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Abstract

Most of the time, humans do not watch their steps when walking, especially on even grounds. They walk
without thinking. How robust is this strategy? How rough can the terrain be to walk this way? Walking
performance depends on the dynamical contribution of each part of the body. While it is well known that
the head is stabilized during the motions of humans and animals, its contribution to walking equilibrium
remains unexplored. To address the question we operate, in simulation, a simplified walking model. We
show that the introduction of a stabilized head-neck system drastically improves the robustness to ground
perturbations. It significantly influences the dynamics of walking and hence to the balance. Our study is
a starting point of a wider research on the involvement of vertebral limbs in the mechanics and control
of the human steady gait. It also studies the benefits of such simple control schemes capable to produce
complex behaviors.

Introduction

Depending on the nature of the terrain, a walker’s foot placement requires more or less attention. On the
top part of the pavement depicted by Figure 1, he/she has to anticipate what stones will next be used for
stepping. On the other hand, walking on the pavement indicated in bottom part of the figure 1 does not
require any anticipation of the foot placement: in this case we walk without thinking. While step watching
clearly requires head and gaze control to see the stones, head control is apparently less important when
walking on a flat surface. However neurophysiologists have observed that humans and animals stabilize
their head when moving, even on flat surfaces. In former studies, we have shown that head stabilization
facilitates the fusion of visual and vestibular information. It offers a consistent egocentric reference frame
for motion perception and control in general [1] and for locomotion in particular [2,3]. Our recent results
show that head stabilization improves the estimation of the vertical direction by a vestibular-like inertial
sensor [4]. Here we contribute to elucidate the role played by the head to maintain balance when walking.

Our novel hypothesis is that the head-neck system plays an important role to balance the human
steady gait trajectory, because it not only deals with the tilt estimation within the visuo-vestibular
system and the neck position sense, but also it accounts for a substantial contribution to the dynamics
of walking due to the head stabilization. Indeed, the head at the top of the body weighs around 8% of
the total body mass. It then carries a significant part of the moment of inertia. Thus, head stabilization
contributes to reduce the angular momentum of the body. Moreover, it may also be used to balance the
walker by controlling reaction torques, similar to tightrope-walkers’ poles.

This study is the starting point of a wider research on the involvement of vertebral limbs in the
mechanics and control of the human steady gait and the benefits of such simple control schemes capable
to produce complex behaviors. The objective is also to improve diagnosis and therapy of unsteadiness and
balance disorders, for example in the case of neck sensorimotor diseases [5, 6]. Furthermore, our control
models open new routes to design humanoid robots with more efficient and balanced biped locomotion.

We describe briefly hereafter the models and simulations we use to study the influence of the head-
neck system on the dynamics of gait. Next, the results obtained with this setting are shown followed by
a discussion on our interpretations and conclusions. The remaining of the paper consists of a detailed
technical description of the materials and methods used to obtain our results.
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Models

Based on mechanical concepts from passive robot walkers [7,8], we introduce a walking simulation scheme
promoting the notion of ground texture as a key factor to study walking balance. Two simple walking
mechanical models are then compared. These models include improvements to classical compass-like
walkers, by adding torso, interleg actuation, spring-damper at the feet, and rough terrains. These addi-
tions are active research topics, but their effects and dynamics are beyond the scope of this paper. We
refer then to [7, 9–13] for dedicated studies.

In the first of our two models, the walker has a rigid neck and tends to stabilize the torso upright.
In the second one the neck is modeled as a limb of two joints and the walker tends to maintain the
head direction constant. Both walker models are inspired by the mechanical design of passive walking
robots [7]. The energy efficiency of these robots, the low-frequency of their control and their natural
limit-cycle dynamics are common characteristics with human locomotion [14,15].

Indeed, we do not aim at modeling perfectly the human gait. Up to now, only simple dynamical
models allow to reproduce locomotion gaits [16]. Dynamical modeling of human walking is out of reach
of all current simulators. In our study, we aim at reproducing a broad dynamics of an anthropomorphic
walker in a steady limit-cycle gait, similarly to what is done in [17,18].

Figure 2 illustrates our model. It operates in the sagittal plane. It is made of five articulated rigid
bodies: two bodies for the (knee-free) legs, one body for the torso, one for the neck and one for the head.
Note that the neck is modeled as an articulated body and not as a simple joint. This setting reflects the
property of the head-neck system to have two centers of rotation in the sagittal plane: one at the base of
the neck and the other at ear level [19]. The mass distribution and the limb lengths are anthropometric
(e.g., [20]).

