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In this article, we study shape optimization problems involving the geometry of surfaces (normal vector, principal curvatures). Given ε > 0 and a xed non-empty large bounded open hold-all B ⊂ R n , n 2, we consider a specic class Oε(B) of open sets Ω ⊂ B satisfying a uniform ε-ball condition. First, we recall that this geometrical property Ω ∈ Oε(B) can be equivalently characterized in terms of C 1,1 -regularity of the boundary ∂Ω = ∅, and thus also in terms of positive reach and oriented distance function. Then, the main contribution of this paper is to prove the existence of a C 1,1 -regular minimizer among Ω ∈ Oε(B) for a general range of geometric functionals and constraints dened on the boundary ∂Ω, involving the rstand second-order properties of surfaces, such as problems of the form:

where n, H, K respectively denote the unit outward normal vector, the scalar mean curvature and the Gaussian curvature. We only assume continuity of j0, j1, j2 with respect to the set of variables and convexity of j1, j2 with respect to the last variable, but no growth condition on j1, j2 are imposed here regarding the last variable. Finally, we give various applications in the modelling of red blood cells such as the Canham-Helfrich energy and the Willmore functional.

Introduction

Many physical phenomena are governed by their surrounding geometry and are often modelled by energy minimization principles. Some problems like soap lms involve the rst-order properties of surfaces (normal vector, rst fundamental form), while others such as the equilibrium shapes of red blood cells also concern the second-order ones (principal curvatures, second fundamental form).

In this article, we are interested in the existence of solutions to such shape optimization problems through the determination of a suitable class of admissible shapes. Indeed, a relevant framework of study is often provided by geometric measure theory [START_REF] Simon | Lectures on geometric measure theory[END_REF], but the minimizer is usually less regular than expected, and it is hard to understand (and prove) in which sense singularities occur or not.

Using the viewpoint of shape optimization, the aim of this paper is to consider a more reasonable class of surfaces, in which there always exists an enough regular minimizer for general functionals and constraints involving the rst-and second-order geometric properties of surfaces. Inspired by the uniform cone property of Chenais [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF], we dene the uniform ball condition as follows.

Denition 1.1. Let ε > 0 and B ⊆ R n be open, n 2. We say that an open set Ω ⊂ B with a non-empty boundary ∂Ω := Ω\Ω satises the ε-ball condition and we write Ω ∈ O ε (B) if for any point x ∈ ∂Ω, there exists a unit vector d x of R n such that:

   B ε (x -εd x ) ⊆ Ω B ε (x + εd x ) ⊆ B\Ω,
where B r (z) := {y ∈ R n , yz < r} denotes the open ball of R n centred at z and of radius r.

Remark 1.2. The ε-ball condition of Denition 1.1 only makes sense for sets having a non-empty boundary. Hence, we will always assume ∂Ω = ∅ in the sequel, or equivalently Ω / ∈ {∅, R n }. Indeed, ∂Ω = ∅ i Ω = Ω ∪ ∂Ω = Ω, and {∅, R n } contains the only subsets that are both open and close.

Note also that Denition 2.1 imposes Ω to be the subset of a xed set B. However, since we only require B to be open, one can take B = R n and consider the class O ε (R n ) of open sets Ω / ∈ {∅, R n } satisfying the ε-ball condition. This is what we have done for example in Theorems 2.62.8. Indeed, there is no circle passing through the points x 1 and x 2 (respectively x 3 and x 4 ) whose inner domains are included in Ω (respectively in B\Ω).

The uniform ball condition was already considered by Poincaré [START_REF] Poincaré | Sur les équations aux dérivées partielles de la physique mathématique[END_REF]. As illustrated in Figure 1, it avoids the formation of singularities such as corners, cracks, or self-intersections. In fact, it has been known to characterize the C 1,1 -regularity of hypersurfaces for a long time by oral tradition. Consequently, it can also be linked to other well-known equivalent concepts, such as the notion of positive reach introduced by Federer in [START_REF] Federer | Curvature measures[END_REF], and the local C 1,1 -regularity of oriented distance functions introduced by Delfour and Zolésio in [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF].

In [24, Chapter 7 Theorems 7.2-7.3 and 8.1-8.4], one can already nd most of the material about these three last properties. However, as far as the uniform ball condition is here concerned, we believe it would be useful to unify the exposition and notation to the expense of a lengthy article. Hence, for completeness, three equivalent characterizations of Denition 1.1 are given in Section 2 with further references, namely Theorems 2.62.8 (but proofs are postponed to the Appendix).

Equipped with this class of admissible shapes, we can now state our main general existence result in the three-dimensional Euclidean space R 3 . We refer to Section 4.5 for its most general form in R n , but the following one is enough for the three physical applications we present hereafter. Theorem 1.3. Let ε > 0 and B ⊂ R 3 be a non-empty bounded open set, large enough so that O ε (B) = ∅. We consider (C, C) ∈ R × R, ve continuous maps j 0 , f 0 , g 0 , g 1 , g 2 : R 3 × S 2 → R, and four maps j 1 , j 2 , f 1 , f 2 : R 3 × S 2 × R → R being continuous and convex in their last variable. Then, the following problem has at least one solution (see Notation 1.4):

inf ∂Ω j 0 [x, n (x)] dA (x) + ∂Ω j 1 [x, n (x) , H (x)] dA (x) + ∂Ω j 2 [x, n (x) , K (x)] dA (x) ,
where the inmum is taken among Ω ∈ O ε (B) satisfying a nite number of constraints of the form:

     ∂Ω f 0 [x, n (x)] dA (x) + ∂Ω f 1 [x, n (x) , H (x)] dA (x) + ∂Ω f 2 [x, n (x) , K (x)] dA (x) C ∂Ω g 0 [x, n (x)] dA (x) + ∂Ω H (x) g 1 [x, n (x)] dA (x) + ∂Ω K (x) g 2 [x, n (x)] dA (x) = C.
Notation 1.4. We denote by A(•) (respectively V (•)) the area (resp. the volume) i.e. the two(resp. three)-dimensional Hausdor measure, and the integration on a surface is done with respect to A. The Gauss map n : x → n(x) ∈ S 2 always refers to the unit outer normal eld of the surface, while H = κ 1 + κ 2 is the scalar mean curvature and K = κ 1 κ 2 is the Gaussian curvature.

We mention that the particular case j 0 0, j 1 = j 2 = 0 without constraints is studied in [START_REF] Guo | On convergence of boundary Hausdor measure and application to a boundary shape optimization problem[END_REF]. The proof of Theorem 1.3 only relies on basic tools of analysis and does not use geometric measure theory. Following the usual direct method from Calculus of Variations, we establish: (i) in Proposition 3.2 that the class O ε (B) is sequentially compact for some various modes of convergence (for the Hausdor distance of the complements in B, of the adherences, of the boundaries, for the L 1 (B)-norm of the characteristic functions, for the W 1,1 (B)-norm of the oriented distance functions, and in the sense of compact sets, cf. Denition 3.1), allowing the extraction of a minimizing subsequence that converges to a candidate for being a minimizer;

(ii) in Section 4 that the functionals and inequality constraints considered in Theorem 1.3 are lower semi-continuous with respect to the convergence in the sense of compact sets provided the boundaries also converge for the Haudor distance, while the equality constraints are really continuous, explaining why we only assume (j i , f i ) i=1,2 to be convex in their last variable to get lower semi-continuity (but note that no growth condition is imposed here) whereas the integrands containing (g i ) i=1,2 have to be linear in H and K to get continuity.

Point (i) is a consequence of the fact that the ε-ball condition implies the uniform cone property (Theorem 2.7 (i)), for which we have the compactness result of Chenais [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF], later rened by Delfour and Zolésio [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF] [24, Chapter 7 Theorem 13.1]. Point (ii) is much harder to obtain. Our method is based on localization and the study of convergence for graphs of regular functions (Theorem 3.3). In Section 3, we show we can locally parametrize simultaneously by C 1,1 -graphs in a xed local frame the boundaries of a converging sequence in O ε (B) (cf. Figure 2). Moreover, the local graphs converge strongly in C 1,1-δ , δ ∈]0, 1], and weakly-star in W 2,∞ . This allows to study and get (ii).

The author is aware of the important work of Delfour and Zolésio related to the distance function [START_REF] Delfour | Shape analysis via distance functions: local theory. In Boundaries, interfaces, and transitions[END_REF] [24, Chapter 6] and oriented distance function [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF] [24, Chapter 7] with numerous applications in shape dierential calculus [START_REF] Delfour | Shapes and geometries: metrics, analysis, dierential calculus, and optimization[END_REF]Chapter 9]. We refer to Section 3.1 for further references and an overview of the general background related to these concepts. Since the viewpoint of local graphs and oriented distance functions b Ω are equivalent [24, Chapter 7 Theorem 8.2 (ii)], Theorem 3.3 and the continuity results of Section 4 can also be expressed and proved in terms of b Ω . However, we decide to consider here the graph approach for several reasons. First, the oriented distance functions do not remove the diculty overcome by Theorem 3.3 i.e. the existence of a xed set to properly study continuity. Indeed, let us assume the convergence of some (∂Ω i ) i∈N to ∂Ω for the Hausdor distance. We can nd a common tubular neighbourhood V r (∂Ω), r > 0, in which occurs the convergence of the associated oriented distance functions (b Ωi ) i∈N to b Ω strongly in C 1,1-δ for any δ ∈]0, 1] and weakly-star in W 2,∞ . Nevertheless, the continuity of a functional ω → ∂ω j remains unclear because even if ∂Ωi j = lim h→0 1 2h V h (∂Ωi) j • (Id -b Ωi ∇b Ωi ) as in [START_REF] Delfour | Tangential dierential calculus and functional analysis on a C 1,1 submanifold[END_REF], the exchange of the limits i → +∞ and h → 0 requires some work, that we believe as technical as what we have done to get Theorem 3.3. If this issue is overcome, then the continuity results of Section 4 also follow from the various convergences of (b Ωi ) i∈N to b Ω and the fact that ∇b Ωi is an extension of the unit outward normal eld to ∂Ω i , Hess(b Ωi ) of the second fundamental form, etc.

Moreover, the article aims to give general existence results for shape optimization problems involving a large range of geometric functionals and constraints. It is thus intended to a broad audience and the viewpoint of graph seems a rather usual approach, compared to further equivalent sophisticated tools that would certainly lighten the proofs. In addition, we only deal here with C 1,1regularity and do not necessarily need very sharp tools for studying cracks or the ne geometric properties of shapes. Furthermore, this paper also intends to settle the framework for another future work that will soon be published [START_REF] Dalphin | Uniform ball property and existence of minimizers for functionals depending on the geometry and the solution of a state equation[END_REF] and study more complex problems of the form: inf Ω∈Oε(B) ∂Ω j [x, n Ω (x) , H Ω (x) , K Ω (x) , u Ω (x) , ∇u Ω (x)] dA (x) , where u Ω is the solution of some second-order elliptic boundary-value problems posed on the inner domain enclosed by the shape ∂Ω. In this direction, the convergence results of Theorem 3.3 are very useful to study the convergence of (u Ωi • X i ) i∈N , where X i is a local parametrization of ∂Ω i .

Finally, to our knowledge, the existence results presented here are new. Indeed, the functionals we consider are dened on the boundary of a domain, a case which is not covered by the usual existence theory in shape optimization. Moreover, we are able to extend and generalize the results

given in [START_REF] Guo | On convergence of boundary Hausdor measure and application to a boundary shape optimization problem[END_REF] by using a similar framework [START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF]. If the compactness issue is quite straightforward, the continuity of quite general functionals dened on the boundary is not. In particular, we show in Section 4 how to use Theorem 3.3 in order to study the continuity and lower-semi-continuity properties for a wide range of geometric functionals. Although the statements of Sections 4.14.3 are rather expected consequences of Theorem 3.3 under the construction of a suitable partition of unity, the ones of Section 4.4 are not, especially the L ∞ -weak-star convergence of the Gaussian curvature. In particular, in Section 4.4, we emphasize the fact that we manage to obtain the nontrivial continuity of non-linear functionals (such as the genus) by applying the Div-Curl Lemma to this geometric setting. To our knowledge, such a method is new. We now present three physical applications of Theorem 1.3 (further examples are also detailed in Section 4.5).

1.1

First application: minimizing the Canham-Helfrich energy with area and volume constraints

In biology, when a suciently large amount of phospholipids is inserted in a aqueous media, they immediately gather in pairs to form bilayers also called vesicles. Devoid of nucleus among mammals, red blood cells are typical examples of vesicles on which is xed a network of proteins playing the role of a skeleton inside the membrane [START_REF] Lim | Lipid bilayers and red blood cells, volume 4 of Soft Matter[END_REF]. In the 70s, Canham [START_REF] Canham | The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell[END_REF] then Helfrich [START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF] suggested a simple model to characterize vesicles. Imposing the area of the bilayer and the volume of uid it contains, their shape is a minimizer for the following free-bending energy (see Notation 1.4):

E = k b 2 membrane (H -H 0 ) 2 dA + k G membrane KdA, (1) 
where H 0 ∈ R (called the spontaneous curvature) measures the asymmetry between the two layers, and where k b > 0, k G < 0 are two other physical constants. Note that if k G > 0, for any k b , H 0 ∈ R, the Canham-Helfrich energy (1) with prescribed area A 0 and volume V 0 is not bounded from below. Indeed, in that case, from the Gauss-Bonnet Theorem, the second term tends to -∞ as the genus g → +∞, while the rst term remains bounded by 4|k b |(12π The two-dimensional case of (1) is considered by Bellettini, Dal Maso, and Paolini in [START_REF] Bellettini | Semicontinuity and relaxation properties of curvature depending functional in 2D[END_REF]. Some of their results is recovered by Delladio [START_REF] Delladio | Special generalized Gauss graphs and their application to minimization of functional involving curvatures[END_REF] in the framework of special generalized Gauss graphs from the theory of currents. Then, Choksi and Veneroni [START_REF] Choksi | Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case[END_REF] solve the axisymmetric situation of (1) in R 3 assuming -2k b < k G < 0. In the general case, this hypothesis gives a fundamental coercivity property [9, Lemma 2.1] and the integrand of ( 1 However, the regularity of minimizers remains an open problem and experiments show that singular behaviours can occur to vesicles such as the budding eect [START_REF] Seifert | Congurations of uid membranes and vesicles[END_REF][START_REF] Seifert | Shape transformations of vesicles: phase diagram for spontaneouscurvature and bilayer-coupling models[END_REF]. This cannot happen to red blood cells because their skeleton prevents the membrane from bending too much locally [59, Section 2.1]. To take this aspect into account, the uniform ball condition of Denition 1.1 is also motivated by the modelization of the equilibrium shapes of red blood cells. We even have a clue for its physical value [59, Section 2.1.5]. Our result states as follows.
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Theorem 1.5.

Let H 0 , k G ∈ R and ε, k b , A 0 , V 0 > 0 such that A 3 0 > 36πV 2 0 .
Then, the following problem has at least one solution (see Notation 1.4):

inf Ω∈Oε(R 3 ) A(∂Ω)=A0 V (Ω)=V0 k b 2 ∂Ω (H -H 0 ) 2 dA + k G ∂Ω KdA.
Remark 1.6. The hypothesis A 3 0 > 36πV 2 0 is rather natural. Indeed, any compact surface has to satisfy the isoperimetric inequality and equality only occurs for spheres. Hence, we have to assume

A 3 0 > 36πV 2 0 otherwise the set of constraints in O ε (R 3
) is either empty or reduced to a ball of area A 0 and volume V 0 . Moreover, note that we only consider here the class O ε (R 3 ) and not O ε (B) with B bounded as it is the case for Theorem 1.3. Indeed, a uniform bound on the diameter is implicitly given by the functional and the area constraint [START_REF] Simon | Existence of surfaces minimizing the Willmore functional[END_REF]Lemma 1.1]. Finally, the result of Theorem 1.5 also holds true if H 0 is a continuous function of the position and the normal vector. The Gauss-Bonnet Theorem [START_REF] Federer | Curvature measures[END_REF]Theorem 5.19] is valid for sets of positive reach (cf. Denition 2.1) thus we get from Theorem 2.6 that Σ KdA = 4π(1 -g) for any compact connected C 1,1 -surface Σ (without boundary embedded in R 3 ) of genus g ∈ N. Hence, instead of minimizing (1), people usually x the topology and search for a minimizer of the following energy (see Notation 1.4):

H(Σ) = Σ (H -H 0 ) 2 dA, (2) 
with prescribed area and enclosed volume. The critical points of (2) are studied by Nagasawa and Yi in [START_REF] Nagasawa | Local existence and uniqueness for the n-dimensional Helfrich ow as a projected gradient ow[END_REF]. Like [START_REF] Alvarado | On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle[END_REF], such a functional depends on the surface but also on its orientation. However, in the case H 0 = 0, energy (2) is not even lower semi-continuous with respect to the varifold convergence [4, Section 9.3]: the counterexample is due to Groÿe-Brauckmann [START_REF] Groÿe-Brauckmann | New surfaces of constant mean curvature[END_REF]. In this case, we cannot directly use the tools of geometric measure theory but we can prove the following result.

Theorem 1.7. Let H 0 ∈ R, g ∈ N, and ε, A 0 , V 0 > 0 such that A 3 0 > 36πV 2 0 . Then, the following problem has at least one solution (see Notation 1.4 and Remark 1.6):

inf Ω∈Oε(R 3 ) genus(∂Ω)=g A(∂Ω)=A0 V (Ω)=V0 ∂Ω (H -H 0 ) 2 dA,
where genus(∂Ω) = g has to be understood as ∂Ω is a compact connected C 1,1 -surface of genus g.

1.3

Third application: minimizing the Willmore functional with various constraints

The particular case H 0 = 0 in (2) is known as the Willmore functional (see Notation 1.4):

W(Σ) = 1 4 Σ H 2 dA. (3) 
It has been widely studied by geometers. Without constraint, Willmore [60, Theorem 7.2.2] proved that spheres are the only global minimizers of (3). The existence was established by Simon [START_REF] Simon | Existence of surfaces minimizing the Willmore functional[END_REF] for genus-one surfaces, Bauer and Kuwert [START_REF] Bauer | Existence of minimizing Willmore surfaces of prescribed genus[END_REF] for higher genus. Recently, Marques and Neves [START_REF] Marques | Min-max theory and the Willmore conjecture[END_REF] solved the so-called Willmore conjecture: the conformal transformations of the stereographic projection of the Cliord torus are the only global minimizers of (3) among smooth genus-one surfaces.

A main ingredient is the conformal invariance of (3), from which we can in particular deduce that minimizing (3) with prescribed isoperimetric ratio is equivalent to impose the area and the enclosed volume. In this direction, Schygulla [START_REF] Schygulla | Willmore minimizers with prescribed isoperimetric ratio[END_REF] established the existence of a minimizer for (3) among analytic surfaces of zero genus and given isoperimetric ratio. For higher genus, Keller, Mondino, and Riviere [START_REF] Keller | Embedded surfaces of arbitrary genus minimizing the Willmore energy under isoperimetric constraint[END_REF] recently obtained similar results, using the point of view of immersions developed by Riviere [START_REF] Rivière | Analysis aspects of Willmore surfaces[END_REF] to characterize precisely the critical points of (3).

An existence result related to (3) is the particular case H 0 = 0 of Theorem 1.7. Again, the diculty with these kind of functionals is not to obtain a minimizer (compactness and lower semicontinuity in the class of varifolds for example) but to show that it is regular in the usual sense (i.e. a smooth surface). We now give a last application of Theorem 1.3 which comes from the modelling of vesicles. It is known as the bilayer-couple model [53, Section 2.5.3] and it states as follows.

Theorem 1.8. Let M 0 ∈ R and ε, A 0 , V 0 > 0 such that A 3 0 > 36πV 2 0 . Then, the following problem has at least one solution (see Notation 1.4 and Remark 1.6):

inf Ω∈Oε(R 3 ) genus(∂Ω)=g A(∂Ω)=A0 V (Ω)=V0 ∂Ω HdA=M0 1 4 ∂Ω H 2 dA,
where genus(∂Ω) = g has to be understood as ∂Ω is a compact connected C 1,1 -surface of genus g.

To conclude the introduction, we recall how the paper is organized. In Section 2, three equivalent characterizations of the uniform ball condition are stated, namely Theorem 2.6 in terms of positive reach, Theorem 2.7 in terms of C 1,1 -hypersurface, and Theorem 2.8 in terms of C 1,1 -regular oriented distance function. The proofs are postponed to the Appendix. Following the classical method from the Calculus of Variations, in Section 3.1, we rst obtain the compactness of the class O ε (B) for various modes of convergence. This essentially follows from the fact that the ε-ball condition implies a uniform cone property, for which we already have some good compactness results.

