by sup B,, ®m = 1 and
set, for € > 0,

Wine(t,z) = e HPnd (1 + )y (x)  V(t,x) € QEm.
Then

OWine — AW + Wine In (Wi + 1) = Wi (ma(Wm,e F1) - (Dot + ) + 1))
<0.

Since u,, increases to the minimal solution wg, it follows due to (3.53) that there exists
ne such that

Ug(tne, T) > g, (tn, ) 2 Wine(tn, + €,7) Vx € Byy,.
Last inequality in virtue of comparison principle implies

u,(t,z) > Wit +e,x)  V(t,z) e QY t >ty

Letting € — 0 yields u, > Wy, in QBm. Since limy, o0 ¢m(x) = 1, uniformly on any

g
compact subset of RV and lim,,_se0 Ay, = 0 we derive ug > d, and finally Uy = ®,,. This
inequality together with (3.38) leads to u = ® . O

Remark. In the case o = 2, there holds

t ty(rn)
/ In?(wy(s) + 1)ds < 47(7“,1)/ (2 + 1) 2dr < ty(rp). (3.54)
0 0

Therefore (3.49) is replaced by

N(rn + |z])?
4t

A similarly, there exists ¢, > 0 where ¢t — B, (¢,x) is maximum and in that case

Ap(t,x) > () — 7% () — — Nln(ry, + |z|) — %lnt = By(t,x). (3.55)

N + N+ NG + )P )
4

N(ra + |2)*7*(ra) N n( N(ra + Ja])? ) |

N+ /NZHAN(r + [2)22(ra) 2 AN+ N2+ AN(ry + [2])272(rn)

Bn(tnyx) = V(Tn) - Nln(rn + ‘.%") -

which yields
1
By (tn, ) = v(rn) = mny(rn) (N2 — vn(2)), (3.56)
where v,(z) — 0 as n — oo uniformly on any compact set in RY. Thus B,,(t,,z) — —00

as n — 00. A similar type of computation shows that the expression I,(t,z) defined in
(3.41) converges to 0, whatever is the sequence {ry,} considered which converges to co.
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