The first walker (Model A) we consider, has a rigid neck, i.e. the torso, the neck and the head make
a single rigid body. The second walker corresponds to the model of head stabilization (Model B): the
neck joints are controlled to maintain a zero tilt for the head. Apart from the neck, both walkers have
the same controls: the torso is actuated to be stabilized upright while a lightweight controller actuates
the inter-leg angle. Finally a velocity driven foot impulsion is given just before the swing phase. The
weakness of the control of the lower limbs make them sensitive to perturbations, and their dynamics can
differ according to upper-body control.

Both models need to know the orientations of the upper-body segments in order to stabilize them.
The model A has a unique orientation to be observed and controlled, since it has a rigid upper-body.
The model B has three segments with different orientations. Nonetheless, if we know the orientation
of one segment and the two joint-positions of the neck, we can reconstruct the two other orientations.
So from sensing viewpoint, for both models, we place a tilt estimator in the head, while neck and torso
inclinations are deduced from neck joint angles. This model of sensing is inspired by neurophysiology.
Humans have an efficient orientation sensor in the head, including the vestibular systems. They have
also a good accuracy in the estimation of neck joint angles, as the neck possesses a dense concentration
of proprioceptors [21]. The estimation of the body segment directions is then obtained by a top-down
combination of the neck joints with the head direction given by the vestibular system [1].

Detailed description of the models is presented in the Materials and Methods section.

Simulations

Head stabilization has two types of effects. The first one is mechanical: the head has a non-negligible
mass contribution, and the motion of the head influences the dynamics of the body. The second one lies
in attitude estimation: different motions generate different inputs on the tilt sensors and may lead to
different magnitudes of estimation errors. For the purpose of isolating each effect, we study two sensor
models for each walker model. The first one is an ideal tilt sensor, i.e. the head direction is perfectly
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known. The second one is a simplified model of the vestibular system as presented in [4]: it combines
noisy measurements of an accelerometer, a gyrometer and an inclinometer. The ideal sensor makes the
walking models equivalent in terms of sensing and it enables us to compare them only from a mechanical
point-of-view. The vestibular model permits to reproduce the effects of head motion on the accuracy of
tilt esimation, and to study their impact on gait balance.

Performance comparison is based on a metric called Mean First Passage Time (MFPT) [8]. MFPT is
derived from the classical analysis of metastable systems [22]. This metric aims at providing an estimation
of the distance a walker may travel safely. MFPT of walking systems is the average number of steps the
walker makes before falling. However, in the context of walking simulation, MFPT estimation is highly
time consuming. To overcome this bottleneck we had to introduce a new dedicated simulation algorithm
based on limit-cycle properties [23].

Results

For noise-free environments and sensors, a well-controlled walker may walk indefinitely without falling.
In other words, its MFPT is infinite. Perturbations, such as uneven terrains or noisy sensors, give rise to
finite MFPTs, i.e. the walker necessarily falls at some stage. In this context, we introduce the notion of
textured ground. A textured ground is a terrain for which the unevenness follows a probability law. The
texture model consists in changing the slope of the ground at each step, following a centered Gaussian
distribution. We can make the terrain more or less rough by changing the standard deviation (SD) of
the Gaussian law.

We conducted simulations on four models resulting from the combination of the presence or absence
of head stabilization with ideal or vestibular-like tilt sensor respectively. Each model was simulated on
a set of different textures (from 0 to 0.1 rad of SD). For each model-texture combination, we computed
the corresponding MFPT. The results of these simulations are described hereafter.

Noise-free sensor

In the case of an ideal attitude sensor, on flat terrain, and for both control models, it has not been possible
to find an upper bound on MFPTs (see Fig. 3). This confirms the fact that, in the absence of perturbation,
a well-controlled walker may walk indefinitely without falling. However walker performances greatly differ
as soon as a slight texture change appears. The phenomenon can be seen from the example of 0.01 rad
standard deviation. In this case, MFPT of the rigid neck model is 23 steps, while head stabilization
guarantees MFPT of more than 3 million steps! This performance improvement persists as the ground
texture increases, even if the difference declines. This is purely due to mechanical effects, i.e. to the
contribution of the head motion to the balance of the gait.

To better understand this effect, we compare the mechanical powers of A and B models during the
period between two impacts of the limit cycle on level ground (Fig. 4-A). The two curves have almost
the same integral, which means that they absorb a same amount of the energy between two feet impacts.
The important feature is the difference in power consumption during the first 30% of the cycle. The head
stabilization enables the walker to absorb less energy during the impact, while distributing the energy
consumption over a longer period.