Then, in the remaining part of Section 3, we prove the key ingredient of Theorem 1.3 i.e. we manage to parametrize in a xed local frame simultaneously all the graphs associated with the boundaries of a converging sequence in O ε (B). We prove the W 2,∞ -weak-star and the C 1,1-δstrong convergence of these local graphs for any δ ∈]0, 1]. Finally, in Section 4, we show how to use this local result on a suitable partition of unity to get the global continuity for a general range of geometric functionals. We conclude by giving some existence results in Section 4.5. In particular, we prove Theorem 1.3, its generalization to R n , and detail many applications such as Theorem 1.5 and Theorems 1.71.8, mainly coming from the modelling of vesicles and red blood cells.

Three characterizations of the uniform ball property

In this section, we recall three characterizations of the ε-ball condition, namely Theorems 2.62.8. First, it is equivalent to Federer's notion of positive reach [START_REF] Federer | Curvature measures[END_REF]. Then, it is equivalent to a uniform C 1,1 -regularity of hypersurfaces. Finally, it is equivalent to the local C 1,1 -regularity of oriented distance functions introduced by Zolésio and Delfour [START_REF] Delfour | Shapes and geometries: metrics, analysis, dierential calculus, and optimization[END_REF]Chapter 7]. All this is known but for completeness and readability, the proofs are postponed to the Appendix, since we did not nd references where these characterizations were gathered in the form given in Theorems 2.62.8. . Finally, we mention that the proofs of Theorems 2.62.7 were already given in [START_REF] Dalphin | Some characterizations of a uniform ball property[END_REF] and are reproduced here for completeness.

Indeed

Before stating the theorems, we recall some denitions and notation, used hereafter in the paper. Let n 2 be an integer henceforth set. The space R n whose points are marked x = (x 1 , . . . , x n ) is naturally provided with its usual Euclidean structure, x | y = n k=1 x k y k and x =

x | x , but also with a direct orthonormal frame whose choice will be specied later. Inside this frame, every point x of R n will be written into the form (x , x n ) such that x = (x 1 , . . . , x n-1 ) ∈ R n-1 . In particular, the symbols 0 and 0 respectively refer to the zero vector of R n and R n-1 .

First, some of the notation introduced in [30, Section 4] by Federer are recalled. For every non-empty subset A of R n , the following map is well dened and 1-Lipschitz continuous:

d(•, A) : R n -→ [0, +∞[ x -→ d(x, A) = inf a∈A x -a . Furthermore, we set Unp(A) := {x ∈ R n | ∃!a ∈ A,
xa = d(x, A)}. This is the set of points in R n having a unique projection on A i.e. the maximal domain on which this map is well dened:

p A : x ∈ Unp(A) -→ p A (x) ∈ A,
where p A (x) is the unique point of A such that p A (x) -x = d(x, A). We can also notice that A ⊆ Unp(A) thus in particular Unp(A) = ∅. We can now express what is a set of positive reach. Denition 2.1. Consider any non-empty subset A of R n . First, we set for any point a ∈ A:

Reach(A, a) = sup {r > 0, B r (a) ⊆ Unp(A)} ,
with the convention sup ∅ = 0. Then, we dene the reach of A as Reach(A) = inf a∈A Reach(A, a). Finally, we say that A has a positive reach if we have Reach(A) > 0.

Denition 2.1 is the one given by Federer [START_REF] Federer | Curvature measures[END_REF]Denition 4.1]. Note that if A is a non-empty open subset of R n , then Unp(A) = A so Reach(x, A) = d(x, ∂A) for any x ∈ A and thus Reach(A) = 0 [START_REF] Federer | Curvature measures[END_REF]Remark 4.2]. Hence, the notion of reach is of little interest for open sets. This is reason why some authors often assume that A is closed in Denition 2.1, or equivalently, dene Reach(A, a) for any a ∈ A as in [24, Chapter 6 Denition 6.1]. Similarly, in order to ensure that any point of R n has at least one projection on A [24, Chapter 6 Theorem 2.1 (ii)], some people often assume that A is closed, or equivalently, dene the projection p A as a map from Unp(A) into A. In our case, we will always consider the reach of the boundary ∂Ω, the closure Ω, or the complement R n \Ω of an open set Ω / ∈ {∅, R n } so Denition 2.1 and the one of p A do not lead to any ambiguity here.

Then, we also recall the denition of a C 1,1 -hypersurface in terms of local graph. Note that from the Jordan-Brouwer Separation Theorem, any compact topological hypersurface of R n has a well-dened inner domain, and in particular a well-dened enclosed volume. If instead of being compact, it is connected and closed as a subset of R n , then it remains the boundary of an open set [START_REF] Montiel | Curves and surfaces[END_REF]Theorem 4.16] [27, Section 8.15], which is not unique and possibly unbounded in this case. Denition 2.2. Consider any non-empty subset S of R n . We say that S is a C 1,1 -hypersurface if there exists an open subset Ω of R n such that ∂Ω = S, and such that for any point x 0 ∈ ∂Ω, there exists a direct orthonormal frame centred at x 0 such that in this local frame, there exists a map ϕ : D r (0 ) →] -a, a[ continuously dierentiable with a > 0, such that ϕ and its gradient ∇ϕ are L-Lipschitz continuous with L > 0, satisfying ϕ(0 ) = 0, ∇ϕ(0 ) = 0 , and also:

   ∂Ω ∩ (D r (0 ) ×] -a, a[) = {(x , ϕ(x )) , x ∈ D r (0 )} Ω ∩ (D r (0 ) ×] -a, a[) = {(x , x n ), x ∈ D r (0 ) and -a < x n < ϕ(x )} , with D r (0 ) = {x ∈ R n-1 , x < r} the open ball of R n-1 of radius r > 0 centred at the origin 0 .
Remark 2.3. In Denition 2.2, note that the gradient ∇ϕ :

D r (0 ) → R n-1 is valued in D rL (0 ).
Finally, we recall the denition of the uniform cone property introduced by Chenais in [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF], and from which the ε-ball condition is inspired. We also refer to [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF]Denition 2.4.1]. Denition 2.4. Let α ∈]0, π 2 [ and Ω ⊂ R n be open with a non-empty boundary. We say that Ω satises the α-cone condition if for any x ∈ ∂Ω, there exists a unit vector ξ x of R n such that:

∀y ∈ B α (x) ∩ Ω, C α (y, ξ x ) ⊆ Ω,
where C α (y, ξ x ) = {z ∈ B α (y), zy cos α < zy | ξ x } refers to the open cone of vertex y, direction ξ x , and (half-)aperture α.

At last, we give the denition of the oriented distance function introduced by Delfour and Zolésio in [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF], which provides a useful level-set description of a set. 

A : R n → R is dened as b A (x) := d(x, A) -d(x, R n \A) for any x ∈ R n .
In particular, we have:

∀x ∈ R n , b A (x) =    d (x, ∂A) if x ∈ R n \A 0 if x ∈ ∂A. -d (x, ∂A) if x ∈ Int(A)
We are now in position to state three characterizations of the ε-ball condition. In Theorems 2.6 2.8, V (•) refers to the n-dimensional Lebesgue measure and the proofs are given in the Appendix. (ii) if ∂Ω has a positive reach and V (∂Ω) = 0, then Ω ∈ O ε (R n ) for any ε ∈]0, Reach(∂Ω)[, and moreover, if ∂Ω has a nite positive reach, then Ω also satises the Reach(∂Ω)-ball condition.

In particular, if V (∂Ω) = 0, then we have the following characterization:

Reach (∂Ω) = sup {ε > 0, Ω ∈ O ε (R n )} ,
with the convention sup ∅ = 0. Moreover, this supremum becomes a maximum if it is not zero and nite. Finally, we get Reach(∂Ω) = +∞ if and only if ∂Ω is an ane hyperplane of R n .

Theorem 2.7 (A characterization in terms of C (iii) the Gauss map d : x ∈ ∂Ω → d x ∈ S n-1 is well dened and 1 ε -Lipschitz continuous. Conversely, if S is a non-empty compact C 1,1 -hypersurface of R n in the sense of Denition 2.2, then there exists ε > 0 such that its inner domain Ω ∈ O ε (R n ). In particular, it has a positive reach with Reach(S) = max {ε > 0, Ω ∈ O ε (R n )} and we have V (S) = 0. 

Ω : V r (∂Ω) → S n-1 is 2 ε-r -Lipschitz continuous, having a unique 2 ε-r -Lipschitz continuous extension to V r (∂Ω). Conversely, if there exists ε > 0 such that b Ω ∈ C 1,1 (B ε (x)) and V (B ε (x) ∩ ∂Ω) = 0 for any x ∈ ∂Ω, then we have Ω ∈ O ε (R n ).
Remark 2.9. In Theorem 2.7, one can notice that a, L, and r only depend on ε for any point of the hypersurface. This uniform dependence of the C 1,1 -regularity characterizes the class O ε (R n ). Indeed, the converse part of Theorem 2.7 also holds true if instead of being compact, the nonempty C 1,1 -hypersurface S satises: ∃ε > 0, ∀x 0 ∈ S, min( 1 L , r 3 , a 3 ) ε. In this case, we still have

Ω ∈ O ε (R n )
where Ω is the open set of Denition 2.2 such that ∂Ω = S.

Remark 2.10. From Point (iii) of Theorem 2.7, the Gauss map d is 1 ε -Lipschitz continuous. Hence, it is dierentiable almost everywhere and its dierential D

• d : x ∈ ∂Ω → D x d ∈ L(T x ∂Ω) is an L ∞ -map satisfying D • d L ∞ (∂Ω) 1 ε [38, Section 5.2.2].
In particular, the principal curvatures (see Section 4.1 for denitions and [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF] for details) satisfy κ l L ∞ (∂Ω) 1 ε for any l ∈ {1, ..., n-1}.

3 Parametrization of a converging sequence from O ε (B)

In this section, we are interested in establishing some good compactness results. First, we recall the denitions of some various modes of convergence used thereafter. (i) in the Hausdor sense if (B\Ω i ) i∈N converges to B\Ω for the Hausdor distance;

(ii) in the sense of compact sets if for any compact sets K and L such that K ⊂ Ω and L ⊂ B\Ω, there exists I ∈ N such that for any integer i I, we have K ⊂ Ω i and L ⊂ B\Ω i ;

(iii) in the sense of characteristic functions if we have B |1 Ωi (x) -1 Ω (x)|dx → 0, where 1 X is the characteristic function of X, valued one for the points of X, otherwise zero.

In Section 3.1, we recall some well-known compactness results about the uniform cone property. From Point (i) of Theorem 2.7, every set satisfying the ε-ball condition also satises the f -1 (ε)cone property. Hence, we only have to check that O ε (B) is closed under the convergence in the Hausdor sense (cf. Denition 3.1 (i)) to get the following compactness result. such that a subsequence (Ω i ) i∈N converges to Ω in the following senses (see Denition 3.1):

• (Ω i ) i∈N converges to Ω in the Hausdor sense;

• (∂Ω i ) i∈N converges to ∂Ω for the Hausdor distance;

• (Ω i ) i∈N converges to Ω for the Hausdor distance;

• (B\Ω i ) i∈N converges to B\Ω in the Hausdor sense;

• (Ω i ) i∈N converges to Ω in the sense of compact sets;

• (Ω i ) i∈N converges to Ω in the sense of characteristic functions.

Moreover, considering the associated oriented distance functions introduced in Denition 2.5, we also have that

(b Ω i ) i∈N strongly converges to b Ω in W 1,p (B, R) for any p ∈ [1, +∞[.
In Section 3.1, Proposition 3.2 is proved and for sake of completeness, further explanations and references are given with respect to this general compactness pattern. Then, in the remaining part of Section 3, we consider a sequence (Ω i ) i∈N of elements from O ε (B) converging to Ω ∈ O ε (B) in the sense of compact sets (cf. Denition 3.1 (ii)). We prove that for any i suciently large, the boundary ∂Ω i can be locally parametrized by a C 1,1 -graph in a local frame associated with ∂Ω.

The key point here is that the local frame is xed and does not depend in i. Moreover, we get the C 1,1-δ -strong for any δ ∈]0, 1] and the W 2,∞ -weak-star convergence of a subsequence of these local graphs. The entire sequence converges under the additional assumption lim i→+∞ d H (∂Ω i , ∂Ω) = 0. In this case, the limit graph is precisely the one associated with ∂Ω. These results are illustrated in Figure 2 and will be fundamentally used in Section 4 to study the continuity of functionals.

Theorem 3.3. Let (Ω i ) i∈N ⊂ O ε (B) converge to Ω ∈ O ε (B)
as in Denition 3.1 (ii). Then, for any point x 0 ∈ ∂Ω, there exists a direct orthonormal frame centred at x 0 , and also I ∈ N depending only on x 0 , ε, Ω, and (Ω i ) i∈N , such that inside this frame, for any integer i I, there exists a continuously dierentiable map ϕ i : D r (0 ) →] -ε, ε[, whose gradient ∇ϕ i is valued in D 32 29 (0 ), where ∇ϕ i and ϕ i are L-Lipschitz continuous with L > 0 and r > 0 depending only on ε, and such that:

   ∂Ω i ∩ (D r (0 )∩] -ε, ε[) = {(x , ϕ i (x )), x ∈ D r (0 )} Ω i ∩ (D r (0 )∩] -ε, ε[) = {(x , x n ), x ∈ D r (0 ) and -ε < x n < ϕ i (x )} .
Moreover, any of the (ϕ i ) i I has a unique C 1,1 -extension to the closure D r (0 ) and there exists

ϕ ∈ W 2,∞ (D r (0 )) ∩ C 1 (D r (0 )) such that a subsequence (ϕ i ) i I satises:    ϕ i → ϕ strongly in C 1,1-δ (D r (0 )) for any δ ∈]0, 1], ϕ i ϕ weakly star in W 2,∞ (D r (0 )). (4) 
If in addition, we assume that (∂Ω i ) i∈N converges to ∂Ω for the Hausdor distance, then the map ϕ is precisely the one of Denition 2.2 associated with the point x 0 of ∂Ω and furthermore, the whole sequence (ϕ i ) i I converge to ϕ in [START_REF] Bellettini | Approximation of the Helfrich's functional via diuse interfaces[END_REF].

The proof of Theorem 3.3 is organized in the spirit of Sections 5.1.2 and 5.2.15.2.2. First, some geometric inequalities are given in Section 3.2. Then, the boundary ∂Ω i is locally parametrized by a certain graph in Section 3.3. Finally, in Section 3.4, we obtain the C 1,1 -regularity of this graph. We conclude Section 3 by proving Theorem 3.3 i.e. that (4) holds true for the graphs.

3.1

Compactness of the class O ε (B)

In this section, we recall the general background concerning the compactness results given by a uniform regularity. First, we consider the well-known case of the uniform cone property. 

R n-1 d x 0 ∂Ω ε -ε x 0 x ϕ(x ) x ∂Ω i -r(ε) r(ε) x i ϕi(x )
(B) = ∅. If (Ω i ) i∈N is a sequence of elements from O α (B), then there exists Ω ∈ O α (B) such that a subsequence (Ω i ) i∈N converges to Ω as in Proposition 3.2.
Proof. First, for a proof of the convergence in the sense of characteristic functions, we refer to the original paper of Chenais [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF]Theorem III.1]. Another proof is given in [24, Chapter 5 Theorem 6.11] but assume that the boundary ∂B is uniformly Lipschitz. Then, we refer to [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF]Theorem 2.4.10] for further details concerning the proof of Theorem 3.4 that is not considering the convergence of the oriented distance functions. Finally, a complete proof of Theorem 3.4 can be found in Section As shown by Chenais in [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF], adding a uniform Lipschitz condition on the local graph yields to a compactness result in terms of characteristic functions. In [START_REF] Tiba | A property of Sobolev spaces and existence in optimal design[END_REF], Tiba obtain in a similar result by assuming only a uniform condition on the modulus of continuity of the local graph functions. In doing so, he generalized what Chenais did to domains with cusps.

However, there is a stronger and neater version which gives the convergence of the oriented distance functions b Ω in W 1,p (B) for any p ∈ [1, +∞[. It was originally given in the rst 2001 edition of the book of Delfour and Zolésio [24, Chapter 7 Section 13] in terms of a uniform fat segment condition that generalizes the uniform cone and cusp properties. In [START_REF] Delfour | Oriented distance function and its evolution equation for initial sets with thin boundary[END_REF][START_REF] Delfour | Uniform fat segment and cusp properties for compactness in shape optimization[END_REF], Delfour and Zolésio gave the equivalence between this condition and the one considered by Tiba [24, Chapter 7 Theorem 13.2]. Most compactness theorems (uniform cone property of Chenais [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF], density perimeter and capacity condition of Bucur and Zolésio [START_REF] Bucur | N-dimensional shape optimization under capacitary constraint[END_REF][START_REF] Bucur | Free boundary problems and density perimeter[END_REF], sets of bounded curvatures [24, Chapter 7 Section 11], and the graph version of the uniform cusp property of Tiba [START_REF] Tiba | A property of Sobolev spaces and existence in optimal design[END_REF]) are not only true for the C 0 -convergence of distance functions, or the L p -convergence of characteristic functions, but also for the ner W 1,p -convergence of oriented distance functions.

Moreover, this latter directly implies [START_REF] Delfour | Shapes and geometries: metrics, analysis, dierential calculus, and optimization[END_REF]Chapter 7 The oriented distance function of Denition 2.5 was originally introduced by Delfour and Zolésio in [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF]. They were able to sharpen the local characterization of C k -regular sets, k 2, given by Gilbarg and Trudinger [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF], and extended it to sets of class C 1,1 . Therefore, for a set of class C 1,1 or with better regularity, the oriented distance function has the same regularity in the neighbourhood of each point of its boundary, and this is equivalent to a local graph representation with the same smoothness [24, Chapter 7 Theorem 8.2].

The sets of class C 1,1 have been extensively studied through the oriented distance functions b Ω [START_REF] Delfour | Tangential dierential calculus and functional analysis on a C 1,1 submanifold[END_REF][START_REF] Delfour | Representations, composition, and decomposition of C 1,1 -hypersurfaces[END_REF][START_REF] Delfour | Metric spaces of shapes and geometries from set parametrized functions[END_REF], and especially in the context of thin and asymptotics shells [START_REF] Delfour | Intrisic dierential geometric methods in the asymptotic analysis of linear thin shells. In Boundaries, interfaces, and transitions[END_REF][START_REF] Delfour | Intrinsic P(2,1) thin shell model and Naghdi's models without a priori assumption on the stress tensor[END_REF][START_REF] Delfour | Membrane shell equations: characterization of the space of solutions[END_REF][START_REF] Delfour | Characterization of the space of the membrane shell equation for arbitrary C 1,1 midsurfaces[END_REF][START_REF] Delfour | Representation of hypersurfaces and minimal smoothness of the midsurface in the theory of shells[END_REF][START_REF] Delfour | Oriented distance function and its evolution equation for initial sets with thin boundary[END_REF]. In particular, the restriction of ∇b Ω to ∂Ω is the unitary exterior normal vector to Ω, Hess(b Ω ) is the natural extension to R n of the second fundamental form associated with ∂Ω, (Hess(b Ω )) 2 the third fundamental form, and so on. They exists almost everywhere with respect to the (n -1)dimensional Hausdor measure (see for instance [START_REF] Delfour | Representation of hypersurfaces and minimal smoothness of the midsurface in the theory of shells[END_REF]). Under this point of view, the intrisic theory of Sobolev space on such C 1,1 -hypersurface can be found in [START_REF] Delfour | Tangential dierential calculus and functional analysis on a C 1,1 submanifold[END_REF].

However, this article consider the more geometrical approach of the uniform ball condition in the context of shape optimization. Of course, the two concepts are equivalent as we have shown in Theorem 2.8, and both can be used to study these kind of problems. The reasons of this choice were already explained in Section 1, from below Theorem 1.3 until Section 1.1.

We are now in position to prove Proposition 3.2, mentioning that a proof can also be found in [START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF]Theorem 2.8]. More precisely, Guo and Yang prove that O ε (B) is sequentially compact for the convergence in the Hausdor sense (cf. Denition 3.1 (i)). Hence, combining this result with Theorem 3.4, we get that Proposition 3.2 holds true. The proof is short, see [START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF] for details.

Proof of Proposition 3.2. Since O ε (B) ⊂ O f -1 (ε) (B) (Point (i) of Theorem 2.7), Theorem 3.

holds true and we only have to check

Ω ∈ O ε (B). Consider x ∈ ∂Ω. From [38, Proposition 2.2.14],
there exists a sequence of points x i ∈ ∂Ω i converging to x. Then, we can apply the ε-ball condition on each point x i so there exists a sequence of unit vector

d xi of R n such that: ∀i ∈ N, B ε (x i -εd xi ) ⊆ Ω i and B ε (x i + εd xi ) ⊆ B\Ω i .
Since d xi = 1, there exists a unit vector d x of R n such that, up to a subsequence, (d xi ) i∈N converges to d x . Finally, the inclusion is stable under the Hausdor convergence [38, (2.16)] and we get the ε-ball condition of Denition 1.1 by letting i → +∞ in the above inclusions.