One of the consequences of this delay in energy absorption is on the dynamics of the swing leg. For
both models, at the impact, a part of the momentum is transferred into a rotation motion around the
new stance foot. But this transfer applies forces and moments on the upper-body. These forces tend to
tilt the upper body which compensates this inclination using the torque actuator at the hip. Hip torques
absorb an important amount of kinetic energy, and apply moments on the new swing leg which tend to
slow its angular velocity. The head-neck system enables to delay a part of this absorption and let the
swing leg have a greater initial velocity (Fig. 4-B). Later in the cycle, even if the same amount of energy
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is absorbed due to the delay, the walker has already reached a more stable configuration where the swing
leg is already prepared for the next step.

Indeed, in the case of human gait, as for our simulated models, imbalance caused by uneven and
textured ground result mostly in forward falls [24]. A forward fall happens when the swing foot reaches
the ground too close to the stance foot, and cannot compensate for the destabilizing linear and angular
momenta. When we increase the swing leg velocity in the beginning of the cycle, we enable the walker
to reach earlier a balanced position with a forward leg better prepared for the next impact.

This effect suggests that the head-neck system is used to store the mechanical energy and to restore it
at the appropriate phase of the walking cycle. These results give an insight into the role of the vertebral
column in the management of gait mechanical energy. The whole upper-body inertia and elasticity would
store energy and restore it at the right instant, similarly to [25] where the walking model which walks on
level ground with zero-energy cost.

As this level we may conclude that head stabilization improves the dynamic balance of walking
systems. We show next that the improvement is even better when considering a noisy gravity estimator.

Inertial sensor

If we consider a walker’s head equipped with an on-board vestibular-like sensor, the head stabilization
minimizes the error of gravity direction estimation [4]. We show here how head stabilization greatly
improves the robustness to the estimation error when compared to trunk stabilization. To avoid a
combination of mechanical and sensing effects, we compare separately the two sensor models for each
walking model. The difference shown in Fig. 5 between the performance of the noise-free sensor walker
and the inertial one is only due to a loss in the accuracy of the verticality estimation.

Compared to the noise-free sensor, the root-mean-square error of the tilt estimation is of 3.5◦ for
Model A and of 0.78◦ for Model B. This confirms that head stabilization contributes to a better accuracy
of the gravity estimation.

More interesting is the influence of this accuracy on gait balance. Small errors induce important
differences in the performances of walking systems on rough terrain as shown in Figure 5: MFPTs for
Model B is much greater than MFPTs for Model A and the property holds for any ground texture.
Finally, MFPT on a horizontal surface is greater than 105 when the head is stabilized, while it is less
than 10 for Model A: we see clearly the importance of head stabilization, and how the difference with an
ideal sensor becomes negligible on small textures.

Discussion

Our model-based approach of bipedal walking reveals the contribution of head-neck control to the gait
dynamics. The effect of head stabilization is twofold. First, it impacts sensing. The dynamics of
vestibular-like sensors relies on inertial and gravitational effects, which are driven by accelerations and
rotations of the head. Stabilizing the head enables the walker to reduce excitation and to maintain the
sensors in local dynamics for a finer posture-estimation.

Second, the effect of head stabilization is mechanical. Head stabilization is an heuristic answer to the
question of taking advantage of the head mobility during walking. Indeed, while it is likely not the optimal
control of the neck regarding balance, it is a very simple control that produces a complex behavior with
significant benefits. It is worth to emphasize that the importance of this mechanical effect is also due to
the weakness of lower limbs actuation, which makes them highly sensitive to external forces. Indeed, other
stiffer controls can be found for which the mechanical contribution of the head stabilization is reduced.
However, stiffer controllers implies increasing energy consumption and control frequency, which does not
reflect the natural energy-efficiency of walking without thinking on low textures, where the walkers take
maximum advantage of the natural passive dynamics of the body. On the contrary, stiff actuation and high
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frequency control are required to guarantee balance for highly uneven and unpredictable environments,
and in this case head stabilization is not expected to play such an important mechanical role.

These results fit with clinical observations on humans. The unsteadiness and the loss of balance
resulting from head-neck system sensorimotor disturbances have been widely documented. Deficiency in
neck-joint position sense, as well as its motor abilities have an important impact on balance, whether
in chronic neck injuries [5, 6] or in one-time experimental induced impairment [26, 27]. It has even
been suggested that the impairments in the neck somatosensory inputs and sensorimotor control are
as important for balance as a lower-limb proprioception loss following a knee or an ankle injury [28].
Therefore, our study certainly opens new clinical perspectives in diagnosis and therapy.

Finally, other challenging issues remain to be addressed. Similarly to head stabilization and arms
swinging, the vertebral limbs, by their mass, flexibility and control, surely have -yet unexplored- dynamical
effects on steady gait. Furthermore, coming back to Figure 1, other questions arise. What is the critical
value of the ground texture that imposes to watch one’s steps? How does the brain switch from a
locomotion modality to another one when crossing the line separating the two pavements?

Materials and Methods

This material and methods section is structured as follows. We first discuss neuroscience and robotics
models for human walking and we describe how passivity-based walkers gather many of its properties
regarding dynamics and control. We describe the walkers models we study in terms of geometry and mass
distribution. We then describe the control of the actuators of our models. We present the vestibular
sensor model and the state observer we use to reconstruct the attitude of the walker. We switch then to
a brief description of the method we introduced to estimate the balance performances of our walkers. We
finish by describing briefly the simulation framework and the software environment we use in this study.

Passive-dynamics walkers

Neuroscience has showed a great will to understand the neurophysiological process of gait generation
for humans. Several researchers suggest that locomotion patterns in vertebrates, including humans, are
mainly generated within the spinal cord rather than in the brain. This generation is usually modeled by
the combination of a rhythm generator called Central Pattern Generator (CPG) and reflexes in response
to peripheral stimuli [29]. This provides the walker with an attractive limit-cycle behavior when no
perturbations occur.

This model is not the basis of gait control for the vast majority of biped robots. For them, keeping
balance reduces to respect a criterion related to a point on the ground, defined by the contact forces,
called Zero Moment Point (ZMP). The criterion is to keep the ZMP strictly inside the surface beneath
support limbs [30]. Several approaches showed then the possibility to control the ZMP position to
enable safe locomotion [31]. However, the walking control using these approaches is usually energy
inefficient, especially compared to humans. Moreover, the ZMP constraint needs to be respected at each
instant, requiring high-frequency control. Frequencies which are far beyond the capabilities of the humans
muscular system [14].

On the contrary, passive-dynamic walking robots have remarkably close energetic efficiency to hu-
mans’, without complying to the ZMP balance criterion. The limit-cycle walking of a passive-dynamic
robot is also considered as a suitable model for the human natural gait [32]. In addition, passive-dynamic
walkers are commonly assumed to generate visually more human-like motions, even with the presence
of geometrical or mechanical discrepancies between the robot and humans [7]. Accordingly, this similar-
ity has attracted the interest of biomechanics in order to study the passivity properties of the human
gait [15].
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The walker models

The models A and B we simulate are the same planar 5 limbs walker (Fig 2). The limbs are: a head with
a mass on the top, a neck and a torso with masses at the middle, and the legs, each of which with a mass
at distance ll from the hip. Each two successive limbs are attached with a rotational joint. The difference
between the models A and B is that the model A has fixed neck, forming a straight rigid upper-boy (see
Figure 6). Each leg is ended with a prismatic joint equipped with a spring-damper. We call toe, the
bottom of the mobile part of the leg. The hip-toe length lp at the rest position of the spring is denoted
by lp,0. The masses distribution and limbs proportions are anthropometric [20] (see Table 1).

Control

During the simulations, the models are always walking, there is always at least a contact between a toe
and the surface of the ground. If this condition is not satisfied, the robot is considered as fallen.

Except for toe off impulsion, the controllers for the robot are proportinal-derviative (PD), each of
them has two gain parameters. The gains for lower body are chosen to be lightweight, to simulate the
low energy consumption of human’s steady walk. The upper body has to a bit stiffer to guarantee a
successful vertical stabilization for the trunk and the head.

There are two ways for obtaining the values of the control gains. The first and the best one is
to use optimization techniques to find out the best parameters of each model according to a balance
criterion. However, our criterion, MFPT, is too long to compute and its optimization would take years
of computation. The second method, to which we have to resort, is to take the values arbitrarily in
the set of values guaranteeing stable steady gait on flat ground. If for several samples of these values,
the stabilization phenomenon is still observed, that means that there is a strong probability that it is
a general effect on the class of weakly actuated gaits. In our tests, among many reasonable gain values
used, the studied effect remains visible as soon as the walkers are stable on flat surface.

The parameters we present hereafter are the values used to obtain the numerical outcomes described
in Results section.

Toes. The exchange between the swing phase and the stance phase occurs at impacts. Impacts are
considered inelastic and contacts are considered perfect with no slipping. The toe of the stance leg has
a spring-damper dynamics. The contact force follows the direction of the stance leg and its magnitude
has a proportional-derivative (PD) expression:

ft = −Ktoe,p(lp − lp,0)−Ktoe,d l̇p (1)

where Ktoe,p = 5000 N/m is the elasticity of the spring and Ktoe,d = 200 N s/m is the damping factor.
This force is applied only when it is positive because of the unilateral force constraint of the contact (the
ground cannot pull the body).

When a leg is in a swing phase, its toe comes back instantly to the rest position lp,0 of the spring,
and remains constant until the end of the swing phase. We denote then simply by lp the length of the
stance leg.