Some global and local geometric inequalities

In the remaining part of Section 3, consider a sequence

(Ω i ) i∈N ⊂ O ε (B) converging to Ω ∈ O ε (B)
in the sense of compact sets (cf. Denition 3.1 (ii)). We also make the following hypothesis, which are only used throughout Section 3.23.4 to prove Theorem 3.3.

Assumption 3.5. Let x 0 ∈ ∂Ω henceforth set. From the ε-ball condition, a unit vector d x0 is associated with the point x 0 (which is unique from Proposition 5.4). Moreover, we have:

   B ε (x 0 -εd x0 ) ⊆ Ω B ε (x 0 + εd x0 ) ⊆ B\Ω.
Then, we consider η ∈]0, ε[. Since we assume that (Ω i ) i∈N converges to Ω as in Denition 3.1 (ii), there exists I ∈ N depending on (Ω i ) i∈N , Ω, x 0 , ε and η, such that for any integer i I, we have:

   B ε-η (x 0 -εd x0 ) ⊆ Ω i B ε-η (x 0 + εd x0 ) ⊆ B\Ω i . (5) 
Finally, we consider any integer i I.

Proposition 3.6. We assume that (5) holds true. Then, for any point x i ∈ ∂Ω i , we have

d xi -d x0 2 1 ε 2 x i -x 0 2 + (2ε) 2 -(2ε -η) 2 ε 2 . ( 6 
)
Proof. With ( 5) and the ε-ball condition at

x i ∈ ∂Ω i , we get B ε-η (x 0 ± εd x0 ) ∩ B ε (x i ∓ εd xi ) = ∅. We deduce x i -x 0 ∓ ε(d xi + d x0 ) 2ε -η.
Squaring these two inequalities and summing them, we obtain the required one:

x i -x 0 2 +4ε 2 -(2ε-η) 2 2ε 2 -2ε 2 d xi | d x0 = ε 2 d xi -d x0 2 .
Proposition 3.7. Under Assumption 3.5, for any x i ∈ ∂Ω i , we have the following global inequality:

| x i -x 0 | d x0 | < 1 2ε x i -x 0 2 + ε 2 -(ε -η) 2 2ε . (7) 
Moreover, if we introduce the vector

(x i -x 0 ) = (x i -x 0 ) -x i -x 0 | d x0 d x0 and if we assume that (x i -x 0 ) < ε -η and | x i -x 0 | d x0 | < ε,
then we have the following local inequality:

1 2ε x i -x 0 2 + ε 2 -(ε -η) 2 2ε < ε -(ε -η) 2 -(x i -x 0 ) 2 . (8) 
Proof. From (5), any point x i ∈ ∂Ω i cannot belong to the sets B ε-η (x 0 ± εd x0 ). Hence, we have:

x i -x 0 ∓ εd x0 > ε -η.
Squaring these two inequalities, we get the rst required relation ( 7):

x i -x 0 2 + ε 2 -(ε -η) 2 > 2ε| x i -x 0 | d x0 |.
Then, by introducing the vector (x i -x 0 ) of the statement, the previous inequality now takes the following form:

| x i -x 0 | d x0 | 2 -2ε| x i -x 0 | d x0 | + (x i -x 0 ) 2 + ε 2 -(ε -η) 2 > 0.
We assume that its left member is a second-order polynomial whose reduced discriminant is positive:

∆ := (ε -η) 2 -(x i -x 0 ) 2 > 0. Hence, the unknown satises either | x i -x 0 | d x0 | < ε - √ ∆ or | x i -x 0 | d x0 | > ε + √ ∆ . We assume | x i -x 0 | d x0 | < ε
and the last case cannot hold true. Squaring the remaining inequality, we get:

| x i -x 0 | d x0 | 2 + (x i -x 0 ) 2 < ε 2 +(ε-η) 2 -2ε
√ ∆ , which is the second required relation [START_REF] Chenais | On the existence of a solution in a domain identication problem[END_REF] since its left member is equal to

x i -x 0 2 .
Corollary 3.8. Considering the assumptions and notation of Propositions 3.6 and 3.7, we have:

x i -x 0 < 2η + 2 (x i -x 0 ) , (9) 
ε d xi -d x0 < 2 2εη + √ 2 (x i -x 0 ) . (10) 
Proof. Consider any

x i ∈ ∂Ω i . We set (x i -x 0 ) = (x i -x 0 ) -x i -x 0 | d x0 d x0 . We assume (x i -x 0 ) < ε -η and | x i -x 0 | d x0 | < ε.
The local estimation (8) of Proposition 3.7 gives:

x i -x 0 2 < ε 2 + (ε -η) 2 -2ε (ε -η) 2 -(x i -x 0 ) 2 = ε 2 + (ε -η) 2 2 -4ε 2 (ε -η) 2 + 4ε 2 (x i -x 0 ) 2 ε 2 + (ε -η) 2 + 2ε (ε -η) 2 -(x i -x 0 ) 2 < ε 2 -(ε -η) 2 ε 2 + 4 (x i -x 0 ) 2 < 4η 2 + 4 (x i -x 0 ) 2 .
Hence, we get: x i -x 0 < 2η + 2 (x i -x 0 ) . Then, using (6), we also have:

ε d xi -d x0 4ε 2 -(2ε -η) 2 + x i -x 0 2 .
Combining the above inequality with (8), we obtain:

ε d xi -d x0 < 4εη -η 2 + ε 2 + (ε -η) 2 -2ε (ε -η) 2 -(x i -x 0 ) 2 = 2ε 4εη + (x i -x 0 ) 2 ε + η + (ε -η) 2 -(x i -x 0 ) 2 < 2 √ 2εη + √ 2 (x i -x 0 ) .
Consequently, the required inequalities (9)(10) are established so Corollary 3.8 holds true. ) is a direct orthonormal frame. The position of any point is now determined in this local frame associated with x 0 . More precisely, for any point x ∈ R n , we set x = (x 1 , . . . , x n-1 ) such that x = (x , x n ). In particular, the symbols 0 and 0 respectively refer to the zero vector of R n and R n-1 . Moreover, since x 0 is identied with 0 in this new frame, Relations (5) of Assumption 3.5 take new forms:

B ε-η (0 , -ε) ⊆ Ω i and B ε-η (0 , ε) ⊆ B\Ω i . (11) 
We introduce two functions dened on D ε-η (0 ) = {x ∈ R n-1 , x < ε -η}. The rst one determine around x 0 the position of the boundary ∂Ω i thanks to some exterior points, the other one with interior points. Then, we show these two maps coincide even if it means reducing η.

Proposition 3.9. Under Assumption 3.5, the two following maps ϕ ± i are well dened:

   ϕ + i : x ∈ D ε-η (0 ) -→ sup{x n ∈ [-ε, ε], (x , x n ) ∈ Ω i } ∈ ] -ε, ε[ ϕ - i : x ∈ D ε-η (0 ) -→ inf{x n ∈ [-ε, ε], (x , x n ) ∈ B\Ω i } ∈ ] -ε, ε[,
Moreover, for any x ∈ D ε-η (0 ), introducing the points x ± i = (x , ϕ ± i (x )), we have x ± i ∈ ∂Ω i and also the following inequalities:

|ϕ ± i (x )| < 1 2ε x ± i -x 0 2 + ε 2 -(ε -η) 2 2ε < ε -(ε -η) 2 -x 2 . ( 12 
) Proof. Let x ∈ D ε-η (0 ) and g : t ∈ [-ε, ε] → (x , t). Since -ε ∈ g -1 (Ω i ) ⊆ [-ε, ε], we can set ϕ + i (x ) = sup g -1 (Ω i ). The map g is continuous so g -1 (Ω i ) is open and ϕ + i (x ) = ε thus we get ϕ + i (x ) / ∈ g -1 (Ω i ) i.e. x + i ∈ Ω i \Ω i .
Similarly, the map ϕ - i is well dened and x - i ∈ ∂Ω i . Finally, we use ( 7) and ( 8) on the points x 0 and x i = x ± i in order to obtain [START_REF] Delfour | Intrisic dierential geometric methods in the asymptotic analysis of linear thin shells. In Boundaries, interfaces, and transitions[END_REF].

Lemma 3.10. We make Assumption 3.5 and assume η < ε

3 . We set r = 1 2 4(ε -η) 2 -(ε + η) 2 and x ∈ D r (0 ). Assume there exists x n ∈] -ε, ε[ such that x i := (x , x n ) belongs to ∂Ω i . We also consider xn ∈ R satisfying the inequality |x n | < ε -(ε -η) 2 -x 2 . Introducing xi = (x , xn ), then we have: (x n < x n =⇒ xi ∈ Ω i ) and xn > x n =⇒ xi ∈ B\Ω i . Proof. We assume η < ε 3 so we can set r = 1 2 4(ε -η) 2 -(ε + η) 2 . Consider any x ∈ D r (0 ) and also (x n , xn ) ∈] -ε, ε[ 2 such that x i := (x , x n ) ∈ ∂Ω i and xi := (x , xn ) / ∈ B ε-η (0 , ±ε). We need to show that if xn ≷ x n , then xi ∈ B ε (x i ± εd xi ). The ε-ball condition on Ω i will give the result. Since x i -xi = (x n -xn )d x0 , if we assume xn > x n , then we have: xi -x i -εd xi 2 -ε 2 = (x n -x n ) 2 -2ε(x n -x n ) d x0 | d xi = |x n -x n | |x n -x n | + ε d xi -d x0 2 -2ε |x n -x n | |x n | + |x n | + xi-x0 2 +(2ε) 2 -(2ε-η) 2 ε -2ε ,
where the last inequality comes from Proposition 3.6 (6) applied to x i ∈ ∂Ω i . Finally, we use the inequality involving xn and the ones ( 7)-( 8) of Proposition 3.7 applied to x i ∈ ∂Ω i to obtain:

xi -x i -εd xi 2 -ε 2 < 4|x n -xn | ε + η 2 -(ε -η) 2 -x 2 ε+η 2 - √ (ε-η) 2 -r 2 = 0 . Hence, if xn > x n , then we get xi ∈ B ε (x i + εd xi ) ⊆ B\Ω i . Similarly, one can prove that if xn < x n , then we have xi ∈ B ε (x i -εd xi ) ⊆ Ω i .
Proposition 3.11. Let η, r be as in Lemma 3.10. Then, the two functions ϕ ± i of Proposition 3.9 coincide on D r (0 ). The map ϕ i refers to their common restrictions and it satises:

   ∂Ω i ∩ (D r (0 )∩] -ε, ε[) = {(x , ϕ i (x )), x ∈ D r (0 )} Ω i ∩ (D r (0 )∩] -ε, ε[) = {(x , x n ), x ∈ D r (0 ) and -ε < x n < ϕ i (x )} .
Proof. First, we assume by contradiction that there exists x ∈ D r (0 ) such that ϕ - i (x ) = ϕ + i (x ). The hypothesis of Lemma 3.10 are satised for the points x i := (x , ϕ + i (x )) and xi := (x , ϕ - i (x )) by using [START_REF] Delfour | Intrisic dierential geometric methods in the asymptotic analysis of linear thin shells. In Boundaries, interfaces, and transitions[END_REF]. Hence, either (ϕ

- i (x ) < ϕ + i (x ) ⇒ xi ∈ Ω i ) or (ϕ - i (x ) > ϕ + i (x ) ⇒ xi ∈ B\Ω i ) whereas xi ∈ ∂Ω i . We deduce that ϕ - i (x ) = ϕ + i (x )
for any x ∈ D r (0 ). Then, we consider x ∈ D r (0 ) and x n ∈] -ε, ε[. We set x i = (x , ϕ i (x )) and xi = (x , x n ). Proposition 3.9 ensures that if

x n = ϕ i (x ), then x i ∈ ∂Ω i . Moreover, if -ε < x n -ε + (ε -η) 2 -x 2 , then xi ∈ B ε-η (0 , -ε) ⊆ Ω i and if -ε + (ε -η) 2 -x 2 < x n < ϕ(x ), then apply Lemma 3.10 in order to get xi ∈ Ω i . Consequently, we proved: ∀x ∈ D r (0 ), -ε < x n < ϕ i (x ) =⇒ (x , x n ) ∈ Ω i .
To conclude, similar arguments hold true when ε > x n > ϕ i (x ) and imply (x , x n ) ∈ B\Ω i .

3.4

The C 1,1 -regularity of the local graph ϕ i We previously showed that the boundary ∂Ω i is locally described by the graph of a well-dened map ϕ i : D r (0 ) →] -ε, ε[. Now we prove its C 1,1 -regularity even if it means reducing η and r.

Lemma 3.12. The following map is well dened, smooth, surjective and increasing:

f η : ]0, π 2 [ -→ ]2 √ 2εη, +∞[ α -→ 3α + 2 √ 2εη cos α .
In particular, it is an homeomorphism and its inverse f -1 η satises the following inequality:

∀ε > 0, ∀η ∈ 0, ε 8 , f -1 η (ε) < ε 3 . ( 13 
)
Proof. The proof is basic calculus.

Proposition 3.13. In Assumption 3.5, let η < ε

8 and consider α ∈]0, f -1 η (ε)],
where f -1 η has been introduced in Lemma 3.12. Then, we have:

∀x i ∈ B α (x 0 ) ∩ Ω i , C α (x i , -d x0 ) ⊆ Ω i , where C α (x i , -d x0 ) is dened in Denition 2.4. Proof. Since we have η < ε 3 , we can set r = 1 2 4(ε -η) 2 -(ε + η) 2 and C r,ε = D r (0 )×] -ε, ε[. Moreover, we assume η < ε 8 i.e. 2 √ 2εη < ε so f -1 η (ε) is well dened. Choose α ∈]0, f -1 η (ε)] then consider x i = (x , x n ) ∈ B α (x 0 ) ∩ Ω i and y i = (y , y n ) ∈ C α (x i , -d x0 ).
The proof of the assertion y i ∈ Ω i is divided into the three following steps.

1. Check x i ∈ C r,ε so as to introduce the point xi = (x , ϕ i (x )) of ∂Ω i satisfying x n ϕ i (x ). 2. Consider ỹi = (y , y n + ϕ i (x ) -x n ) and prove ỹi ∈ C α (x i , -d x0 ) ⊆ B ε (x i -εd xi ) ⊆ Ω i . 3. Show (ỹ i , y i ) ∈ C r,ε × C r,ε in order to deduce y n + ϕ i (x ) -x n < ϕ i (y ) and conclude y i ∈ Ω i .
First, from (13), we have: max( x , |x n |)

x i -x 0 < α f -1 η (ε) < ε 3 . Since η < ε 8 , we get r > 1 2 [4( 7ε 8 ) 2 -( 9ε 8 ) 2 ] 1 2 > ε 2 thus x i ∈ Ω i ∩ C r,ε . Hence, from Proposition 3.11, it comes x n ϕ i (x ). We set xi = (x , ϕ i (x )) ∈ ∂Ω i ∩ C r,ε . Then, we prove C α (x i , -d x0 ) ⊆ B ε (x i -εd xi ) so consider any y ∈ C α (x i , -d x0 ).
Combining the Cauchy-Schwartz inequality and y ∈ C α (x i , -d x0 ), we get:

y -xi + εd xi 2 -ε 2 y -xi 2 + 2ε y -xi d xi -d x0 -2ε y -xi cos α < 2 y -xi α 2 + 2 √ 2εη + √ 2 x -ε cos α < 2α cos α (f η (α) -ε) 0 ,
where we used [START_REF] Dalphin | Some characterizations of a uniform ball property[END_REF] 

on xi ∈ ∂Ω i ∩ C r,ε and x x i -x 0 < α. Hence, y ∈ B ε (x i -εd xi ) so C α (x i , -d x0 ) ⊆ B ε (x i -εd xi ) ⊆ Ω i , using the ε-ball condition. Moreover, since ỹi -xi = y i -x i and y i ∈ C α (x i , -d x0 ), we get ỹi ∈ C α (x i , -d x0 ), which ends the proof of ỹi ∈ Ω i . Finally, we check that (y i , ỹi ) ∈ C r,ε × C r,ε . We have successively:                    y y -x + x < √ α 2 -α 2 cos 2 α + α = α cos α 1 2 sin 2α + cos α < f η (α) 2 ε 2 < r |y n | |y n -x n | + |x n | y i -x i + x i -x 0 < 2α < f (α) ε |ỹ n | = |y n + ϕ i (x ) -x n | y i -x i + ε -(ε -η) 2 -x 2 < α + η(2ε -η) + x 2 ε + (ε -η) 2 -x 2 .
Here, we used Relation ( 12), the fact that y i ∈ C α (x i , -d x0 ) and x i ∈ B α (x 0 ). Hence, we obtain:

|ỹ n | < 2α + 2η < 2f -1 η (ε) + 2 ε
Lemma 3.14. The following map is well dened, smooth, surjective and increasing:

g : ]0, π 8 [ -→ ]0, +∞[ η -→ 32η cos 2 (4η) .
In particular, it is an homeomorphism and its inverse g -1 satises the following relations:

∀ε > 0, g -1 (ε) < ε 32 and g -1 (ε) < 1 4 f -1 g -1 (ε) (ε), (14) 
where f -1 η is dened in Lemma 3.12.

Proof. We only prove the inequality g -1 (ε)

< 1 4 f -1 g -1 (ε) (ε).
The remaining part is basic calculus. Consider any ε > 0. There exists a unique η ∈]0, π 8 [ such that g(η) = ε or equivalently η = g -1 (ε). Hence, we have 4η ∈]0, π 2 [ so we can compute, using the rst inequality η < ε 32 :

f η (4η) = 2 √ 2ηε cos(4η) 3 2η ε + 1 < 2 √ 2ηε cos(4η) 3 2 32 + 1 < 4 √ 2εη cos(4η) = g(η)ε = ε.
Since f η is an increasing homeomorphism, so does f -1 η and the inequality follows: 4η < f -1 η (ε).

Corollary 3.15. In Assumption 3.5, we set η = g -1 (ε), then consider α = f -1 η (ε) and r = 1 4 α-η. The restriction to D r (0 ) of the map ϕ i dened in Proposition 3.11 is 1 tan α -Lipschitz continuous. Proof. Let η = g -1 (ε) and using ( 14), we have η < ε 32 so we can set r = 1 2

4(ε -η) 2 -(ε + η) 2 and α = f -1 η (ε), but we also have r := 1 4 α -η > 0. We consider any (x + , x -) ∈ D r (0 ) × D r (0 ). Using (13)-(14), we get r < 1 4 f -1 η (ε) < ε 12 < 1 2 [4( 31ε 32 ) 2 -( 33ε 32 ) 2 ] 1 2 < r. From Proposition 3.11, we can dene x ± i := (x ± , ϕ i (x ± )) ∈ ∂Ω i . Then, we show that x ± i ∈ ∂Ω i ∩ B α (x 0 ) ∩ B α (x ∓ i ). Relation (9) ensures that x ± i -x 0 < 2 x ± + 2η 2r + 2η < α and the triangle inequality gives x + i -x - i x + i -x 0 + x 0 -x - i < 4r + 4η = α.
Finally, we apply Proposition 3.13 to

x ± i ∈ ∂Ω i ∩ B α (x 0 ), which cannot belong to the cone C α (x ∓ i , -d x0 ) ⊆ Ω i .
Hence, we obtain:

| x + i -x - i | d x0 | cos α x + i -x - i = cos α x + -x - 2 + | x + i -x - i | d x0 | 2 .
Re-arranging the above inequality, we deduce that the map ϕ i is L-Lipschitz continuous with L > 0 depending only on ε as required:

|ϕ i (x + ) -ϕ i (x -)| = | x + i -x - i | d x0 | 1 tan α x + -x -.
Proposition 3.16. We set r =

1 4 f -1 g -1 (ε) (ε) -g -1 (ε)
, where f and g are dened in Lemmas 3.12 and 3.14. Then, the restriction to D r (0 ) of the map ϕ i dened in Proposition 3.11 is dierentiable:

∀a ∈ D r (0 ), ∇ϕ i (a ) = -1 d ai | d x0
d ai where a i := (a , ϕ i (a )).