The walkers loose a part of their mechanical energy at each impact. They require then to be actively
fed with an external source of energy. At the instant of take-off of the stance leg, a velocity controlled
impulsion is applied to the ground to give propulsion to the robot (Figure 6). The required force for this
impulsion is ft:

ft = h(l̇p,r) (2)

where l̇p,r = 1 m.s−1 is the desired velocity and h is the controller function. Most modern dynamic sim-
ulators provide implementations of velocity-driven motors. The dynamical simulator solves the problem
of finding the exact force that has to be applied to the joint during one time-sample in order to reach the
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desired velocity. This gives an automatic computation of h which has no closed form. We use it then to
apply the force ft during one time-step of simulation.

The idea of velocity-driven impulsion is to compensate for energy loss of foot impact. Moreover,
by having a constant toe-off velocity at the beginning of each step, we ensure to start every step with
comparable levels of energy and momentum. Therefore the impulsion force is smaller for high velocity
stepping and bigger for low velocity ones, and this helps to reject a part of the deviations from the limit
cycle.

In addition, the propulsion during human gait is of course a subject of debate, but several studies
show the role of calf and ankle in the propulsion during the support phase [33, 34], their contribution to
swing leg initiation [35,36] and their involvement in the control of trunk dynamics [37]. We wanted then
to reproduce a part of these effects with our simplified model of toe-propulsion.

Interleg joint. The inter-leg joint is controlled by a PD pure torque generator toward a reference angle:

τhip = −Khip,p(θ − θr)−Khip,dθ̇ (3)

where Khip,p = 1 N m/rad is the proportional gain, θr = 0.3 rad is the reference angle and Khip,d =
0.15 N m s/rad is the derivative gain. In order to preserve the natural dynamics of the legs the values of
the gains are small.

Trunk. On the other hand, we need to maintain the upper-body globally upright. There are two major
approaches that enable passive walkers to control an upper-body. First, the bisector constrained walker,
introduced by Wisse et al [38], is a compass with an upper limb that is constrained to be in the midway
angle of the two legs, a successful real design was presented using chains, and has the advantage to be
entirely passive. However, beside the fact that it is not an accurate model to human walking, its bisecting
constraint introduces an instability, especially in the presence of a heavy upper body [39], which is the
case for humans. The second method is to stabilize actively the upper body against the vertical, which
better models the human gait [40]. The stabilization is achieved either by applying torque on both
legs [41] or more commonly on the stance leg only [9]. We choose this last solution to not disturb the
passive swing motion. The trunk torque is actuated by a pure torque generator, controlled by a PD that
brings back the torque to vertical (α = 0):

τtrunk = −Ktrunk,pα−Ktrunk,dα̇ (4)

where τtrunk is the trunk-stance-leg torque, Ktrunk,p = 30 N m/rad is the proportional gain andKtrunk,d =
15 N m s/rad is the derivative gain.

Head stabilization. For the model B, there are two other controllers, which are the neck stabilization
and head stabilization, they are also controlled by PD pure torque generators. Their torques expressions
are the following:

τneck = −Kneck,pγ −Kneck,dγ̇ (5)

τhead = −Khead,pβ −Khead,dβ̇ (6)

where τneck is the torque applied to the torso-neck joint, Kneck,p = 5 N m/rad is the neck proportional
gain, Kneck,d = 0.06 N m s/rad is the neck derivative gain, τhead is the torque applied to the neck-head
joint, Khead,p = 15 N m/rad is the head proportional gain and Khead,d = 0.1 N m s/rad is the head
derivative gain.
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Sensors

The walking models use two models of tilt sensors, both placed in the head. The first one is an ideal sensor,
which gives perfect orientation β and angular velocity β̇ measurements. These are directly provided by
the dynamic simulator. This sensor does not require any observation technique to retrieve the state of
the walker.

The second model of sensors is a 2D version of the model of vestibular system described in [4]. It
uses a set of inertial sensors giving noisy measurements that are provided to a Kalman filter in order to
reconstruct the attitude of the head. This sensor will be described in depth hereinafter.

For both models, the orientation and the angular velocities of the other limbs α, α̇, γ and γ̇ are
reconstructed by the use of articular angles and angular rates which are considered perfectly accurate.
These estimations are used in the control of the upper body of the walker models.

The vestibular sensor

This sensor consists of:

1. An accelerometer, it provides noisy measurements of the acceleration and gravity in the head’s
frame (

ax
az

)
=

(
p̈x cosβ − (p̈z + g) sinβ
p̈x sinβ + (p̈z + g) cosβ

)
+

(
w1

w2

)
(7)

Where (px, pz) are the coordinates of the head in the global frame, g is the standard earth’s gravity.
w1 and w2 are the measurement noises.

2. A gyrometer which provides noisy estimations of the rotation of the head:

rh = β̇ + w3 (8)

where w3 is the measurement noise.

3. An inclinometer, which provides the inclination of the head with a slow dynamics, we denote this
data by ν, the sensor gives then a noisy estimation of ν.

ih = ν + w4 (9)

where w4 is the measurement noise.

The dynamics of the inclinometer is modeled by the dynamics of a damped pendulum of length
li = 2.5 × 10−3 m, mass mi = 6 × 10−4 kg and damping factor Ki,d = 2.5 × 10−10 N m s/rad (see
Fig. 7).

Due to the small mass and dimensions of the pendulum, we consider the influence of the motion
of the inclinometer on the walker’s dynamics as negligible. But the motion of the head influences
the dynamics of the inclinometer. We describe the dynamics of µ = ν + β the inclination of the
pendulum in the global frame:

µ̈i =
(−mi lig sinµ−mili(p̈x cosµ+ p̈z sinµ)−Ki,d(µ̇− β̇))

Ii
(10)

where Ii = mi l
2
i is the moment of inertia of the pendulum.

The accelerometers and the gyrometer represent the phasic system of the vestibular system, which
detects mostly peaks in acceleration and jerk. For this reason, we give them higher noise levels but fast
dynamics. The inclinometer, with a lower-level noise, reflects the linear dynamics of the tonic system at
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lower-frequencies [42]. Therefore, we make sure that the measurement noise vector w = (w1 w2 w3 w4)T

follows a multivariate centered Gaussian white noise, with the following covariance matrix:

R =


2.5× 10−3 0 0 0

0 2.5× 10−3 0 0
0 0 9× 10−2 0
0 0 0 3× 10−4

 (11)

Other modeled dynamics

In order to use these measurements to reconstruct the head orientation β, we need to have a model
of the dynamics of β. The torque on the head τhead is known, because it is provided by the on-board
stabilization controller. The orientation dynamics is described by the following differential equation:

β̈ =
τhead + gmh(cz sinβ + cx cosβ)

Ihead
+ v1 (12)

where Ihead = mhl
2
h is the moment of inertia of the head, v1 is the process noise and (cx, cy) are the

coordinates of the head’s center of mass (CoM) in the head’s reference frame which is located at the
head-neck joint. This model of β is wrong, and this is not how we simulate the dynamics of the head.
This model is just used to predict the head dynamics by using only given data, state variables and known
inputs. The error between this model and the real dynamics are integrated to the process noise v1.

Finally, we don’t know the dynamics of the linear accelerations of the head (p̈x, p̈z). We make then the
simplest assumption by considering that this acceleration is zero. The process noises v2 and v3 represent
the committed modeling error:

p̈x = v2 (13)

p̈z = v3 (14)

Kalman filtering for observing the orientation

We use an extended Kalman filter to exploit the signal vector y = (a1 a2 rh ih)T and the dynamics
models to reconstruct the inclination of the head β. Therefore, we define the sensor state vector s =
(β β̇ µ µ̇ p̈x p̈z).

The state’s dynamics and the measurements are time-discretized:

sk = f(sk−1, τhead,k−1) + vk (15)

yk = g(sk−1) + wk (16)

where k is the index of the current time-sample, vk is the process noise and f and g are the functions
describing the state dynamics and the measurements, respectively.

The modeling errors of the function f are represented by process errors. The process error vector
vk = (0 v1,k 0 0 v2,k v3,k)T follows also a multivariate centered Gaussian white noise, with the
following covariance matrix:

Q =


0 0 0 0 0 0
0 0.125 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1× 104 0
0 0 0 0 0 1× 104

 (17)
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Once these definitions given, we can describe the observer. The extended Kalman filter enables to
reconstruct the state s by minimizing the quadratic error. The estimation of s is denoted ŝ and its update
equations are :

ŝ−k = f(ŝk−1, τhead,k−1) (18)

P−
k = FkPk−1F

T
k +Q (19)

Kk = P−
k G

T
k (GkP

−
k G

T
k +R)−1 (20)

ŝk = ŝ−k +Kk(yk − g(ŝk)) (21)

Pk = (I −KkG)P−
k (22)

where ŝ−k is the prediction of the k-th state, Kk is the Kalman gain, P−
k and Pk are the error covariance

matrices of ŝ−k and ŝk respectively.
We choose to set the initial value of the state to s0 = 0 and the initial error covariance matrix to:

P0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 100 0
0 0 0 0 0 100

 (23)

MFPT estimation

MFPT of a walking system, is the mean number of steps it makes before to fall. This balance metric has
been introduced by Byl and Tedrake [8]. However, the proposed methods are either to use Monte-Carlo
sampling, or to discretize all the state-space and to use Markov chain model. The first method is time-
consuming especially for rare falls. The second method can only be used for low-dimensional walking
systems and cannot be extended to complex walkers.