Moreover, ∇ϕ i : D r (0 ) → R n-1 is L-Lipschitz continuous with L > 0 depending only on ε, and the map is also uniformly bounded. More precisely, we have ∇ϕ i (a ) < 32 29 for any a ∈ D r (0 ). Proof. Let η = g -1 (ε) and using ( 14), we have η < ε 32 so we can set r = 1 2

4(ε -η) 2 -(ε + η) 2 and α = f -1 η (ε), but we also have r := 1 4 α -η > 0. Let a ∈ D r (0 ) and x ∈ D r-a (a ). Hence, (a , x ) ∈ D r (0 ) × D r (0 ). Using (13)-(14), we get r < 1 4 f -1 η (ε) < ε 12 < 1 2 [4( 31ε 32 ) 2 -( 33ε 32 ) 2 ]
1 2 < r. From Proposition 3.11, we can dene x ± i := (x ± , ϕ i (x ± )) ∈ ∂Ω i . Then, we apply [START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF] to Ω i thus:

| x i -a i | d ai | 1 2ε x i -a i 2 = 1 2ε x -a 2 + |ϕ i (x ) -ϕ i (a )| 2 1 2ε 1 + 1 tan 2 α :=C(ε)>0 x -a 2 ,
where we also used the Lipschitz continuity of ϕ i on D r (0 ) established in Corollary 3.15. We note that d ai = (d ai , (d ai ) n ) where (d ai ) n = d ai | d x0 . Hence, the above inequality takes the form:

| (ϕ i (x ) -ϕ i (a )) (d ai ) n + d ai | x -a | C(ε) x -a 2 .
This last inequality is a rst-order Taylor expansion of ϕ i if it can be divided by a uniform positive constant smaller than (d ai ) n . Let us justify this last assertion. From ( 6) and ( 8), we deduce:

(d ai ) n = 1 - 1 2 d ai -d x0 2 1 - 1 2ε 2 a i -x 0 2 - 4εη -η 2 2ε 2 > 1 ε (ε -η) 2 -a 2 - η ε .
Then, inequality (14) gives η ε < 1 32 and from [START_REF] Delfour | Intrinsic P(2,1) thin shell model and Naghdi's models without a priori assumption on the stress tensor[END_REF], it comes a < r < α 4 < ε 12 . Consequently, we get 29 32 and from the foregoing, we obtain:

(d ai ) n > [( 31 32 ) 2 -( 1 12 ) 2 ] 1 2 -1 32 >
∀x ∈ D r-a (a ), ϕ i (x ) -ϕ i (a ) + d ai (d ai ) n | x -a 32C(ε) 29 x -a 2 .
Therefore, ϕ i is dierentiable at any point a ∈ D r (0 ) with ∇ϕ i (a ) = -d ai /(d ai ) n . Moreover, the fact that (d ai ) n > 29 32 and d ai d ai = 1 also ensures that ∇ϕ i (a ) < 32 29 for any a ∈ D r (0 ) i.e. the map ∇ϕ i is uniformly bounded. Finally, we show that ∇ϕ i : D r (0 ) → R n-1 is Lipschitz continuous. Let (x , a ) ∈ D r (0 ) × D r (0 ). We have:

∇ϕ i (x ) -∇ϕ i (a ) | 1 (dx i )n -1 (da i )n | d xi + 1 (da i )n d ai -d xi 32 29 
32 29 |(d ai ) n -(d xi ) n | + d ai -d xi 32 29ε 1 + 32 29 x i -a i 32 29ε 1 + 32 29 1 + 1 tan 2 α
xa .

We used the fact that (d ai ) n > 29 32 , the Lipschitz continuity of ϕ i proved in Corollary 3.15 and the one of the map x i ∈ ∂Ω i → d xi coming from Proposition 5.4 applied to Ω i ∈ O ε (B). To conclude, ∇ϕ i is an L-Lipschitz continuous map, where L > 0 depends only on ε.

Proof of Theorem 3.3. Set K := D r (0 ) where r : [START_REF] Delfour | Membrane shell equations: characterization of the space of solutions[END_REF]. Using Propositions 3.11, 3.16 and Corollary 3.15, we have proved that each Ω i is parametrized by a local graph ϕ i : D r (0 ) →] -ε, ε[ as stated in Theorem 3.3. Hence, it remains to prove the convergence of these graphs. First, any of the (ϕ i ) i I is Lipschitz thus uniformly continuous on D r (0 ) so it has a unique Lipschitz continuous extension to K. In addition, the sequence (ϕ i ) i I is uniformly bounded and equi-Lipschitz continuous. Applying the Arzelà-Ascoli Theorem, it is uniformly converging, up to a subsequence, to a Lipschitz continuous function φ : K → [-ε, ε]. Similarly, using Corollary 3.15, the sequence (∇ϕ i ) i I is uniformly bounded and equi-L-Lipschitz continuous so up to a subsequence, it is uniformly converging on K to a Lipschitz continuous map, which has to be ∇ φ (use the convergence in the sense of distributions and [START_REF] Federer | Curvature measures[END_REF]Lemma 4.7]). Then, let δ ∈]0, 1] and we have:

= 1 4 f -1 g -1 (ε) (ε) -g -1 (ε) is positive from
sup (x,y)∈K×K x =y ∇ (ϕ i -ϕ) (x) -∇ (ϕ i -ϕ) (y) x -y 1-δ L + ∇ϕ C 0,1 (K) 1-δ ∇ϕ i -∇ϕ δ C 0 (K) ,
from which we deduce that up to a subsequence, (ϕ i ) i I converges to ϕ in C 1,1-δ (K) for any δ ∈]0, 1]. Moreover, using [38, Section 5.2.2], each coecient of the Hessian matrix of ϕ i is uniformly bounded in L ∞ (K) so up to a subsequence again [38, Lemma 2.2.27], each of them weakly-star converges in L ∞ (K) to the ones of φ. Finally, we assume that lim i→+∞ d H (∂Ω i , ∂Ω) = 0. Even if it means reducing r again, we can also assume that r < r , where r > 0 is the one of Theorem 2.7. Consequently, K ⊆ D r (0 ) and we can consider the local map ϕ : K →] -ε, ε[ associated with ∂Ω.

We now show that ϕ ≡ φ on K. Let x ∈ K. We set x = (x , φ(x )) and x i = (x , ϕ i (x )). There exists y ∈ ∂Ω such that d(x i , ∂Ω) = x i -y . We thus have:

d(x, ∂Ω) x -y x -x i + x i -y = |ϕ i (x ) -φ(x )| + d(x i , ∂Ω) ϕ i -φ C 0 (K) + d H (∂Ω i , ∂Ω).
By letting i → +∞, we obtain x ∈ ∂Ω. In particular, from the ε-ball condition, we deduce that

| φ(x )| = ε otherwise x ∈ B ε (0 , ε) ⊆ B\Ω or x ∈ B ε (0 , -ε)
⊆ Ω which is not the case. Therefore, since K ⊂ D r (0 ), we get x ∈ ∂Ω ∩ (D r (0 )×] -ε, ε[) and Theorem 2.7 yields to x = (x , ϕ(x )) i.e. ϕ(x ) = φ(x ) for any x ∈ K. To conclude, we also have proved that ϕ is the unique limit of any converging subsequence of (ϕ i ) i I . Hence, the whole sequence (ϕ i ) i I is converging to ϕ.

4 Continuity of some geometric functionals in the class O ε (B)

In this section, we prove that the convergence properties and the uniform C 1,1 -regularity of the class O ε (B) ensure the continuity of a wide range of geometric functionals. More precisely, with a suitable partition of unity, we show how to use the local convergence results of Theorem 3.3 in order to get the global continuity of many functionals of the form J : Ω ∈ O ε (B) → ∂Ω j Ω (x)dA(x).

First, we study the case of integrands depending only on the position and the normal vector i.e. for any j Ω : x ∈ ∂Ω → j[x, n(x)], where j : B × S n-1 → R is a continuous map. In Section 4.2, we explain how to build a partition of unity and the continuity of J will directly follow from the C 1 -strong convergence of the local graphs given in Theorem 3.3.

Then, we aim to use the L ∞ -weak star convergence of the Hessian-matrix coecients associated with these local graphs. We thus consider integrands whose expressions in the local basis are linear in these coecients. It is the case for the scalar mean curvature H and in Section 4.3, we obtain the continuity of J for any j Ω : x ∈ ∂Ω → H(x)j[x, n(x)], where j : B ×S n-1 → R is a continuous map. Moreover, using classical arguments, we can relax the continuity results into lower semi-continuity ones if we only assume convexity with respect to H of integrands j Ω :

x ∈ ∂Ω → j[x, n(x), H(x)].
In this case, note that we only have lower semi-continuity and not continuity (which requires the linearity of j in H). Note also that no growth condition on j is imposed here regarding the last variable. In particular, we are able to get the lower semi-continuity of Ω ∈ O ε (B) → ∂Ω |H|dA, which is excluded from many statements of geometric measure theory (cf. Remark 4.15).

Furthermore, we only need to assume the continuity of j with respect to the set of variables in order to ensure that the functional J is well dened. Indeed, from Theorem 2.7, the Gauss map n :

x ∈ ∂Ω → n(x) ∈ S n-1 is 1 ε -Lipschitz continuous. Rademacher's Theorem [29, Section 3.1.2] ensures it is dierentiable almost everywhere and its dierential D • n : x ∈ ∂Ω → D x n ∈ L(T x ∂Ω) is an L ∞ -map satisfying D • n L ∞ (∂Ω) 1 ε . We deduce that the map x ∈ ∂Ω → (x, n(x), H(x)) is valued in the compact set B × S n-1 × [-n-1 ε , n-1 ε ].
In particular, the continuity of j and the compactness of ∂Ω ensure the existence of ∂Ω j[x, n(x), H(x)]dA(x) < +∞ i.e. J : O ε (B) → R is well dened. These kind of arguments also work for any functional considered in Section 4.

Finally, we wonder if we can have the L ∞ -weak star convergence of some non-linear functions of the Hessian-matrix coecients associated with the local graphs. Considering the Gauss-Codazzi-Mainardi equations (28)(29), we detail how to apply a version of the Div-Curl Lemma [START_REF] Tartar | Compensated compactness and applications to partial dierential equations[END_REF] to this geometrical setting. In Section 4.4, we obtain the L ∞ -weak star convergence of the Gaussian curvature K, and more generally of [START_REF] Delfour | Oriented distance function and its evolution equation for initial sets with thin boundary[END_REF] i.e. of the elementary symmetric polynomials H (l) of the principal curvatures. As before, we deduce continuity for integrands that are linear in K, H (l) , and only lower semi-continuity for integrands that are convex in K, H (l) , l = 1 . . . n -1.

Note that for C 1,1 -hypersurfaces, (H (l) ) 0 l n-1 corresponds to the curvature measures dened more generally for sets of positive reach. Consequently, we have strengthened the results of Federer [30, Theorem 5.9] in the particular context of the ε-ball condition: the (H (l) ) 0 l n-1 are not only converging in the sense of Radon measures but also L ∞ -weakly star (cf. Remark 4.5). Throughout this section, we make the following hypothesis, that were exactly the one assumed in Theorem 3.3. Denition 4.2. Let f , (f i ) i∈N : E → F be continuous maps between two metric spaces. We say

that (f i ) i∈N diagonally converges to f if f (t i ) -f (t) F → 0 for any (t i ) i∈N converging to t in E.
Remark 4.3. The uniform convergence implies the diagonal convergence implying the pointwise convergence. Conversely, any sequence of equi-continuous maps converging pointwise is diagonally convergent. If in addition, it is uniformly bounded, then we get the uniform convergence.

Section 4 is organized as follows. In Section 4.1, we recall some notions related to the geometry of C 1,1 -hypersurfaces. In Section 4.2, we study the continuity of functionals depending on the position and the normal vector. In Section 4.3, we consider the dependence in the mean curvature. In Section 4.4, we treat the case of the Gaussian curvature in R 3 and we prove its R n -version, namely Theorem 4.4 stated hereafter. We conclude by giving some existence results in Section 4.5. We prove Theorem 1.3, its generalization to R n , and detail many applications like Theorem 1.5 and Theorems 1.71.8, mainly coming from the modelling of vesicles and red blood cells. Theorem 4.4. Let ε, B, Ω, (Ω i ) i∈N be as in Assumption 4.1. We consider some continuous maps j l , j l i : R n × S n-1 → R such that each sequence (j l i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j l for any l ∈ {0, . . . , n -1}. Then, the following functional is continuous:

J (∂Ω i ) := n-1 l=0 ∂Ωi   1 n1<...<n l n-1 κ ∂Ωi n1 (x) . . . κ ∂Ωi n l (x)   j l i x, n ∂Ωi (x) dA (x) -→ i→+∞ J(∂Ω),
where κ 1 , . . . κ n-1 are the principal curvatures, n the unit outer normal eld to the hypersurface, and where the integration is done with respect to the (n -1)-dimensional Hausdor measure A(•).

Remark 4.5. In the specic case of compact C 1,1 -hypersurfaces, note that the above theorem is stronger than Federer's one on sets of positive reach [30, Theorem 5.9]. Indeed, in Theorem 4.4, taking j l i (x, n(x)) = j l (x) yields to the convergence of the curvature measures associated with ∂Ω i to the ones of ∂Ω in the sense of Radon measures.

4.1

On the geometry of hypersurfaces with C 1,1 -regularity Let us consider a non-empty compact C 1,1 -hypersurface S ⊂ R n . Merely speaking, for any point x 0 ∈ S, there exists r x0 > 0, a x0 > 0, and a unit vector d x0 such that in the cylinder dened by:

C rx 0 ,ax 0 (x 0 ) = {x ∈ R n , | x -x 0 | d x0 | < a x0 and (x -x 0 ) -x -x 0 | d x0 d x0 < r x0 } , (15) 
the hypersurface S is the graph of a C 1,1 -map. Introducing the orthogonal projection on the ane hyperplane

x 0 + d ⊥ x0 : Π x0 : R n -→ x 0 + d ⊥ x0 x -→ x -x -x 0 | d x0 d x0 , (16) 
and considering the set D rx 0 (x 0 ) = Π x0 (C rx 0 ,ax 0 (x 0 )), this means that there exists a continuously dierentiable map

ϕ x0 : x ∈ D rx 0 (x 0 ) → ϕ x0 (x ) ∈] -a x0 , a x0
[ such that its gradient ∇ϕ x0 and ϕ x0 are L x0 -Lipschitz continuous maps, and such that:

S ∩ C rx 0 ,ax 0 (x 0 ) = {x + ϕ x0 (x )d x0 , x ∈ D rx 0 (x 0 )}.
Hence, we can introduce the local parametrization:

X x0 : D rx 0 (x 0 ) -→ S ∩ C rx 0 ,ax 0 (x 0 ) x -→ x + ϕ x0 (x )d x0
and S is a C 

U x ⊆ R n-1 , an open neighbourhood V x of x in R n , and a C 1,1 -map X x : U x → V x ∩ S,
which is an homeomorphism and such that its dierential D y X x : R n-1 → R n is injective for any y ∈ U x .

We usually drop the dependence in x 0 to lighten the notation, and consider a direct orthonormal frame (x 0 , B x0 , d x0 ) where B x0 is a basis of d ⊥ x0 . In this local frame, the point x 0 is identied with the zero vector 0 ∈ R n , the ane hyperplane x 0 + d ⊥ x0 with R n-1 and x 0 + Rd x0 with R. Hence, the cylinder

C rx 0 ,ax 0 (x 0 ) becomes D r (0 )×] -a, a[, ϕ x0 is the C 1,1 -map ϕ : D r (0 ) →] -a, a[, the projection Π x0 is X -1 : (x , x n ) → x , and the parametrization X x0 becomes the C 1,1 -map X : x ∈ D r (0 ) → (x , ϕ(x )) ∈ S ∩ (D r (0 )×] -a, a[).
In this setting, S is a C 1,1 -hypersurface in the sense of Denition 2.2. Since x ∈ D r (0 ) → D x X is injective, the vectors ∂ 1 X, . . ., ∂ n-1 X are linearly independent. For any point x ∈ S ∩(D r (0 )×]-a, a[), we dene the tangent hyperplane T x S by D X -1 (x) X(R n-1 ). It is an (n -1)-dimensional vector space so (∂ 1 X, . . ., ∂ n-1 X) forms a basis of T x S. However, this basis is not necessarily orthonormal. Consequently, the rst fundamental form of S at x is dened as the restriction of the usual scalar product in R n to the tangent hyperplane T x S, i.e. as I(x) : (v, w) ∈ T x S × T x S → v | w . In the basis (∂ 1 X, . . . , ∂ n-1 X), it is represented by a positive-denite symmetric matrix usually referred to as (g ij ) 1 i,j n-1 and its inverse denoted by (g ij ) 1 i,j n-1 is also explicitly given in this case:

g ij = ∂ i X | ∂ j X = δ ij + ∂ i ϕ∂ j ϕ, (17) 
g ij = δ ij - ∂ i ϕ∂ j ϕ 1 + ∇ϕ 2 . ( 18 
)
As a function of x , note that each coecient of these two matrices is Lipschitz continuous so it is a W 

i = v | ∂ i X , we have: v = n-1 i=1 V i ∂ i X =⇒ v j = n i=1 V i g ij =⇒ V i = n-1 j=1 g ij v j =⇒ v = n-1 i=1   n-1 j=1 g ij v j   ∂ i X. ( 19 
)
In particular, we deduce

I(v, w) = n-1 i,j=1 g ij v i w j .
Then, the orthogonal of the tangent hyperplane is one dimensional. Hence, there exists a unique unit vector n orthogonal to the (n -1) vectors ∂ 1 X, . . ., ∂ n-1 X and pointing outwards the inner domain of S i.e. det(∂ 1 X, . . ., ∂ n-1 X, n) > 0. It is called the unit outer normal vector to the hypersurface and we have its explicit expression:

∀x ∈ D r (0 ), n • X(x ) = 1 1 + ∇ϕ(x ) 2 -∇ϕ(x ) 1 . (20) 
It is a Lipschitz continuous map, like the coecients of the rst fundamental form. In particular, it is dierentiable almost everywhere and introducing the Gauss map n : x ∈ S → n(x) ∈ S n-1 , we can compute its dierential almost everywhere called the Weingarten map:

D x n : T x S = D X -1 (x) X(R 2 ) -→ T n(x) S n-1 = D X -1 (x) (n • X)(R 2 ) v = D X -1 (x) X(w) -→ D x n(v) = D X -1 (x) (n • X)(w). (21) 
Note that

T n(x) S n-1 = D X -1 (x) (n • X)(R 2 ) because n • X is a Lipschitz parametrization of S n-1 .
Since T n(x) S n-1 ∼ n(x) ⊥ can be identied with T x S, the map D x n is an endomorphism of T x S. Moreover, one can prove it is self-adjoint so it can be diagonalized to obtain n -1 eigenvalues denoted by κ 1 (x), . . ., κ n-1 (x) and called the principal curvatures. Recall that the eigenvalues of an endomorphism do not depend on the chosen basis and thus are really properties of the operator. This assertion also holds true for the coecients of the characteristic polynomial associated with D x n so we can introduce them:

∀l ∈ {0, . . . , n -1}, H (l) (x) = 1 n1<...<n l n-1 κ n1 (x) . . . κ n l (x) . (22) 
In particular, H (0) = 1, H (1) = H is called the scalar mean curvature, and H (n-1) = K refers to the Gaussian curvature:

H(x) = κ 1 (x) + . . . + κ n-1 (x) and K(x) = κ 1 (x)κ 2 (x) . . . κ n-1 (x). (23) 
Moreover, introducing the symmetric matrix (b ij ) 1 i,j n-1 dened by:

b ij = -Dn(∂ i X) | ∂ j X = -∂ i (n • X) | ∂ j X = Hess ϕ 1 + ∇ϕ 2 = n • X | ∂ ij X , (24) 
we get from (19) that the Weingarten map Dn is represented in the local basis (∂ 1 X, . . . , ∂ n-1 X) by the following symmetric matrix:

(h ij ) 1 i,j n-1 = - n-1 k=1 g ik b kj = - n-1 k=1 δ ik - ∂ i ϕ∂ j ϕ 1 + ∇ϕ 2 ∂ kj ϕ 1 + ∇ϕ 2 . ( 25 
)
Finally, we introduce the symmetric bilinear form whose representation in the local basis is (b ij ).

It is called the second fundamental form of the hypersurface and it is dened by:

II(x) : T x (S) × T x (S) -→ R (v, w) -→ -D x n(v) | w = n-1 i,j,k,l=1 g ij v j g kl w l b il = n-1 i,j,k=1 g ij v j v k h ki . (26) 
We can also decompose ∂ ij X in the basis (∂ 1 X, . . . , ∂ n-1 X, n) and its coecients in the tangent space are the Christoel symbols:

∂ ij X = n-1 k=1 Γ k ij ∂ k X + b ij n
Note that the Christoel symbols are symmetric with respect to the lower indices: Γ k ij = Γ k ji . They can be expressed only in terms of coecients of the rst fundamental form:

Γ k ij = 1 2 n-1 l=1 g kl (∂ j g li + ∂ i g lj -∂ l g ij ) . (27) 
Like the rst fundamental form, it is an intrinsic notion, which in particular do not depend on the orientation chosen for the hypersurface, while the Gauss map, the Weingarten map, and the second fundamental form does. Note that in local coordinates, the coecients of the rst fundamental form and the Gauss map are Lipschitz continuous functions i.e. n • X, g ij , g ij ∈ W 1,∞ (D r (0 )).