For this reason, we propose a method which relies on the presence of an attractive limit-cycle [23].
This method can be used for complex systems and takes much lower computation time than Monte-Carlo
sampling.

The dynamics of walking systems is cyclic. At each step, there is an impact and a swing phase. If we
know the pre-impact state of the walker, all the state evolution is predictable during this state until the
following impact. This property is particularly interesting on textured ground, because the next impact
itself is not predictable when the slope is uncertain. Therefore, it is enough to have the sequence of pre-
impact states to be able to reconstruct all the dynamics of the walking system. The pre-impact states
constitute a manifold called Poincaré section and the intersection of the dynamics with this manifold is
called a first recurrence map or a Poincaré map.

The state vector of the robot is: ξ = (θ, θ̇, η̇, φ, α, α̇, γ, γ̇, β, β̇, lp, l̇p). The limit cycle has then one
intersection with the Poincaré section in a given state ξl (see Table 2 for the values of ξl for our models,
note that the displayed precision is necessary as the dynamics is sensitive to perturbations in the value of
the limit-cycle). However, the walking dynamics stops intersecting the Poincaré section when the walker
falls. For simplifications, we gather all the fall-states into one symbol ξf (see Fig 8). The number of steps
is then the number of times the walker’s state intersects the Poincaré section before to reach ξf .

The estimation of MFPT proceeds as follows:

1. use sampling technique, each sample starts with initial state ξl, simulate the dynamics, and stops
either when the walker comes back to the limit cycle ξl (success) or falls and reaches ξf (failure).

2. for each sample, record the number of steps, and the “success” or “failure” answer.
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3. obtain estimations of pf , the probability of a sample to fail, nf the mean number of steps of a
failure and nl the mean number of steps of a success.

4. compute r =
1−pf

pf
the mean number of returns to the limit cycle before to fall.

5. MFPT is then estimated by n = r nl + nf .

A “success” sample is a simulation where the walker comes back to the limit cycle. However, the
probability that any walker’s state is exactly equal to ξl is zero. This means that the walker almost never
actually reaches the limit cycle state. Thus, instead of checking equality with ξl in order to detect the
return to the limit-cycle, we check if the current state in inside a given neighborhood Ξl of ξl.

Consequently, before to start estimating MFPT, our method requires two data: the limit-cycle state
ξl and a suitable neighborhood Ξl. To obtain them, we make a rough sampling of 8000 states in the state-
space of the walker, and we simulate the walking motion, on flat ground, until it falls or it convergences to
the limit-cycle. If a simulated motion does not fall, we assume that an accurate convergence to the limit
cycle happens after 400 steps. In a perfect environment and simulation, the walker’s state is supposed to
converge to a unique limit value ξl. But due to numerical rounding and to simulation errors, the states
have still multiple values even after the convergence. So for each viable sample, we record the states
between the 400th and the 500th step. This gives a set of ξ̃i of recorded states after the convergence.
This set of states describes a small area in the state space within which the dynamics of the walker’s
state changes: it is no longer attracted to a limit-state ξl, but it generates a local chaotic behavior. We
call this area the limit kernel. This area is attractive, in the sense that, on flat ground, when the state is
outside of it, the dynamics will make it converge to the limit kernel, and in case the walker doesn’t fall,
the state will enter the area in a finite number of steps with probability 1. Moreover, if the state is inside
the limit kernel, it will never go out, in the absence of disturbances. The limit kernel is then the suitable
definition for our neighborhood Ξl.

Even in the absence of a unique value of the limit-cycle state, the simulation still requires an estimation
of ξl, because it is the initial state of the walker when estimating MFPT. We approximate ξl by the mean
value of the set of ξ̃i (see Table 2).

The limit kernel Ξl is approximated by a multidimensional ellipsoid such that:

ξ ∈ Xl ⇐⇒ (ξ − ξ̃i)TC(ξ − ξ̃i) < d0 (24)

where C = (cov{ξ̃i})+ is the semi positive definite matrix defined by the Moore-Penrose pseudoinverse
of the covariance matrix of the set {ξ̃i}, and d0 is a threshold defining the size of Ξl. For our case, we
take d0 = 1000.

More details and discussions of this approach, comparisons with existing methods and generalizations
to cases of bifurcations and chaos are available in [23].

Simulations

Simulations are performed in a tailored c++ framework for simulating passivity based walkers. The
resolution of the dynamics integration is achieved using the dynamic simulator Open Dynamics Engine
(ODE). This dynamics engine has the advantage to solve the dynamics of mechanical systems subject to
constraints, such as unilateral contacts and joint constraints. It provides also ideal controllers for velocity
referenced linear and angular motors, which are necessary for the generation of the impulsion at the toe
take-off of our models.