Hence, the Christoel symbols, the Weingarten map and the coecients of the second fundamental form exist almost everywhere and

Γ k ij , b ij , h ij ∈ L ∞ (D r (0 )
). Furthermore, one can prove that a C 1,1 -hypersurface satises the following relations in the sense of distributions, respectively called the Gauss and Codazzi-Mainardi equations:

∂ l Γ k ij -∂ j Γ k il + n-1 m=1 Γ m ij Γ k ml -Γ m il Γ k mj = n-1 m=1 g km (b ij b ml -b il b mj ) (28) 
∂ k b ij -∂ j b ik = n-1 l=1 Γ l ik b lj -Γ l ij b lk . (29) 
In fact, the converse statement is also true in R 3 : these equations characterize uniquely a surface and it is referred as the Fundamental Theorem of Surface Theory, valid with C 1,1 -regularity [START_REF] Mardare | The fundamental theorem of surface theory for surfaces with little regularity[END_REF]. Given a simply-connected open subset ω ⊆ R 2 , a symmetric positive-denite (2 × 2)-matrix (g ij ) 1 i,j 2 ∈ W 1,∞ (ω) and a symmetric matrix (b ij ) 1 i,j 2 ∈ L ∞ (ω) satisfying ( 28) and ( 29) in the sense of distributions, then there exists an injective C 1,1 -immersion X : ω → R 3 , unique up to proper isometries of R 3 , such that the surface S := X(ω) has (g ij ) and (b ij ) as coecients of the rst and second fundamental forms. To conclude, we recall that A(•) (respectively V (•)) refers to the n -1(resp. n)-dimensional Hausdor measure. The integration is always be done with respect to A and we have (dA • X)(x ) = det(g ij )dx = 1 + ∇ϕ(x ) 2 dx . We refer to [START_REF] Carmo | Dierential geometry of curves and surfaces[END_REF][START_REF] Montiel | Curves and surfaces[END_REF] for a more detailed exposition on all the notions quickly introduced here. we have:

lim i→+∞ ∂Ωi j [x, n (x)] dA (x) = ∂Ω j [x, n (x)] dA (x) .
In particular, the area and the volume are continuous: Proof. Consider Assumption 4.1. Hence, from Theorem 3.3, the boundaries (∂Ω i ) i∈N are locally parametrized by graphs of C 1,1 -maps ϕ i that converge strongly in C 1 and weakly-star in W 2,∞ to the map ϕ associated with ∂Ω. We now detail the procedure which allows to pass from this local result to the global one thanks to a suitable partition of unity. For any x ∈ ∂Ω, we introduce the cylinder C r,ε (x) dened by [START_REF] Delfour | Tangential dierential calculus and functional analysis on a C 1,1 submanifold[END_REF] and we assume that r > 0 is the one given in Theorem 3.3.

A(∂Ω i ) -→ A(∂Ω) and V (Ω i ) -→ V (Ω).
In particular, it only depends on ε. Since ∂Ω is compact, there exists a nite number K 1 of points written x 1 , . . . , x K , such that ∂Ω ⊆

K k=1 C r 2 , ε 2 (x k ). We set δ = min( r 2 , ε 2 ) > 0.
From the triangle inequality, the tubular neighbourhood V δ (∂Ω) = {y ∈ R n , d(y, ∂Ω) < δ} has its closure embedded in K k=1 C r,ε (x k ). Then, we can introduce a partition of unity on this set. There exists K non-negative C ∞ -maps ξ k with compact support in C r,ε (x k ) and such that K k=1 ξ k (x) = 1 for any point x ∈ V δ (∂Ω). Now, we can apply Theorem 3.3 to the K points x k . There exists K integers I k ∈ N and some maps ϕ k i : D r (x k ) →] -ε, ε[, with i I k and K k 1, such that:

∂Ω i ∩ C r,ε (x k ) = (x , ϕ k i (x )), x ∈ D r (x k ) Ω i ∩ C r,ε (x k ) = (x , x n ), x ∈ D r (x k ) and -ε < x n < ϕ k i (x ) .
Moreover, the K sequences of functions (ϕ k i ) i I k and (∇ϕ k i ) i I k converge uniformly on D r (x k ) respectively to the maps ϕ k and ∇ϕ k associated with ∂Ω at each point x k . From the Hausdor convergence of the boundaries given in Assumption 4.1, there also exists I 0 ∈ N such that for any integer i I 0 , we have ∂Ω i ∈ V δ (∂Ω). Hence, we set I = max 0 k K I k , which thus only depends on (Ω i ) i∈N , Ω and ε. Then, we deduce that for any integer i I, we have:

J(∂Ω i ) := ∂Ωi j [x, n (x)] dA(x) = ∂Ωi∩V δ (∂Ω) j [x, n (x)] dA(x) = ∂Ωi K k=1 ξ k (x) j [x, n (x)] dA(x) = K k=1 ∂Ωi∩Cr,ε(x k ) ξ k (x) j [x, n (x)] dA(x) = K k=1 Dr(x k ) ξ k x ϕ k i (x ) j   x ϕ k i (x ) ,   -∇ϕ k i (x ) √ 1+ ∇ϕ k i (x ) 2 1 √ 1+ ∇ϕ k i (x ) 2     1 + ∇ϕ k i (x ) 2 dx
The last equality comes from [START_REF] Montiel | Curves and surfaces[END_REF]Proposition 5.13] and Relation [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF]. The uniform convergence of the K sequences (ϕ k i ) i I and (∇ϕ k i ) i I on the compact set D r (x k ) combined with the continuity of j and (ξ k ) 1 k K allows one to let i → ∞ in the above expression. Observing that the limit expression obtained is equal to J(∂Ω), we proved that the functional J is continuous. Finally, for the area, take j ≡ 1 and for the volume, applying the Divergence Theorem, take j[x, n(

x)] = 1 n x | n(x) .
Proposition 4.9. Consider Assumption 4.1 and some continuous maps j, j i : R n × S n-1 → R such that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j in the sense of Denition 4.2. Then, we have:

lim i→+∞ ∂Ωi j i [x, n (x)] dA (x) = ∂Ω j [x, n (x)] dA (x) .
Proof. The proof is identical to the one of Proposition 4.7. Using the same partition of unity and the same notation, we get that ∂Ωi j i [x, n(x)]dA(x) is equal to:

K k=1 Dr(x k ) ξ k x ϕ k i (x ) j i   x ϕ k i (x ) ,   -∇ϕ k i (x ) √ 1+ ∇ϕ k i (x ) 2 1 √ 1+ ∇ϕ k i (x ) 2     1 + ∇ϕ k i (x ) 2 dx .
Then, instead of using the uniform convergence of each integrand on a compact set as it is the case in Proposition 4.7, we apply instead Lebesgue's Dominated Convergence Theorem. Indeed, the diagonal convergence ensures the pointwise convergence of each integrand, which are also, using the other hypothesis, uniformly bounded. Hence, we can let i → +∞ in the above expression.

Denition 4.10. Let S, S i be some non-empty compact C 1 -hypersurfaces of R n such that (S i ) i∈N converges to S for the Hausdor distance: d H (S i , S) -→ i→+∞ 0. On each hypersurface S i , we also consider a continuous vector eld V i : x ∈ S i → V i (x) ∈ T x S i . We say that (V i ) i∈N is diagonally converging to a vector eld on S denoted by V : x ∈ S → V(x) ∈ T x S if for any point x ∈ S and for any sequence of points x i ∈ S i that converges to x, we have

V i (x i ) -V(x) -→ i→+∞ 0.
Remark 4.11. In Denition 4.10, (V i (x i )) i∈N is assumed to converge to V(x) as a sequence of points in R n , although V i (x i ) and V(x) belong to dierent linear spaces T xi S i and T x S.

Corollary 4.12. Let ε, B, Ω, (Ω i ) i∈N be as in Assumption 4.1 and consider some continuous vector elds V i on ∂Ω i converging to a continuous vector eld V on ∂Ω as in Denition 4.10. We also assume that (V i ) i∈N is uniformly bounded. If j : R n × S n-1 × R n → R is a continuous map, then we have:

lim i→+∞ ∂Ωi j [x, n (x) , V i (x)] dA(x) = ∂Ω j [x, n (x) , V (x)] dA(x).
Of course, this continuity result can be extended to a nite number of vector elds.

Proof. We only have to check that the maps j i : (x, u) ∈ ∂Ω i × S n-1 → j[x, u, V i (x)] can be extended to R n × S n-1 such that their extension satisfy the hypothesis of Proposition 4.9. This is a standard procedure [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF]Section 5.4.1]. Using the partition of unity given in Proposition 4.7 and introducing the C 1,1 -dieomorphisms

Ψ k i : (x , x n ) ∈ C r,ε (x k ) → (x , ϕ k i (x ) -x n ), we can set: ∀(x, u) ∈ R n ×S n-1 , j i (x, u) = K k=1 ξ k (x)j (Ψ k i ) -1 • Π x k • Ψ k i (x), u, V i • (Ψ k i ) -1 • Π x k • Ψ k i (x) .
We recall that Π x k is dened by [START_REF] Delfour | Characterization of the space of the membrane shell equation for arbitrary C 1,1 midsurfaces[END_REF]. Finally, (j i ) i∈N diagonally converges to the extension of (x, u) → j[x, u, V(x)], since (V i ) i∈N is diagonally converging to V . Moreover, (Ω i ) i∈N ⊂ B, the Gauss map is always valued in S n-1 , and

(V i ) i∈N is uniformly bounded. Hence, (x, n ∂Ωi (x), V i (x))
is valued in a compact set. Since j is continuous on this compact set, it is bounded and (j i ) i∈N is thus uniformly bounded on B × S n-1 . Finally, we can apply Proposition 4.9 to let i → +∞.

Some linear functionals involving the second fundamental form

From Theorem 3.3, we only have the L ∞ -weak-star convergence of the coecients associated with the Hessian of the local maps ϕ k i so we consider here the case of functionals whose expressions in the parametrization are linear in ∂ pq ϕ k i . This is the case for the scalar mean curvature and the second fundamental form of two vector elds. Proposition 4.13. Consider Assumption 4.1 and a continuous map j : R n × S n-1 → R. Then,

the functional Ω ∈ O ε (B) → ∂Ω H(x)j[x, n(x)]dA(x) is continuous: lim i→+∞ ∂Ωi H (x) j [x, n (x)] dA (x) = ∂Ω H (x) j [x, n (x)] dA (x) .
Proof. The proof is identical to the one of Proposition 4.7. Using the same notation and the same partition of unity, we have to check that in the parametrization

X k i : x ∈ D r (x k ) → (x , ϕ k i (x )
), the scalar mean curvature L ∞ -weakly-star converges. It is the trace [START_REF] Delfour | Uniform fat segment and cusp properties for compactness in shape optimization[END_REF] of the Weingarten map dened by [START_REF] Delfour | Shape analysis via distance functions: local theory. In Boundaries, interfaces, and transitions[END_REF] so relation [START_REF] Delladio | Special generalized Gauss graphs and their application to minimization of functional involving curvatures[END_REF] gives:

(H • X k i ) = - n-1 p,q=1 g pq b qp = - n-1 p,q=1 δ pq - ∂ p ϕ k i ∂ q ϕ k i 1 + ∇ϕ k i 2 ∂ pq ϕ k i 1 + ∇ϕ k i 2 . ( 30 
)
Using Theorem 3.3, the K sequences (H •X k i ) i∈N weakly-star converge in L ∞ (D r (x k )) respectively to H • X k . The remaining part of each integrand below uniformly converges to the one of ∂Ω so we can let i → +∞ inside:

K k=1 Dr(x k ) (H • X k i )(x )(ξ k • X k i )(x )j[X k i (x ), (n • X k i )(x )](dA • X k i )(x ),
to get the limit asserted in Proposition 4.13.

Corollary 4.14. Consider Assumption 4.1 and a continuous map j : R n × S n-1 × R → R which is convex in its last variable. Then, we have:

∂Ω j [x, n (x) , H (x)] dA (x) lim inf i→+∞ ∂Ωi j [x, n (x) , H (x)] dA (x) .
Remark 4.15. In particular, this result implies that the Helfrich [START_REF] Bauer | Existence of minimizing Willmore surfaces of prescribed genus[END_REF] and the Willmore functional We emphasize the fact that we have here lower semi-continuity and not continuity.

Proof. The arguments are standard [START_REF] Tartar | Compensated compactness and applications to partial dierential equations[END_REF]2 Theorem 4]. We only sketch the proof. First, assume that j is the maximum of nitely many ane functions according to its last variable:

∀t ∈ R, j(x, n(x), t) = max 0 l L j l [x, n(x)] t + jl [x, n(x)] . ( 31 
)
For simplicity, let us assume that j only depends on the position. Using a partition of unity as in Proposition 4.7, we introduce the local parametrizations X k : x ∈ D r (x k ) → (x , ϕ k (x )) and we make a partition of the set D r (x k ) into L disjoints sets. We dene recursively for any l ∈ {1, . . . L}:

D k l =    x ∈ D r (x k )\ l l=1 D k l , j X k (x ), H • X k (x ) = j l X k (x ) H X k (x ) + jl X k (x )    .
Then, applying Proposition 4.13, we have successively:

∂Ω j[x, H(x)]dA(x) = K k=1 Dr(x k ) (ξ k • X k )j[X k , (H • X k )](dA • X k ) = K k=1 L l=1 D k l (ξ k • X k ) j l [X k ]H[X k ] + jl [X k ] (dA • X k ) = K k=1 L l=1 lim i→+∞ D k l (ξ k • X k i ) j l [X k i ]H[X k i ] + jl [X k i ] (dA • X k i ) K k=1 L l=1 lim inf i→+∞ D k l (ξ k • X k i )j[X k i , (H • X k i )](dA • X k i ) lim inf i→+∞ ∂Ωi j[x, H(x)]dA(x).
The result holds true for maps j that are maximum of nitely many planes. In general, we write j = lim L→+∞ j L where j L is dened by [START_REF] Fu | Tubular neighborhoods in Euclidean spaces[END_REF] and apply the Monotone Convergence Theorem.

Proposition 4.16. Consider Assumption 4.1 and some continuous maps j, j i : R n × S n-1 → R such that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j in the sense of Denition 4.2. Then, we have:

lim i→+∞ ∂Ωi H (x) j i [x, n (x)] dA (x) = ∂Ω H (x) j [x, n (x)] dA (x) .
Remark 4.17. As in Corollary 4.12, we can consider here that j i is a continuous map of the position, the normal vector, and a nite number of uniformly bounded vector elds diagonally converging in the sense of Denition 4.10.

Proof. The proof is identical to the one of Proposition 4.13. Writing the functional in terms of local parametrizations, it remains to check that we can let i → +∞ in each integral. From ( 30), (H • X k i ) i∈N weakly-star converges in L ∞ (D r (0 )) to H • X k , while the remaining part of the integrand is strongly converging in L 1 (D r (0 )), since the hypothesis allows one to apply Lebesgue's Dominated Convergence Theorem. Hence, Proposition 4.16 holds true. Proposition 4.18. Consider Assumption 4.1 and some uniformly bounded continuous vector elds V i and W i on ∂Ω i that are diagonally converging to continuous vector elds V and W on ∂Ω in the sense of Denition 4.10. Let j, j i : R n × S n-1 → R be continuous maps such that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j as in Denition 4.2. Then, we have:

lim i→+∞ ∂Ωi II (x) [V i (x) , W i (x)] j i [x, n (x)] dA (x) = ∂Ω II (x) [V (x) , W (x)] j [x, n (x)] dA (x) .
Remark 4.19. Note that if j i = j for any i ∈ N, then the above assertion states that a functional which is linear in the second fundamental form is continuous. Hence, adapting the arguments of Corollary 4.14, any functional whose integrand is a continuous map of the position, the normal vector, and the second fundamental form, convex in its last variable, is lower semi-continuous.

Proof. We write the integral in terms of local parametrizations and check that we can let i → +∞. In the local basis (∂ 1 X k i , . . . , ∂ n-1 X k i ), using [START_REF] Carmo | Dierential geometry of curves and surfaces[END_REF], the second fundamental form takes the form:

II • X k i V i • X k i , W i • X k i = n-1 p,q,r,s=1 V i • X k i | ∂ p X k i g pq b qr g rs W i • X k i | ∂ s X k i .
Hence, each integrand is the product of g pq b qr g rs with a remaining term. Using the assumptions, the convergence results of Theorem 3.3, and Lebesgue's Dominated Convergence Theorem, we get that g pq b qr g rs weakly-star converges in L ∞ , while the remaining term L 1 -strongly converges.

4.4

Some non-linear functionals involving the second fundamental form All the previous continuity results were obtained by expressing the integrals in the parametrizations associated with a suitable partition of unity, and by observing that each integrand is the product of b pq converging L ∞ -weakly-star with a remaining term converging L 1 -strongly. We are wondering here if a non-linear function such as the determinant of the (b pq ) can also L ∞ -weakly-star converge.

Note that the convergence is in L ∞ and not in W 1,p so we cannot use e.g. [28, Section 8.2.4.b].

However, the coecients of the rst and second fundamental forms are not random coecients. They characterize the hypersurfaces through the Gauss-Codazzi-Mainardi equations ( 28) and ( 29). Hence, using the dierential structure of these equations, we want to obtain the L ∞ -weak-star convergence of non-linear functions of the b pq . This is done by considering a generalization of the Div-Curl Lemma due to Tartar. We refer to [START_REF] Tartar | Compensated compactness and applications to partial dierential equations[END_REF]Section 6] for details and it states as follows.

Proposition 4.20 (Tartar [57, Section 6 Corollary 13]). Let n 3 and U ⊂ R n-1 be open and bounded with smooth boundary. We consider a sequence of maps

(u i ) i∈N weakly-star converging to u in L ∞ (U, R M ), M
1, and a continuous functional

F : R M → R such that (F (u i )) i∈N is weakly-star converging in L ∞ (U, R).
Let us suppose we are given P rst-order constant coecient dierential operators A p v := n-1 q=1 M m=1 a p mq ∂ q v m such that the sequences (A p u i ) i∈N lies in a compact subset of H -1 (U ). We also assume that (u i ) i∈N is almost everywhere valued in K for some given compact set K ⊂ R M . We introduce the following wave cone:

Λ = λ ∈ R M | ∃µ ∈ R n-1 \{0 }, ∀p ∈ {1, . . . P }, n-1 q=1 M m=1 a p mq λ m µ q = 0 .
If F is a quadratic form and F = 0 on Λ, then the weak-star limit of (F (u i )) i∈N is F (u).

We now treat the case of R 3 to get familiar with the notation and observe how Proposition 4.20 can be used here to obtain the L ∞ -weak-star convergence of the Gaussian curvature

K = κ 1 κ 2 . Let n = 3, U = D r (x k ), and u i : x → (b pq ) ∈ R 2 2 dened by (24) with X k i : x → (x , ϕ k i (x )) ∈ ∂Ω i .
First, we show that the assumptions of Proposition 4.20 are satised. From Theorem 3.3, (u i ) i∈N L ∞ (U )-weakly-star converges to u and it is uniformly bounded so it is valued in a compact set. Moreover, in the case n = 3, there are only two Codazzi-Mainardi equations [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]:

   ∂ 1 b 12 -∂ 2 b 11 = Γ 1 11 b 12 -Γ 1 12 b 11 + Γ 2 11 b 22 -Γ 2 12 b 21 ∂ 1 b 22 -∂ 2 b 21 = Γ 1 21 b 12 -Γ 1 22 b 11 + Γ 2 21 b 22 -Γ 2 22 b 21 .
Hence, the two dierential operators

A 1 u i := ∂ 1 b 12 -∂ 2 b 11 and A 2 u i := ∂ 1 b 22 -∂ 2 b
21 are valued and uniformly bounded in L ∞ (U ), which is compactly embedded in H -1 (U ) (Rellich-Kondrachov Embedding Theorem), so we deduce that up to a subsequence, (A 1 u i ) i∈N and (A 2 u i ) i∈N lies in a compact subset of H -1 (U ). Let us now have a look at the wave cone:

Λ = λ 11 λ 12 λ 21 λ 22 ∈ R 2 2 | ∃ µ 1 µ 2 = 0 0 , µ 1 λ 12 -µ 2 λ 11 = 0 and µ 1 λ 22 -µ 2 λ 21 = 0 .
Remark 4.21. The wave cone Λ is the set of (2 × 2)-matrices with zero determinant.

Consequently, if we want to apply Proposition 4.20 on a quadratic form in the b pq , we get from Remark 4.21 that the determinant is one possibility. Indeed, if we set F (u i ) = det(u i ), then F is quadratic and F (λ) = 0 for any λ ∈ Λ. Since (F (u i )) i∈N is uniformly bounded in L ∞ (U ), up to a subsequence, it is converging and applying Proposition 4.20, the limit is F (u). This also proves that F (u) is the unique limit of any converging subsequence. Hence, the whole sequence is converging to F (u) and we are now in position to prove the following result. Proposition 4.22. Consider Assumption 4.1 and some continuous maps j, j i : R 3 × S 2 → R such that (j i ) i∈N is uniformly bounded on B × S 2 and diagonally converges to j as in Denition 4.2. Then, we have (note that Remarks 4.17 and 4.19 also hold true here):

lim i→+∞ ∂Ωi K (x) j i [x, n (x)] dA (x) = ∂Ω K (x) j [x, n (x)] dA (x) .
In particular, the genus is continuous: genus(∂Ω i ) -→ i→+∞ genus(∂Ω).

Proof. As in the proof of Proposition 4.7, we can express the functional in the parametrizations associated with the partition of unity. Then, we have to check we can let i → +∞ in each integral. Note that K is the determinant (23) of the Weingarten map (21) so we get from (25):

K • X k i = det(h) = det(-g -1 b) = - det(b pq ) det(g rs ) .
From the foregoing and the uniform convergence of (g rs ), we get that the sequences (K • X k i ) i∈N converge L ∞ -weakly-star respectively to K • X k , whereas the remaining term in the integrand is L 1 -strongly converging using the hypothesis and Lebesgue's Dominated Convergence Theorem. Hence, we can let i → +∞ and Proposition 4.22 holds true. Finally, concerning the genus, we apply the Gauss-Bonnet Theorem ∂Ωi KdA = 4π(1

-g i ) -→ i→+∞ ∂Ω KdA = 4π(1 -g).
We now establish the equivalent of Proposition 4.22 in R n . First, instead of working with the coecients (b pq ) of the second fundamental form [START_REF] Delfour | Shapes and geometries: metrics, analysis, dierential calculus, and optimization[END_REF], we prefer to work with the ones (h pq ) representing the Weingarten map. We set n > 3, U = D r (x k ), and

u i : x ∈ U → (h pq ) ∈ R (n-1) 2 dened by (25) in the local parametrizations X k i : x ∈ U → (x , ϕ k i (x ))
∈ ∂Ω i introduced in the proof of Proposition 4.7. Then, we check that the hypothesis of Proposition 4.20 are satised. From Theorem 3.3, (u i ) i∈N weakly-star converges to u in L ∞ (U ) and it is uniformly bounded so it is valued in a compact set. Using the Codazzi-Mainardi equations ( 29), the dierential operators:

∂ q h pq -∂ q h pq = n-1 m=1 ((∂ q g pm )b mq -(∂ q g pm )b mq ) + n-1 m=1 g pm (∂ q b mq -∂ q b mq ) ,
are valued and uniformly bounded in L ∞ (U ), which is compactly embedded in H -1 (U ) (Rellich-Kondrachov Embedding Theorem), so up to a subsequence, they lies in a compact set of H -1 (U ). Finally, we introduce the wave cone of Proposition 4.20: Remark 4.24. The wave cone Λ is the set of square (n -1) 2 -matrices of rank zero or one. In particular, any minor of order two is zero for such matrices.

Λ = λ ∈ R (n-1) 2 | ∃µ = 0 (n-1)×1 , ∀(p, q, m) ∈ {1, . . . , n -1} 3 , µ m λ pq -µ q λ pm = 0 .
Consequently, Remark 4.24 combined with Proposition 4.20 tells us that continuous functionals are given by the ones whose expressions in the local parametrizations (cf. proof of Proposition 4.7) are linear in terms of the form h pq h p q -h pq h p q . However, such terms depend on the partition of unity and on the parametrizations i.e. on the chosen basis (∂ 1 X k i , . . . , ∂ n-1 X k i ) whereas the integrand of the functional cannot. We now give three applications for which it is the case. Proposition 4.25. Consider Assumption 4.1 and some continuous maps j, j i : R n × S n-1 → R so that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j in the sense of Denition 4.2. Then, introducing H (2) = 1 p<q n-1 κ p κ q dened in [START_REF] Delfour | Oriented distance function and its evolution equation for initial sets with thin boundary[END_REF], we have:

lim i→+∞ ∂Ωi H (2) (x) j i [x, n (x)] dA (x) = ∂Ω H (2) (x) j [x, n (x)] dA (x) .
Note that Remarks 4.17 and 4.19 also hold true here.

Proof. First, using the notation of Denition 4.23, note that the characteristic polynomial of (h pq ), which is the matrix (25) representing the Weingarten map [START_REF] Delfour | Shape analysis via distance functions: local theory. In Boundaries, interfaces, and transitions[END_REF] in the basis (∂ 1 X k i , . . . ∂ n-1 X k i ), can be expressed as:

P (t) = det (h -tI n-1 ) = (-1) n t n + n-1 m=1 (-1) n-m   I=m det(h[I, I])   t n-m ,
but we can also represent the Weingarten map in the basis associated with the principal curvatures:

P (t) = n-1 m=1 κ m • X k i -t = n-1 m=0 (-1) n-m H (m) • X k i t n-m .
Since each coecients of the characteristic polynomial do not depend on the chosen basis, we get:

∀m ∈ {0, . . . , n -1}, H (m) • X k i = I=m det(h[I, I]). (32) 
If we set F (λ) = I=2 det(λ[I, I]), then F is quadratic and from Remark 4.24 we get F (λ) = 0 for any λ ∈ Λ. Since (F (u i )) i∈N is uniformly bounded in L ∞ (U ), up to a subsequence, it is converging and applying Proposition 4.20, the limit is F (u), unique limit of any converging subsequence so the whole sequence is converging to F (u). Using [START_REF] Ghomi | Tangent cones and regularity of real hypersurfaces[END_REF], we get that the sequences (H (2) • X k i ) i∈N converge L ∞ -weakly-star respectively to H (2) • X k , whereas the remaining term in the integrand is L 1 -strongly converging using the hypothesis and Lebesgue's Dominated Convergence Theorem. Hence, we can let i → +∞ and the functional is continuous. Corollary 4.26. Considering Assumption 4.1, a continuous map j : R n × S n-1 × R → R convex in its last variable, and the (Frobenius

) L 2 -norm D x n 2 = trace(D x n • D x n T ) = ( n-1 m=1 κ 2 m ) 1 2
of the Weingarten map [START_REF] Delfour | Shape analysis via distance functions: local theory. In Boundaries, interfaces, and transitions[END_REF], we have:

∂Ω j x, n (x) , D x n 2 2 dA (x) lim inf i→+∞ ∂Ωi j x, n (x) , D x n 2 2 dA (x) .
In particular, the pth-power of the L 2 -norm of the second fundamental form II p 2 dA, p 2 is lower semi-continuous.

Proof. First, assume that j is linear in its last argument. Note that the Frobenius norm . 2 does not depend on the chosen basis so we can consider the one associated with the principal curvatures, and we get Dn 2) . Hence, there exists a continuous map j : R n × S n-1 → R such that ∂Ωi j[x, n(x), D x n 2 2 ]dA(x) is equal to:

2 2 = n-1 m=1 κ 2 m = ( n-1 m=1 κ m ) 2 -p =q κ p κ q = H 2 -2H ( 
∂Ωi H 2 (x) j [x, n (x)] dA (x) -2 ∂Ωi H (2) (x) j [x, n (x)] dA (x) .
In the left term, the integrand is convex in H so Corollary 4.14 furnishes its lower semi-continuity.

Concerning the right one, apply Proposition 4.25 to get its continuity. Therefore, the functional is lower semi-continuous if j is linear in its last variable. Then, we can apply the standard procedure [START_REF] Tartar | Compensated compactness and applications to partial dierential equations[END_REF]2 Theorem 4] Proposition 4.27. Consider Assumption 4.1, some continuous maps j, j i : R n × S n-1 → R such that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j as in Denition 4.2, and some vector elds V i and W i on ∂Ω i uniformly bounded and diagonally converging to vector elds V and W on ∂Ω in the sense of Denition 4.10. Then, the following functional is continuous (note that Remarks 4.17 and 4.19 also hold true here):

J (∂Ω i ) := ∂Ωi D x n [V i (x)] | D x n [W i (x)] -H (x) W i (x) j i [x, n (x)] dA (x) -→ i→+∞ J (∂Ω) .
Proof. Again, the idea is to check that the expression of the functional in the parametrization is linear in a term of the form b pq b p q -b pq b p q . First, the linear term can be expressed as:

n-1 p,p ,p"=1 n-1 q,q ,q"=1 V i • X k i | ∂ q X k i g pq g p q (b q p b p"p -b q p b pp" ) g p"q" W i • X k i | ∂ q" X k i
Note that until now, in Section 4, we never used the fact that (g pq ), (g pq ), (b pq ) or (h pq ) are symmetric matrices. Here, let us invert the two indices b pp" = b p"p in the above expression. Then, b q p b p"p -b q p b p"p is L ∞ -weakly-star converging. Indeed, as we did for (h pq ), we can use the Codazzi-Mainardi equations [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF] and Remark 4.24 to apply Proposition 4.20 on (b pq ). Finally, the hypothesis and the convergence results of Theorem 3.3 gives the L 1 -strong convergence of the remaining term so we can let i → +∞ in each integral and the functional is continuous.

Note that until now, in Section 4.4, we only used the Codazzi-Mainardi equations [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]. We want here to use the Gauss equations [START_REF] Evans | Partial dierential equations[END_REF] because from the foregoing, its right member is L ∞weakly-star converging. For this purpose, we need to introduce some concepts of Riemannian geometry which are beyond the scope of the article. Hence, we refer to [START_REF] Willmore | Total curvature in Riemannian geometry[END_REF] for precise denitions. Merely speaking, the Riemann curvature tensor R of a Riemannian manifold measures the extend to which the rst fundamental form is not locally isometric to an Euclidean space, i.e. the noncommutativity of the covariant derivative. In the basis (∂ 1 X, . . . , ∂ n-1 X), it has the following representation [60, Section 2.6]:

R k jli = n-1 m=1 g km R mjli = ∂ l Γ k ij -∂ j Γ k il + n-1 m=1 Γ m ij Γ k ml -Γ m il Γ k mj ,
where the Christoels symbols Γ k ij were dened in [START_REF] Dold | Lectures on algebraic topology[END_REF]. Hence, the Gauss equations [START_REF] Evans | Partial dierential equations[END_REF] state that in the local parametrization, the Riemann curvature tensor is given by:

R k jli = n-1 m=1 g km (b ij b ml -b il b mj ) ,
which is thus L ∞ -weakly-star converging, and so does the Ricci curvature tensor [START_REF] Willmore | Total curvature in Riemannian geometry[END_REF]Section 3.3]

Ric ij = n-1 k=1 R k ikj and the scalar curvature R = n-1 i,j=1 g ij R ij .
Hence, we get the following result.

Proposition 4.28. Consider Assumption 4.1, some continuous maps j, j i : R n × S n-1 → R such that (j i ) i∈N is uniformly bounded on B × S n-1 and diagonally converges to j as in Denition 4.2, and some vector elds T i , U i , V i , W i on ∂Ω i uniformly bounded and diagonally converging to vector elds T, U, V, W on ∂Ω in the sense of Denition 4.10. Then, the three following functionals are continuous (note that Remarks 4.17 and 4.19 also hold true here):

               J (∂Ω i ) := ∂Ωi R x [T i (x) , U i (x)] V i (x) | W i (x) j i [x, n (x)] dA (x) -→ i→+∞ J (∂Ω) J (∂Ω i ) := ∂Ωi Ric x [V i (x) , W i (x)] j i [x, n (x)] dA (x) -→ i→+∞ J (∂Ω) J" (∂Ω i ) := ∂Ωi R (x) j i [x, n (x)] dA (x) -→ i→+∞ J" (∂Ω) .
Proof. The proof is same than the previous ones. Write the functional in the local parametrizations, and observe that it is a nite sum of integrals whose integrand is the product of a L ∞ -weakly-star converging term, while the other one is converging L 1 -strongly so we can let i → +∞.

Note that in the case n = 3, the scalar curvature R is twice the Gaussian curvature K = κ 1 κ 2 . Hence, the continuity of the last functional above is the generalization of Proposition 4.22 to R n , n > 3, which was the task of the subsection. We conclude by proving Theorem 4.4.

Proof of Theorem 4.4. Using Proposition 4.20 and (29), we showed how to get the L ∞ -weaklystar convergence of any h[pp , qq ] := h pq h p q -h pq h p q from the one of (h pq ) dened in [START_REF] Delladio | Special generalized Gauss graphs and their application to minimization of functional involving curvatures[END_REF]. Now, we want to apply Proposition 4.20 to (h[pp , qq ]). For this purpose, we need to nd dierential operators which are valued and uniformly bounded in L ∞ . Using [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF], this is the case for: ∂ q h pq h p q ∂ q h pq h p q ∂ q" h pq" h p q" = ∂ q h[pp , q q"] -∂ q h[pp , qq"] + ∂ q" h[pp , qq ] = (∂ q h pq -∂ q h pq ) h p q" + (∂ q h p q -∂ q h p q ) h pq" + (∂ q h p q" -∂ q" h p q ) h pq + (∂ q" h p q -∂ q h p q" ) h pq + (∂ q" h pq -∂ q h pq" ) h p q + (∂ q h p q" -∂ q" h pq ) h p q .

Then, the wave cone associated with these dierential operators is thus given by:

Λ =    λ ∈ R (n-1) 4
| ∃µ = 0 (n-1)×1 , ∀(p, p , q, q , q") ∈ {0, . . . , n -1}, µ q λ pq λ p q µ q λ pq λ p q µ q" λ pq" λ p q" = 0

   .
As in Remark 4.21, one can check that the wave cone is given by all (n -1) 2 -matrices for which any minor of order three are zero in the sense of Denition 4.23. Finally, combining [START_REF] Ghomi | Tangent cones and regularity of real hypersurfaces[END_REF] and Proposition 4.20, we get that functionals linear in H (3) are continuous. This procedure can be done recursively similarly to H (l) for any l 3 so Theorem 4.4 holds true.

4.5

Existence of a minimizer for various geometric functionals

We are now in position to establish general existence results in the class O ε (B). More precisely, we can minimize any functional (and constraints) built from those given before in Section 4. Indeed, considering a minimizing sequence in O ε (B), there exists a converging subsequence as stated in Proposition 3.2 and Assumption 4.1 holds true. Then, applying the appropriate continuity results, we can pass to the limit in the functional and the constraints to get the existence of a minimizer.

In this section, we rst give a proof of Theorem 1.3 and state/prove its generalization to R n . Then, we establish the existence for a very general model of vesicles. In particular, we prove that Theorems 1.5, 1.7, and 1.8 hold true. We refer to Sections 1.1, 1.2, and 1.3 of the introduction for a detailed exposition on these three models. Finally, we present two more applications that show how to use other continuity results to get the existence of a minimizer in the class O ε (B).

Proof of Theorem 1.3. Consider any minimizing sequence (Ω i ) i∈N of O ε (B). Proposition 3.2 ensures that up to a subsequence, (Ω i ) i∈N is converging to an open set Ω ∈ O ε (B) as stated in Assumption 4.1. We can thus combine Propositions 4.7, 4.13, and 4.22 to let i → +∞ in the equalities of the form:

∂Ωi g 0 [x, n (x)] dA (x) + ∂Ωi H (x) g 1 [x, n (x)] dA (x) + ∂Ωi K (x) g 2 [x, n (x)] dA (x) = C.
Then, apply Proposition 4.7, Corollary 4.14 and Remark 4.19 on Proposition 4.22, to obtain the lower semi-continuity of the functional and that the inequality constraints remain true as i → +∞. Therefore, Ω is a minimizer of the functional satisfying the constraints in the class O ε (B).

Theorem 4.29. Let ε > 0 and B ⊂ R n be a bounded open set, large enough to contain an open ball of radius 3ε. Consider (C, C) ∈ R × R, some continuous maps j 0 , f 0 , g 0 , g l : R n × S n-1 → R, and some maps j l , f l : R n × S n-1 × R → R which are continuous and convex in their last variable for any l ∈ {1, . . . , n -1}. Then, the following problem has at least one solution (for the notation, we refer to Section 4.1):

inf ∂Ω j 0 [x, n (x)] dA (x) + n-1 l=1 ∂Ω j l x, n (x) , H (l) (x) dA (x) ,
where the inmum is taken among Ω ∈ O ε (B) satisfying a nite number of constraints of the form:

           ∂Ω f 0 [x, n (x)] dA (x) + n-1 l=1 ∂Ω f l x, n (x) , H (l) (x) dA (x) C ∂Ω g 0 [x, n (x)] dA (x) + n-1 l=1 ∂Ω H (l) (x) g l [x, n (x)] dA (x) = C.
Proof. 

∂Ωi g 0 [x, n (x)] dA (x) + n-1 l=1 ∂Ωi H (l) (x) g l [x, n (x)] dA (x) = C.
Then, we can use again Theorem 4.4 for any l 0 ∈ {1, . . . , n -1} by setting j l0 = g l0 and j l = 0 for any l = l 0 to obtain the continuity of any H (l0) (•)g l0 [•, n(•)] and Remark 4.19 gives the lower semi-continuity of any

f l0 [•, n(•), H (l0) (•)] and j l0 [•, n(•), H (l0) (•)].
Hence, the functional is lower-semi-continuous and the inequality constraint remains true as i → +∞. Therefore, Ω is a minimizer of the functional satisfying the constraints.

Proposition 4.30. Let H 0 , M 0 , k G , k m ∈ R and ε, k b , A 0 , V 0 > 0 such that A 3 0 > 36πV 2 0 . Then, the following problem modelling the equilibrium shapes of vesicles [START_REF] Seifert | Congurations of uid membranes and vesicles[END_REF]Section 2.5] has at least one solution (see Notation 1.4):

inf Ω∈Oε(R 3 ) A(∂Ω)=A0 V (Ω)=V0 k b 2 ∂Ω (H -H 0 ) 2 dA + k G ∂Ω KdA + k m ∂Ω HdA -M 0 2 .
Proof. Let us consider a minimizing sequence (Ω i ) i∈N ⊂ O ε (R 3 ) of the functional satisfying the area and volume constraints. First, we need to nd an open ball B such that

(Ω i ) i∈N ⊂ O ε (B).
This can be done if we can bound the diameter thanks to the functional and the area constraint. The rst step is to control the Willmore energy (3). Introducing the functional of the statement

J : Ω ∈ O ε (B) → k b 2 ∂Ω (H -H 0 ) 2 dA + k G ∂Ω KdA + k m ( ∂Ω HdA -M 0 ) 2 , we have: k b 4 ∂Ω H 2 dA = k b 4 ∂Ω (H -H 0 + H 0 ) 2 dA k b 2 ∂Ω (H -H 0 ) 2 dA + k b H 2 0 2 A(∂Ω) J(∂Ω) + k b H 2 0 2 A(∂Ω) + |k G | ∂Ω KdA + |k m | ∂Ω HdA -M 0 2 J(∂Ω) + k b H 2 0 2 A(∂Ω) + |k G | ∂Ω |K|dA + 2|k m | ∂Ω HdA 2 + 2|k m |M 2 0 .
The second step is to use point (iii) in Theorem 2.7 and Remark 2.10. Considering a point x ∈ ∂Ω in which the Gauss map n is dierentiable, and a unit eigenvector e l associated with the eigenvalue κ l of the Weingarten map D x n, we have:

|κ l (x)| = κ l (x)e l = D x n(e l ) D x n L(Tx∂Ω) e l 1 ε , (33) 
from which we deduce that max

1 l n-1 κ l L ∞ (∂Ω) 1 
ε . Hence, we obtain:

k b 4 ∂Ω H 2 dA J(∂Ω) + k b H 2 0 2 A(∂Ω) + |k G | ε 2 A(∂Ω) + 8|k m | ε 2 A (∂Ω) 2 + 2|k m |M 2 0 .
The nal step is to apply [56, Lemma 1.1] to get four positive constants C 0 , C 1 , C 2 , C 3 such that:

diam(Ω) C 0 J(∂Ω)A(∂Ω) + C 1 A(∂Ω) + C 2 A(∂Ω) 2 + C 3 A(∂Ω) 3 .
Hence, we can bound uniformly the diameter of the Ω i and there exists a ball B ⊂ R n suciently large such that (Ω i ) i∈N ⊂ O ε (B). From Proposition 3.2, up to a subsequence, it is converging to an Ω ∈ O ε (B) as stated in Assumption 4.1. Then, we can apply:

• Corollary 4.14 with j(x, y, z) = k b 2 (z -H 0 ) 2 to get the lower semi-continuity of k b 2 (H -H 0 ) 2 ;

• Proposition 4.22 with j i ≡ 1 to obtain the continuity of κ G K;

• Proposition 4.13 with j ≡ 1 to have the continuity of HdA thus the one of k m ( HdA-M 0 ) 2 .