Since the walker has no knees, the swing leg always touches the ground when both legs are aligned.
This contact is undesirable and the simulation has then to take care of this aspect by ignoring the contacts
of the swing leg until the inter-leg angles exceeds a threshold, the collision detection is then activated to
catch the actual impact with the ground. A fall is spotted by detecting a contact between the floor and
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a non-support limb. The ground slope is changed after the toe-off to simulate the texture of the ground.
This texture is equivalent to having a polygonal ground (see Figure 1).

The time-discretization is of 1 KHz, but a special simulation time-sample is set to 0.1 ms at the double
support instant in order to increase the physical realism of the impacts. This framework simulates over
25 steps by second. This enables a fast exploration of the possible dynamics of the walker on textured
ground, and makes computation-time accessible for the estimation of MFPT when using our proposed
method.
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Figure Legends

Figure 1. Pavement in Roma: two textured grounds. In the bottom part, we walk without
thinking, in the upper part, one has to watch his/her step.

Figure 2. A representation of the models we simulate. The A model is the same structure
subject to the constraints α = β = γ. The B model has stabilized neck joints. The rough terrain is
modeled with a slope change at each step.

Tables
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Figure 3. Mean number of steps with an ideal orientation sensor. Mean number of steps of
the walker models equipped with an ideal orientation sensor on different textures of the ground. By
texture we mean the standard deviation of the ground slope. MFPTs are displayed in logarithmic scale.
For higher ground roughness, MRPT of both models drops such that they need to change their walking
control: watching their step becomes necessary.

Figure 4. Mechanical power and leg velocity over the walking limit cycle. A- The mechanical
power during phases of limit-cycle on flat ground. From 0% to 30% of the cycle, the distribution of the
mechanical energy consumption is different, the head stabilization offers a lower absorbtion following
the impact. B- The angular velocity of the swing leg during the limit-cycle. The influence of the
machanical power difference in the first 5% is visible, the swing leg has a better initial velocity until
30% of the cycle.

Figure 5. Mean number of steps with ideal and vestibular sensors. MFPTs of both models
with inertial sensor are compared to MFPTs with ideal one. We see in B that when we stabilize the
head, we have the same performances with and without ideal sensor against relatively small
perturbations. If we don’t stabilize the head (in A), the estimation errors still degrade the MFPT even
for high roughness of the ground.

Figure 6. The models’ actuations. On the left, we see the two models of upper-body (for model A
and model B). On the right, a scheme of the spring-damper at impact and the impulsion at take-off.

Figure 7. The inclinometer model with a damped pendulum. The slow dynamics of this sensor
delays the sensor’s response and makes it more accurate when stabilized.

Figure 8. Representation of poincaré map for limit-cycle walking system. The solid line
represents the dynamics of the state. The green loop represents the attractive limit cycle. The red ball
represent fall-state. The blue plane represent the Poincaré section. The dynamics intersect the Poincaré
section in a sequence of states.

Table 1. The parameters of our simulated walker

Length (m) Mass (Kg)
Head lh=0.09 mh = 0.4
Neck ln=0.07 mn = 0.1
Torso lt=0.75 mt = 4.5
Leg lp,0 = 1 ml = 1.5

Leg CoM ll = 0.40

The proportions of segments lengths and masses are anthropometric.
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Table 2. The value of the limit-cycle state for each model.

Rigid neck (model A) Head stabilization (model B)
θ (rad) 6.2299180819971001× 10−1 5.1725140512546985× 10−1

θ̇ (rad/s) −2.6420926894326163× 10−1 1.0569297195519001
η̇ (rad/s) 1.5756657271195875 1.31670983108577720
φ (rad) 0 0
α (rad) −2.8762875858822364× 10−2 −2.8922093483844728× 10−2

α̇ (rad/s) −2.833396497756952× 10−1 −2.7748692131065689× 10−1

γ (rad) −2.8762875858822364× 10−2 −2.600560458444371× 10−2

γ̇ (rad/s) −2.833396497756952× 10−1 −6.5999316473546024× 10−2

β (rad) −2.8762875858822364× 10−2 −4.486308262077859× 10−3

β̇ (rad/s) −2.833396497756952× 10−1 −1.3160142438761284× 10−2

lp (m) −1.1240788365238969× 10−2 −1.2773555160365727× 10−2

l̇p (m/s) 1.5310682674033354× 10−2 −1.2773555160365727× 10−2

The precision of this estimation is necessary as the step dynamic is very sensitive to its initial state.