The functional is lower semi-continuous and from Proposition 4.7 with j ≡ 1 and j(x, y) = x | y , the area and volume constraints are also continuous so let i → +∞ and Ω is a minimizer.

Proof of Theorem 1.5. It is the particular case k m = 0 in Proposition 4.30. This can be also deduced from Theorem 1.3, it suces to follow the method described in the next proof.

Proof of Theorem 1.7. First, as in the proof of Proposition 4.30 , one can show that minimizing in O ε (R n ) or in O ε (B) is equivalent here. Then, apply Theorem 1.3 by setting j 0 = j 2 ≡ 0 and j 1 (x, y, z) = (z -H 0 ) 2 which is continuous and convex in z. The area and volume constraints can be expressed as in Proposition 4.7 by setting g 1 = g 2 ≡ 0 and successively g 0 ≡ 1, g 0 (x, y) = x | y . Using the Gauss-Bonnet Theorem, the genus constraint is written as KdA = 4π(1 -g) := K 0 . Hence, Theorem 1.3 gives the existence of a minimizer satisfying the three constraints. Finally, we can apply [38, Proposition 2.2.17] to ensure that the compact minimizer is connected since it is the case for any minimizing sequence of compact sets. Hence, using again the Gauss-Bonnet Theorem, the minimizer has the right genus so Theorem 1.7 holds true.

Proof of Theorem 1.8. The proof is identical to the previous one. We just need to set H 0 = 0 and add a fourth equality constraint of the form g 0 = g 2 ≡ 0, g 1 ≡ 1. 

inf ∂Ω j [x, n (x) , Ric x (V (x) ∧ n (x) , W (x) -W (x) | n (x) n (x))] dA (x) ,
where the inmum is taken among all Ω ∈ O ε (B) satisfying the following constraint:

∂Ω R (x) V (x) | n (x) dA (x) = ∂Ω H (2) (x) W (x) | n (x) dA (x) .
Proof. Consider a minimizing sequence (Ω i ) i∈N ⊂ O ε (B) of the functional satisfying the constraint. From Proposition 3.2, up to a subsequence, it is converging to a set Ω ∈ O ε (B). We dene V i := V ∧ n ∂Ωi and W i := W -W | n ∂Ωi n ∂Ωi which are two continuous vector elds on ∂Ω i , uniformly bounded since V and W are. We now check the diagonal convergence. Choose any sequence of points x i ∈ ∂Ω i converging to x ∈ ∂Ω. Using the partition of unity introduced in Proposition 4.7, we get that x ∈ ∂Ω ∩ C r,ε (x k ) for some k ∈ {1, . . . K}. Hence, there exists x ∈ D r (x k ) such that x = (x , ϕ k (x )). Since (x i ) i∈N is converging to x, for i suciently large, we can write

x i = (x i , ϕ k i (x i )) with x i ∈ D r (x k ). Hence, x i → x and ϕ k i (x i ) → ϕ k (x )
, but we also have from the triangle inequality:

∇ϕ k i (x i ) -∇ϕ k (x ) ∇ϕ k i -∇ϕ k C 0 (Dr(x k )) + ∇ϕ k (x i ) -∇ϕ k (x ) .
From ( 4) and the continuity of ∇ϕ k , we can let i → +∞ and the diagonal convergence of (∇ϕ k i ) i∈N to ∇ϕ k holds true. Then, using [START_REF] Delfour | Shape analysis via oriented distance functions[END_REF], n ∂Ωi is also diagonally converging to n ∂Ω , and so does V i and W i . If j is linear in its last variable, we can apply Proposition 4.28 to obtain the continuity of the functional, otherwise we can use Remark 4.19 on the previous case to get the lower semi-continuity of the functional. Finally, apply Theorem 4.4 with j l i ≡ 0 if l = 2 and j 2 i = V | n to have the continuity of the left member of the constraint. The continuity of the right one comes from Proposition 4.28 on J " with j i = W | n . Hence, we can let i → +∞ in the constraint.. Proposition 4.32. Let ε, A 0 , V 0 > 0 be such that A 3 0 > 36πV 2 0 , and let B ⊂ R 3 be a bounded open set, large enough to contain an open ball of radius 3ε. We consider a bounded vector eld in R 3 denoted by V : R 3 → R 3 and a continuous map j : R 3 × R 2 × R → R which is convex in its last variable. Then, the following problem has at least one solution:

inf Ω∈Oε(B) A(∂Ω)=A0 V (Ω)=V0 ∂Ω j [x, n (x) , κ v (x)] dA (x) ,
where κ v is the normal curvature at x i.e. the curvature at x of the curve formed by the intersection of the surface ∂Ω with the plane spanned by n(x) and the vector v := V(x) -V(x) | n(x) n(x).

Proof. First, [START_REF] Montiel | Curves and surfaces[END_REF]Proposition 3.26,Remark 3.27] gives

κ v = κ 1 | v|e 1 | 2 + κ 2 | v|e 2 | 2 = II(v, v).
Then, as in the previous proof, we can show that v ∂Ωi is diagonally converging to v ∂Ω . Finally, if j is linear in its last variable, we can apply Proposition 4.18 to get the continuity, otherwise use Remark 4.19 to get its lower semi-continuity. The area and volume constraints are continuous from Proposition 4.7. Hence, from Proposition 3.2, a minimizing sequence has a converging subsequence to an Ω and from the foregoing we can let i → +∞ in the functional and constraints.

5 Appendix: the proofs of Theorems 2.62.8

5.1

The sets of positive reach and the uniform ball condition Throughout this section, Ω refers to any non-empty open subset of R n dierent from R n . Hence, its boundary ∂Ω is not empty and Reach(∂Ω) is well dened (cf. Remark 1.2). First, we establish some properties that were mentioned in Federer's paper [START_REF] Federer | Curvature measures[END_REF] and we show Theorem 2.6 holds true.

Positive reach implies uniform ball condition

The point of view adopted here is slightly dierent from the usual one [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8]. Indeed, in order to get the ε-ball condition at a given point x ∈ ∂Ω, we need to exhibit points outside the boundary whose projections are precisely x, whereas people usually assume that they exist [ Proof of Point (i) in Theorem 2.6. Let ε > 0 and assume that Ω satises the ε-ball condition.

Since ∂Ω = ∅ we can choose any x ∈ ∂Ω and let us prove B ε (x) ⊆ Unp(∂Ω). First, we assume y ∈ B ε (x) ∩ Ω. Since ∂Ω is closed, there exists z ∈ ∂Ω such that d(y, ∂Ω) = zy . Moreover, we obtain from the ε-ball condition and y ∈ Ω:

B ε (z + εd z ) ⊆ R n \Ω and B d(y,∂Ω) (y) ⊆ Ω =⇒ B ε (z + εd z ) ∩ B d(y,∂Ω) (y) = ∅.
Therefore, we deduce that y = z -d(y, ∂Ω)d z . Then, we show that such a z is unique. Considering another projection z of y on ∂Ω, we get from the foregoing:

y = z -d(y, ∂Ω)d z = z -d(y, ∂Ω)d z.
Using (34), we have:

d z -d z 1 ε z -z = d(y, ∂Ω) ε d z -d z .
Since d(y, ∂Ω)

xy < ε, the above inequality can only hold true if d z -d z = 0 i.e. z = z. Hence, we obtain B ε (x) ∩ Ω ⊆ Unp(∂Ω) and similarly, one can prove B ε (x) ∩ (R n \Ω) ⊆ Unp(∂Ω). Since ∂Ω ⊆ Unp(∂Ω), we nally get B ε (x) ⊆ Unp(∂Ω). We thus have Reach(∂Ω, x) ε for every x ∈ ∂Ω i.e. Reach(∂Ω) ε as required. To conclude the proof of Theorem 2.6, we can simply get V (∂Ω) = 0 from Theorem 2.7 proved in Section 5.2. Indeed, ∂Ω can be written as a countable union of Lipschitz graphs which have zero Lebesgue measure [29, combine Sections 2.2 and 2.4.1]. Proposition 5.5. Assume that there exists ε > 0 such that Ω ∈ O ε (R n ). Then, we have:

∀(a, x) ∈ ∂Ω × ∂Ω, | x -a | d a | 1 2ε x -a 2 . (35) 
Moreover, introducing the vector

(x -a) = (x -a) -x -a | d a d a , if we assume (x -a) < ε and | x -a | d a | < ε,
then the following local inequality holds true:

1 2ε x -a 2 ε -ε 2 -(x -a) 2 . (36) 
Proof. Let ε > 0 and Ω ∈ O ε (R n ). Since ∂Ω = ∅, we can consider (a, x) ∈ ∂Ω × ∂Ω. Observe that the point x cannot belong neither to B ε (a -εd a ) ⊆ Ω nor to B ε (a + εd a ) ⊆ R n \Ω. Hence, we have xa ∓ εd a ε. Squaring these two inequalities, we obtain that (35) holds true:

x -a 2 2ε| x -a | d a | ⇐⇒ | x -a | d a | 2 -2ε| x -a | d a | + (x -a) 2 0.
It is a second-order polynomial inequality and we assume that its reduced discriminant is positive:

∆ = ε 2 -(x -a) 2 > 0.
Hence, the unknown cannot be located between the two roots: either 

| x -a | d a | ε - √ ∆ or | x -a | d a | ε + √ ∆ . We assume | x -a | d a | < ε
-a 2 = | x -a | d a | 2 + (x -a) 2 2ε 2 -2ε ε 2 -(x -a) 2 .

5.2

The uniform ball condition and the compact C 1,1 -hypersurfaces In this section, Theorem 2.7 is proved. First, we show ∂Ω can be considered locally as the graph of a function whose C 1,1 -regularity is then established. Finally, we prove that the converse statement holds true in the compact case. Hence, it is the optimal regularity we can expect from the uniform ball property. The proofs in Sections 5.1.2 and 5.2.15.2.2 inspire those of Sections 3.23.4.

A local parametrization of the boundary ∂Ω

We now set ε > 0 and assume that the open set Ω satises the ε-ball condition. Since Ω / ∈ {∅, R n }, ∂Ω is not empty so we consider any point x 0 ∈ ∂Ω and its unique vector d x0 from Proposition 5.4. We choose a basis B x0 of the hyperplane d ⊥ x0 so that (x 0 , B x0 , d x0 ) is a direct orthonormal frame. Inside this frame, any point x ∈ R n is of the form (x , x n ) such that x = (x 1 , . . . , x n-1 ) ∈ R n-1 . The zero vector 0 of R n is now identied with x 0 so we have B ε (0 , -ε) ⊆ Ω and B ε (0 , ε) ⊆ R n \Ω.

Proposition 5.6. The following maps ϕ ± are well dened on D ε (0 ) = {x ∈ R n-1 , x < ε}:

ϕ + : x ∈ D ε (0 ) -→ sup{x n ∈ [-ε, ε], (x , x n ) ∈ Ω} ∈ ] -ε, ε[, ϕ -: x ∈ D ε (0 ) -→ inf{x n ∈ [-ε, ε], (x , x n ) ∈ R n \Ω} ∈ ] -ε, ε[.
Moreover, for any x ∈ D ε (0 ), introducing the points x ± = (x , ϕ ± (x )), we have x ± ∈ ∂Ω and:

|ϕ ± (x )| 1 2ε x ± -x 0 2 ε -ε 2 -x 2 . ( 37 
)
Proof. Let x ∈ D ε (0 ) and g : t ∈ [-ε, ε] → (x , t). Since -ε ∈ g -1 (Ω) ⊆ [-ε, ε], we can set ϕ + (x ) = sup g -1 (Ω). The map g is continuous so g -1 (Ω) is open and ϕ + (x ) = ε thus we get ϕ(x ) / ∈ g -1 (Ω) i.e. x + ∈ Ω\Ω. Similarly, the map ϕ -is well dened and x -∈ ∂Ω. Finally, we use [START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF] and [START_REF] Guo | On convergence of boundary Hausdor measure and application to a boundary shape optimization problem[END_REF] on the points x 0 and x = x ± in order to obtain [START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF]. Lemma 5.7. Let r = √ 3 2 ε and x ∈ D r (0 ). We assume that there exists x n ∈] -ε, ε[ such that x = (x , x n ) ∈ ∂Ω and xn ∈ R such that |x n | ε -ε 2 -x 2 . Then, we introduce x = (x , xn ) and the following implications hold true: (x n < x n =⇒ x ∈ Ω) and (x n > x n =⇒ x ∈ R n \Ω).

Proof. Let x ∈ D r (0 ). Since xx = (x n -x n )d x0 , if we assume xn > x n , then we have:

x -x -εd x 2 -ε 2 = |x n -x n | |x n -x n | + ε d x -d x0 2 -2ε |x n -x n | |x n | + |x n | + 1 ε x -x 0 2 -2ε |x n -x n | 2ε -4 ε 2 -x 2 < |x n -x n | 2ε -4 √ ε 2 -r 2 = 0.
Indeed, we used (34) with x ∈ ∂Ω and y = x 0 , ( 35) and ( 36) applied to x ∈ ∂Ω and a = x 0 , and also the hypothesis made on xn . Hence, we proved that if xn > x n , then x ∈ B ε (x + εd x ) ⊆ R n \Ω.

Similarly, one can prove that if xn < x n , then we have x ∈ B ε (x -εd x ) ⊆ Ω.

Proposition 5.8. Set r = √ 3 2 ε. Then, the two maps ± of Proposition 5.6 coincide on D r (0 ). We denote by ϕ their common restriction. Moreover, we have ϕ(0 ) = 0 and also:

∂Ω ∩ (D r (0 )×] -ε, ε[) = {(x , ϕ(x )), x ∈ D r (0 )} Ω ∩ (D r (0 )×] -ε, ε[) = {(x , x n ), x ∈ D r (0 ) and -ε < x n < ϕ(x )}.
Proof. Assume by contradiction that there exists x ∈ D r (0 ) such that ϕ -(x ) = ϕ + (x ). We set x = (x , ϕ + (x )) and x = (x , ϕ -(x )). By using [START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF], the hypothesis of Lemma 5.7 are satised for x and x. Hence, either (ϕ -(x ) < ϕ + (x ) ⇒ x ∈ Ω) or (ϕ -(x ) > ϕ + (x ) ⇒ x ∈ R n \Ω) whereas x ∈ ∂Ω. We deduce ϕ -(x ) = ϕ + (x ) for any x ∈ D r (0 ). Now consider x ∈ D r (0 ) and x n ∈] -ε, ε[. We set x = (x , ϕ(x )) and x = (x , x n ). If x n = ϕ(x ), then Proposition 5.6 ensures that x ∈ ∂Ω. Moreover, if -ε < x n < -ε + ε 2 -x 2 , then x ∈ B ε (0 , -ε) ⊆ Ω, and if -ε + ε 2 -x 2

x n < ϕ(x ), then apply Lemma 5.7 to get x ∈ Ω. Consequently, we proved (-ε < x n < ϕ(x ) =⇒ (x , x n ) ∈ Ω) for any x ∈ D r (0 ). Similar arguments hold true when ε > x n > ϕ(x ) and imply (x , x n ) ∈ R n \Ω. To conclude, note that x 0 = 0 = (0 , ϕ(0 )).

5.2.2

The C 1,1 -regularity of the local graph Lemma 5.9. The map f : α ∈]0, π 2 [ → 2α cos α ∈]0, +∞[ is well dened, continuous, surjective and increasing. In particular, it is an homeomorphism and its inverse f -1 satises:

∀ε > 0, f -1 (ε) < ε 2 . ( 38 
)
Proof. The proof is basic calculus.

Proposition 5.10 (Point (i) of Theorem 2.7). Consider any α ∈]0, f -1 (ε)] where f is dened in Lemma 5.9. Then, we have C α (x, -d x0 ) ⊆ Ω for any x ∈ B α (x 0 ) ∩ Ω. In particular, the set Ω satises the f -1 (ε)-cone property in the sense of Denition 2.4.

Proof. We set r = √ 3 2 ε and C r,ε = D r (0 )×] -ε, ε[. We choose any α ∈]0, f -1 (ε)] then consider x = (x , x n ) ∈ B α (x 0 ) ∩ Ω and y = (y , y n ) ∈ C α (x, -d x0 ). The proof of the assertion y ∈ Ω is divided into three steps:

• check that x ∈ C r,ε so as to introduce the point x = (x , ϕ(x )) of ∂Ω satisfying x n ϕ(x );

• consider ỹ = (y , y n + ϕ(x ) -x n ) and prove that ỹ ∈ C α (x, -d x0 ) ⊆ B ε (x -εd x) ⊆ Ω;

• show that (ỹ, y) ∈ C r,ε × C r,ε in order to deduce y n + ϕ(x ) -x n < ϕ(y ) and conclude y ∈ Ω.

First, from [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF], we have: max( x , |x n |)

x-x 0 < α f -1 (ε) < ε 2 . Hence, we get x ∈ Ω∩C r,ε and applying Proposition 5.8, it comes x n ϕ(x ). We set x = (x , ϕ(x )) ∈ ∂Ω ∩ C r,ε . Note that x ∈ B α √ 2 (x 0 ) because Relation (37) applied to x = (x , ϕ(x )) gives:

x -x 0 2 2ε 2 -2ε ε 2 -x 2 = 4ε 2 x 2 2ε 2 + 2ε ε 2 -x 2 2 x 2 2 x -x 0 2 < 2α 2 .
Then, we prove C α (x, -d x0 ) ⊆ B ε (x -εd x) so consider any point z ∈ C α (x, -d x0 ). Using the Cauchy-Schwartz inequality, (34) applied to x ∈ ∂Ω and y = x 0 , the fact that z ∈ C α (x, -d x0 ), and the foregoing observation x ∈ B α √ 2 (x 0 ), we have successively:

z -x + εd x 2 -ε 2 z -x 2 + 2ε z -x d x -d x0 + 2ε z -x | d x0 < z -x 2 + 2 z -x x -x 0 -2ε z -x cos α < z -x 1 + 2 √ 2 α -2ε cos α < 2 z -x cos α (f (α) -ε) 0.
Hence, we get z ∈ B (x -εd x) i. 

|y n + ϕ(x ) -x n | y -x + ε -ε 2 -x 2 < α + x 2 ε + ε 2 -x 2 α + α 2 ε < 3 2 α ε.
We used (37) [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF], the fact that y ∈ C α (x, -d x0 ), and x ∈ B α (x 0 ). To conclude, Proposition 5.8 applied to ỹ ∈ Ω ∩ C r,ε yields to y n + ϕ(x ) -x n < ϕ(y ). Since we rstly proved x n ϕ(x ), we deduce that y n < ϕ(y ). Applying Proposition 5.8 to y ∈ C r,ε , we get y ∈ Ω as required.

Corollary 5.11. The map ϕ restricted to D √ Proof. We set α = f -1 (ε), r = √ 3 2 ε, and r = √ 2 4 f -1 (ε). We choose any (x + , x -) ∈ D r (0 )×D r (0 ). From [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF], we get r < r so we can consider x ± = (x ± , ϕ(x ± )) and Proposition 5.6 gives:

x ± -x 0 2 2ε 2 -2ε ε 2 -x ± 2 = 4ε 2 x ± 2 2ε 2 + 2ε ε 2 -x ± 2 2 x ± 2 < 2r 2 < α 2 .
Hence, we obtain x ± ∈ B α (x 0 )∩∂Ω. We also have: x + -x - x + -x 0 + x 0 -x -< 2r √ 2 = α. Finally, applying Proposition 5.10, the points x ± cannot belong to the cones C α (x ∓ , -d x0 ) ⊆ Ω thus we get:

| x + -x -| d x0 | cos α x + -x -= cos α x + -x - 2 + | x + -x -| d x0 | 2 .
Consequently, one can re-arrange these terms in order to obtain the result of the statement:

|ϕ(x + ) -ϕ(x -)| = | x + -x -| d x0 | 1 tan α x + -x -.
Proposition 5.12. Set r = √ 2 4 f -1 (ε). The map ϕ of Proposition 5.8 restricted to D r (0 ) is dierentiable and its gradient ∇ϕ : D r (0 ) → R n-1 is L-Lipschitz continuous where L > 0 depends only on ε. Moreover, we have ∇ϕ(0 ) = 0 and also: Furthermore, the gradient map ∇ϕ : D r (0 ) → R n-1 is bounded and valued in the set D 32 31 (0 ). Proof. Let a ∈ D r (0 ) and x ∈ D r-a (a ). Consequently, we have (a , x ) ∈ D r (0 ) × D r (0 ) and from [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF], we get r < Let us justify this assertion. Apply [START_REF] Groÿe-Brauckmann | New surfaces of constant mean curvature[END_REF] to x = a and y = x 0 , then use [START_REF] Helfrich | Elastic properties of lipid bilayers: theory and possible experiments[END_REF] to get:

d an = 1 - 1 2 d a -d x0 2 1 - 1 2ε 2 a -x 0 2 1 - ε -ε 2 -a 2 ε = 1 - a 2 ε(ε + ε 2 -a 2
) .

Hence, using [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF], we obtain d an > 1 -r2 ε 2 > 31 32 > 0. Therefore, ϕ is a dierentiable map at any point a ∈ D r (0 ) and its gradient is the one given in the statement: xa .

∀x ∈ D r-a (a ), ϕ ( 
We applied [START_REF] Groÿe-Brauckmann | New surfaces of constant mean curvature[END_REF] Proof. Consider the map ϕ : D r (0 ) →] -ε, ε[ whose C 1,1 -regularity comes from Proposition 5.12. We dene the C 1,1 -map X : D r (0 ) → ∂Ω by X(x ) = (x , ϕ(x )) then we consider x ∈ D r (0 ). We denote by (e k ) 1 k n-1 the rst vectors of our local basis. The tangent plane of ∂Ω at X(x ) is spanned by the vectors ∂ k X(x ) = e k + (0 , ∂ k ϕ(x )). Since any normal vector u = (u 1 , . . . , u n ) to this hyperplane is orthogonal to this (n -1) vectors, we have: u | ∂ k X(x ) = 0 ⇔ u k = un dx n d xk . Hence, we obtain u = un dx n d x so u is collinear to d x . Now, if we impose that u points outwards Ω and if we assume u = 1, then we get u = d x . Then, we set ε 0 = min( 1 L , r 3 , a 3 ) and consider any x ∈ B ε0 (x 0 ) ∩ ∂Ω. Since ε 0 min(r, a), there exists x ∈ D r (0 ) such that x = (x , ϕ(x )). We introduce the notation d xn = (1 + ∇ϕ(x ) 2 ) -1 2 and d x = -d xn ∇ϕ(x ) so that d x := (d x , d xn ) is a unit vector. Now, let us show that Ω satisfy the ε 0 -ball condition at the point x so choose any y ∈ B ε0 (x + ε 0 d x ) ⊆ B 2ε0 (x) ⊆ B 3ε0 (x 0 ). Since

The compact case: when

4 Figure 1 :

 41 Figure 1: Example of an open set Ω ⊂ B satisfying the ε-ball condition whereas Ω ⊂ B does not.Indeed, there is no circle passing through the points x 1 and x 2 (respectively x 3 and x 4 ) whose inner domains are included in Ω (respectively in B\Ω).

  see this last point, combine [41, Remark 1.7 (iii) (1.5)], [52, Theorem 1.1], and [56, Inequality (0.2)]).

  ) is standard in the sense of [40, Denition 4.1.2]. Hence, we get a minimizer for (1) in the class of rectiable integer oriented 2-varifold in R 3 with L 2 -bounded generalized second fundamental form [40, Theorem 5.3.2] [47, Section 2] [4, Appendix]. These compactness and lower semi-continuity properties were already noticed in [4, Section 9.3].

1 . 2

 12 Second application: minimizing the Canham-Helfrich energy with prescribed genus, area, and volume

  , two equivalent characterizations in terms of positive reach, local graph, and oriented distance function can be found in [24, Chapter 7 Theorems 7.2-7.3 and 8.1-8.4], but they are not linked to the uniform ball condition studied in this paper. Morover, many parts of Theorems 2.6 2.7 can be found in the literature as remarks [39, below Theorem 1.4] [46, (1.10)] [30, Remark 4.20], sometimes with proofs [31, Section 2.1] [35, Theorem 2.2] [42, 4 Theorem 1] [43, Proposition 1.4], or as consequences of results [32, Theorem 1.2] [1, Theorem 1.1 (1.2)]

Denition 2 . 5 .

 25 Let A ⊆ R n have a non-empty boundary. Then, the oriented distance function

  b

Theorem 2 . 6 (

 26 A characterization in terms of positive reach). Consider any open subset Ω of R n with a non-empty boundary. Then, the following implications are true: (i) if there exists ε > 0 such that Ω ∈ O ε (R n ) as in Denition 1.1, then ∂Ω has a positive reach in the sense of Denition 2.1 with Reach(∂Ω) ε and we have V (∂Ω) = 0;

Theorem 2 . 8 (

 28 A characterization in terms of oriented distance function). Let Ω be any open subset of R n with a non-empty boundary. If there exists ε > 0 such that Ω ∈ O ε (R n ) as in Denition 1.1, then the oriented distance function b Ω introduced in Denition 2.5 is continuously dierentiable on the open tubular neighbourhood V ε (∂Ω) := {x ∈ R n , d(x, ∂Ω) < ε}. Moreover, we have V (∂Ω) = 0 and for any r ∈]0, ε[, the map ∇b

Figure 2 :

 2 Figure 2: Illustration of Theorem 3.3 stating that there exists a xed common local frame in which a converging sequence of elements in O ε (B) can be simultaneously parametrized by C 1,1 -graphs.

[ 24 ,

 24 Chapter 7 Section 13 Theorem 13.1 and Corollary 2]. Working with a family of open sets Ω contained a bounded open hold-all B ⊂ R n makes the boundaries compact and such a class becomes sequentially compact in the Hausdor sense (cf. Denition 3.1 (i) and for a proof see e.g. [24, Chapter 6 Theorem 2.4 (ii)] or [38, Theorem 2.2.23]).

  Theorem 4.1 (iv)-(v)] the other convergences i.e. of the distance functions d Ω , d R n \Ω , and d ∂Ω in C 0 (B) and in W 1,p (B) for any p ∈ [1, ∞[, and of the characteristics functions 1 Ω , 1 R n \Ω , and 1 ∂Ω in L p (B) for any p ∈ [1, +∞[. Since we have d H (A, B) = d A -d B C 0 (B) for any A, B ⊂ B (see e.g. [38, Proposition 2.2.25] or [24, Chapter 6 Section 2.2]), this general pattern is exactly what we have stated in Proposition 3.2 for the uniform ball condition, which requires a uniform local Lipschitz condition on the local graph function and its gradient at each point of the boundary (cf. Theorem 2.7).

3 . 3 A

 33 local parametrization of the boundary ∂Ω i Henceforth, we consider a basis B x0 of the hyperplane d ⊥ x0 such that (x 0 , B x0 , d x0

Assumption 4 . 1 .

 41 Let ε > 0 and B ⊂ R n be an open bounded set, large enough to contain at least an open ball of radius 3ε. We assume that (Ω i ) i∈N is a sequence of elements from O ε (B) converging to Ω ∈ O ε (B) in the sense of compacts sets (cf. Denition 3.1 (ii)) and lim i→+∞ d H (∂Ω i , ∂Ω) = 0.

4 . 2

 42 Geometric functionals involving the position and the normal vector Proposition 4.7. Consider Assumption 4.1. Then, for any continuous map j : R n × S n-1 → R,

Remark 4 . 8 .

 48 Note that the above result states the convergence of (∂Ω i ) i∈N to ∂Ω in the sense of oriented varifolds [4, Appendix B][START_REF] Simon | Lectures on geometric measure theory[END_REF]. Similar results were obtained in[START_REF] Guo | On convergence of boundary Hausdor measure and application to a boundary shape optimization problem[END_REF]. Moreover, the continuity of volume and the lower semi-continuity of area are already implied by the convergence of characteristic functions (cf. Denition 3.1 (iii) and Proposition 3.2)[START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF] Proposition 2.3.6].

( 3 ) 1 .

 31 are lower semi-continuous, and so does the p-th power norm of the mean curvature |H| p dA, p Note that we are able to treat the critical case p = 1, while it is often excluded from many statements of geometric measure theory[25, Example 4.1] [47, Denition 2.2] [40, Denition 4.1.2].

Denition 4 .

 4 [START_REF] Delfour | Uniform fat segment and cusp properties for compactness in shape optimization[END_REF]. A pth-order minor of a square (n -1) 2 -matrix M is the determinant of any (p × p)-matrix M [I, J] formed by the coecients of M corresponding to rows with index in I and columns with index in J, where I, J ⊂ {1, . . . , n -1} have p elements i.e. I = J = p.

  e. C α (x, -d x0 ) ⊆ B ε (x -εd x) ⊆ Ω using the ε-ball condition. Moreover, since ỹx = yx and y ∈ C α (x, -d x0 ), we obtain ỹ ∈ C α (x, -d x0 ) and thus ỹ ∈ Ω.Finally, we show that (y, ỹ) ∈ C r,ε × C r,ε . We have successively:                   y yx + x < √ α 2 -α 2 cos 2 α + α = α cos α |y n | |y n -x n | + |x n | yx + xx 0 < 2α < f (α) ε

2 4 f

 4 -1 (ε) (0 ) is 1 tan[f -1 (ε)] -Lipschitz continuous.

  ∀a ∈ D r (0 ), ∇ϕ(a ) = -1 d a | d x0 d a ,where a = (a , ϕ(a )).

√ 3 andx -a 2 ,

 32 a := (a , ϕ(a )). Applying[START_REF] Guo | Some compact classes of open sets under Hausdor distance and application to shape optimization[END_REF] to (a, x) ∈ ∂Ω × ∂Ω and using the Lipschitz continuity of ϕ on D r (0 ) proved in Corollary 5.11, we deduce that:| (ϕ(x ) -ϕ(a )) d an + d a | x -where we set d a = (d a , d an ) with d an = d a | d x0 . It represents a rst-order Taylor expansion of the map ϕ if we can divide the above inequality by a uniform positive constant smaller than d an .

  to x and y = a, then used the Lipschitz continuity of ϕ proved in Corollary 5.11. Hence, ∇ϕ : a ∈ D r (0 ) → ∇ϕ(a ) is L-Lipschitz continuous with L > 0 depending only on ε. To conclude, from the foregoing, we deduce ∇ϕ(x ) = |(d an ) -1 | d a <32 31 d a = 32 31 for any x ∈ D r (0 ) and the map ∇ϕ : D r (0 ) → R n-1 is thus well valued in D32 31 (0 ).

Corollary 5 . 13 (

 513 Points (ii) and (iii) of Theorem 2.7). The unit vector d x0 of Denition 1.1 is the outer normal vector to ∂Ω at the point x 0 . In particular, the 1 ε -Lipschitz continuous map d : x → d x of Proposition 5.4 is the Gauss map associated with the C 1,1 -hypersurface ∂Ω.

1 0

 1 C 1,1 -regularity implies the uniform ball condition Proof of Theorem 2.7. Combining Proposition 5.10 and Corollary 5.13, it remains to prove the converse part of Theorem 2.7. Consider any non-empty compact C 1,1 -hypersurface S of R n and its associated inner domain Ω. Choose any x 0 ∈ ∂Ω and its local frame as in Denition 2.2. First, we have for any (x , y ) ∈ D r (0 ) × D r (0 ):|ϕ(y ) -ϕ(x ) -∇ϕ(x ) | yx | ∇ϕ (x + t(y -x )) -∇ϕ(x ) yx dt L 2 yx 2 .

  1,1 -regularity). Let Ω be any open subset of R n with a non-empty boundary. If there exists ε > 0such that Ω ∈ O ε (R n ), then its boundary ∂Ω is a C 1,1 -hypersurface of R n inthe sense of Denition 2.2, where a = ε, the constants L, r depend only on ε, and where ∇ϕ is valued in D32 31 (0 ). Moreover, we have the following properties: (i) Ω satises the f -1 (ε)-cone property as in Denition 2.4 with f : α ∈]0, π 2 [ → 2α cos α ∈]0, +∞[; (ii) the d x of Denition 1.1 is the unit outer normal vector to the hypersurface at the point x;

  Denition 3.1. The Hausdor distance d H between two compact sets X and Y in R n is denedas d H (X, Y ) := max(sup x∈X d(x, Y ), sup y∈Y d(y, X)).We say that a sequence of compacts sets(K i ) i∈N converges to a compact set K for the Hausdor distance if d H (K i , K) → 0 as i → +∞.Let B be any non-empty bounded open subset of R n . A sequence of open sets (Ω i ) i∈N ⊂ B converges to an open set Ω ⊂ B:

  Proposition 3.2. Let ε > 0 and B ⊂ R n be a bounded open set, large enough to contain an open ball of radius 3ε. If (Ω i ) i∈N is a sequence of elements from O ε (B), then there exists Ω ∈ O ε (B)

  1,∞ -map [29, Section 4.2.3], and from Rademacher's Theorem [29, Section 3.1.2], its dierential exists almost everywhere. Moreover, any v ∈ T x S can be decomposed in the basis (∂ 1 X, . . . , ∂ n-1 X). Denoting by V i the component of ∂ i X and v

  described in Corollary 4.14 to get the same result in the general case. Finally,

	II(x) 2 2 = D x n 2 2 and if p 2, t → t	p 2 is convex thus	II p 2 dA is lower semi-continuous.

  Consider a minimizing sequence (Ω i ) i∈N of O ε (B). Proposition 3.2 ensures that up to a subsequence, (Ω i ) i∈N is converging to an open set Ω ∈ O ε (B) as stated in Assumption 4.1. We can thus apply Theorem 4.4 to let i → +∞ in the following equality:

  and the last case cannot hold true. Squaring the remaining relation, we get the local inequality (36) of the statement: x

  Moreover, for any (a , x ) ∈ D r (0 ) × D r (0 ), we have successively:

							d a d an	| x -a	32 31	C(ε) x -a 2 .
	∇ϕ(x ) -∇ϕ(a )	1 d an	-	1 d xn	d x +	1 d an		d a -d x	32 2 31 2 +	32 31	d a -d x
		32 31ε	1 +	32 31	x -a	32 31ε	1 +	32 31	1 +	1 tan 2 [f -1 (ε)]

x ) -ϕ(a ) +

2ε

< ε. To conclude, apply Proposition 3.11 to ỹi ∈ Ω i ∩ C r,ε in order to get y n + ϕ i (x ) -x n < ϕ(y ). Since we rstly proved x n ϕ i (x ), we have y n < ϕ i (y ). Applying Proposition 3.11 to y i ∈ C r,ε , we get y i ∈ Ω i as required.

ε. Hence, using Proposition 5.8, we can introduce x := (x , ϕ(x ))
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Lemma 5.1. For any x ∈ ∂Ω, we have: Reach(∂Ω, x) = min Reach(Ω, x), Reach(R n \Ω, x) .

Proof. We only sketch the proof. Observe d(x, ∂Ω) = max(d(x, Ω), d(x, R n \Ω)) for any x ∈ R n to get Unp(∂Ω) = Unp(Ω) ∩ Unp(R n \Ω) and the equality of Lemma 5.1 follows from denitions. Proposition 5.2 (Federer [START_REF] Federer | Curvature measures[END_REF]Theorem 4.8 (6)]). Let A = ∅ be closed in R n , x ∈ A, and v ∈ R n . If the set {t > 0, x + tv ∈ Unp(A) and p A (x + tv) = x} is not empty and bounded from above, then its supremum τ is well dened and x + τ v cannot belong to the interior of Unp(A).

Proof. We refer to [START_REF] Federer | Curvature measures[END_REF] for a proof using Peano's Existence Theorem on dierential equations. Corollary 5.3. If V (∂Ω) = 0, then for any point x ∈ ∂Ω satisfying Reach(∂Ω, x) > 0, there exists

Proof. Consider x ∈ ∂Ω satisfying Reach(∂Ω, x) > 0. From Lemma 5.1, there exists r > 0 such that B r (x) ⊆ Unp(Ω). Let (x i ) i∈N be a sequence of elements in B r 2 (x)\Ω converging to x. Such a sequence exists otherwise B r 2 (x) ⊂ Ω and Reach(x, R n \Ω) > 0 would imply V (∂Ω) > 0. We set:

which is well dened since

Then, using Federer's result recalled in Proposition 5.2, one can prove by contradiction that:

Finally, the sequence y i := z i (t i ) satises y i -x i = r 2 and also p Ω (y i ) = p Ω (x i ). Moreover, since it is bounded, (y i ) i∈N is converging, up to a subsequence, to a point denoted by y ∈ B r (x) ⊆ Unp(Ω). Using the continuity of p Ω [30, Theorem 4.8 ( 4)], we get y ∈ Unp(Ω)\{x} and p Ω (y) = p Ω (x) = x. To conclude, similar arguments work by replacing Ω with R n \Ω so Corollary 5.3 holds true.

Proof of Point (ii) in Theorem 2.6. The hypothesis ∂Ω = ∅ ensures its reach is well dened. Assume Reach(∂Ω) > 0 and V (∂Ω) = 0. We choose ε ∈]0, Reach(∂Ω)[ and consider x ∈ ∂Ω. From Corollary 5.3, there exists y ∈ Unp(Ω)\{x} such that p Ω (y) = x so we can set d x = x-y x-y . From Lemma 5.1, we get x + [0, ε]d x ⊆ Unp(Ω). Then, we use Proposition 5.2 again to prove by contradiction that p Ω (x + td x ) = x for any t ∈ [0, ε]. In particular, we have z -(x + εd x ) > ε for any point z ∈ Ω\{x} from which we deduce that:

Similarly, there exists a unit vector ξ x of R n such that we get B ε (x + εξ x )\{x} ⊆ Ω. Since we have

\{x} in order to check that Ω also satises the Reach(∂Ω)-ball condition.

5.1.2 Uniform ball condition implies positive reach Proposition 5.4. Assume that there exists ε > 0 such that Ω ∈ O ε (R n ). Then, we have:

In particular, if x = y, then d x = d y which ensures the unit vector d x of Denition 1.1 is unique.

In other words, the map d : x ∈ ∂Ω → d x ∈ S n-1 is well dened and 1 ε -Lipschitz continuous. Proof. Let ε > 0 and Ω ∈ O ε (R n ). Since ∂Ω = ∅, we can consider (x, y) ∈ ∂Ω × ∂Ω. First, from the ε-ball condition on x and y, we have

2ε. Then, squaring these two inequalities and summing them, one obtains the result (34) of the statement:

3ε 0 min(r, a), there exists y ∈ D r (0 ) and y n ∈] -a, a[ such that y = (y , y n ). Moreover, we have y ∈ R n \Ω i y n > ϕ(y ). Observing that yx -ε 0 d x < ε 0 ⇔ 1 2ε0 yx 2 < yx | d x , we obtain successively:

Consequently, we get y / ∈ Ω and we proved B ε0 (x + ε 0 d x ) ⊆ R n \Ω. Similarly, we can obtain B ε0 (x -ε 0 d x ) ⊆ Ω. Hence, for any x 0 ∈ ∂Ω, there exists ε 0 > 0 such that Ω ∩ B ε0 (x 0 ) satises the ε 0 -ball condition. Finally, as ∂Ω is compact, it is included in a nite reunion of such balls B ε0 (x 0 ). Dene ε > 0 as the minimum of this nite number of ε 0 and Ω will satisfy the ε-ball property. 

Then, we assume that there exists ε > 0 such that Ω ∈ O ε (R n ). Let x ∈ ∂Ω. Following the arguments used in the proof of the point (i) of Theorem 2.6 (cf. Section 5.1.2), we get for any y ∈ B ε (x), that there exists a unique projection p ∂Ω (y) on ∂Ω satisfying:

where d p ∂Ω (y) is the unique vector of Proposition 5.4. Consequently, combining Proposition 5.4 with [20, Theorem 5.1 (i)] and d(y, ∂Ω)

xy < ε, we deduce from [START_REF] Hörmander | Weak linear convexity and a related notion of concavity[END_REF]: 

Finally, if y ∈ B r (x) for some r ∈]0, ε[, we deduce from (40) the 2ε ε-r -Lipschitz continuity of p ∂Ω : B r (x) → ∂Ω. Using Proposition 5.4, the map ∇b Ω : B r (x) → S n-1 is 2 ε-r -Lipschitz continuous. In particular, ∇b Ω is bounded and uniformly continuous: it has a unique Lipschitz continuous extension to B r (x). Moreover, the Lipschitz constant 2 ε-r does not depend on x ∈ ∂Ω thus b Ω ∈ C 1,1 (V r (∂Ω)) for any r ∈]0, ε[. Conversely, if there now exists ε > 0 such that b Ω ∈ C 1,1 (B ε (x)) and V (B ε (x) ∩ ∂Ω) = 0 for any x ∈ ∂Ω, then we can apply [START_REF] Delfour | Shapes and geometries: metrics, analysis, dierential calculus, and optimization[END_REF]Chapter 7 Theorem 8.3 (ii)] to obtain B ε (x) ⊆ Unp(∂Ω) i.e. Reach(x, ∂Ω) ε for any x ∈ ∂Ω, from which we deduce Reach(∂Ω) ε. We can now use Theorem 2.6 (i). For this purpose, we check that V (∂Ω)

x∈∂Ω∩Q n V (B ε (x) ∩ ∂Ω) = 0 and we get Ω ∈ O ε (R n ) as expected, concluding the proof of Theorem 2.8.