
HAL Id: hal-01136792
https://hal.science/hal-01136792v2

Preprint submitted on 4 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform ball property and existence of optimal shapes
for a wide class of geometric functionals

Jeremy Dalphin

To cite this version:
Jeremy Dalphin. Uniform ball property and existence of optimal shapes for a wide class of geometric
functionals. 2016. �hal-01136792v2�

https://hal.science/hal-01136792v2
https://hal.archives-ouvertes.fr


Uniform ball property and existence of optimal shapes for a

wide class of geometric functionals

Jérémy Dalphin∗

Abstract

In this article, we study shape optimization problems involving the geometry of surfaces
(normal vector, principal curvatures). Given ε > 0 and a �xed non-empty large bounded open
hold-all B ⊂ Rn, n > 2, we consider a speci�c class Oε(B) of open sets Ω ⊂ B satisfying a
uniform ε-ball condition. First, we recall that this geometrical property Ω ∈ Oε(B) can be
equivalently characterized in terms of C1,1-regularity of the boundary ∂Ω 6= ∅, and thus also
in terms of positive reach and oriented distance function. Then, the main contribution of this
paper is to prove the existence of a C1,1-regular minimizer among Ω ∈ Oε(B) for a general
range of geometric functionals and constraints de�ned on the boundary ∂Ω, involving the �rst-
and second-order properties of surfaces, such as problems of the form:

inf
Ω∈Oε(B)

∫
∂Ω

j0 [x,n (x)] dA (x)+

∫
∂Ω

j1 [x,n (x) , H (x)] dA (x)+

∫
∂Ω

j2 [x,n (x) ,K (x)] dA (x) ,

where n, H, K respectively denote the unit outward normal vector, the scalar mean curvature
and the Gaussian curvature. We only assume continuity of j0, j1, j2 with respect to the set of
variables and convexity of j1, j2 with respect to the last variable, but no growth condition on
j1, j2 are imposed here regarding the last variable. Finally, we give various applications in the
modelling of red blood cells such as the Canham-Helfrich energy and the Willmore functional.

Keywords : shape optimization, uniform ball condition, Helfrich, Willmore, curvature de-
pending energies, geometric functionals.

AMS classi�cation : primary 49Q10, secondary 53A05, 49J45

1 Introduction

Many physical phenomena are governed by their surrounding geometry and are often modelled by
energy minimization principles. Some problems like soap �lms involve the �rst-order properties of
surfaces (normal vector, �rst fundamental form), while others such as the equilibrium shapes of red
blood cells also concern the second-order ones (principal curvatures, second fundamental form).

In this article, we are interested in the existence of solutions to such shape optimization problems
through the determination of a suitable class of admissible shapes. Indeed, a relevant framework of
study is often provided by geometric measure theory [55], but the minimizer is usually less regular
than expected, and it is hard to understand (and prove) in which sense singularities occur or not.

Using the viewpoint of shape optimization, the aim of this paper is to consider a more reasonable
class of surfaces, in which there always exists an enough regular minimizer for general functionals
and constraints involving the �rst- and second-order geometric properties of surfaces. Inspired by
the uniform cone property of Chenais [8], we de�ne the uniform ball condition as follows.

De�nition 1.1. Let ε > 0 and B ⊆ Rn be open, n > 2. We say that an open set Ω ⊂ B with a
non-empty boundary ∂Ω := Ω\Ω satis�es the ε-ball condition and we write Ω ∈ Oε(B) if for any
point x ∈ ∂Ω, there exists a unit vector dx of Rn such that:





Bε(x− εdx) ⊆ Ω

Bε(x + εdx) ⊆ B\Ω,

where Br(z) := {y ∈ Rn, ‖y − z‖ < r} denotes the open ball of Rn centred at z and of radius r.
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CNRS-Universidad de Chile, Beauchef 851, Santiago, Chile (jdalphin@dim.uchile.cl).
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Remark 1.2. The ε-ball condition of De�nition 1.1 only makes sense for sets having a non-empty
boundary. Hence, we will always assume ∂Ω 6= ∅ in the sequel, or equivalently Ω /∈ {∅,Rn}. Indeed,
∂Ω = ∅ i� Ω = Ω ∪ ∂Ω = Ω, and {∅,Rn} contains the only subsets that are both open and close.

Note also that De�nition 2.1 imposes Ω to be the subset of a �xed set B. However, since we only
require B to be open, one can take B = Rn and consider the class Oε(Rn) of open sets Ω /∈ {∅,Rn}
satisfying the ε-ball condition. This is what we have done for example in Theorems 2.6�2.8.

B

Ω̃

x
Bε(x+ εdx)

Bε(x− εdx)

B

Ω

x1

x2

x3

x4

Figure 1: Example of an open set Ω̃ ⊂ B satisfying the ε-ball condition whereas Ω ⊂ B does not.
Indeed, there is no circle passing through the points x1 and x2 (respectively x3 and x4) whose inner
domains are included in Ω (respectively in B\Ω).

The uniform ball condition was already considered by Poincaré [50]. As illustrated in Figure 1,
it avoids the formation of singularities such as corners, cracks, or self-intersections. In fact, it has
been known to characterize the C1,1-regularity of hypersurfaces for a long time by oral tradition.
Consequently, it can also be linked to other well-known equivalent concepts, such as the notion
of positive reach introduced by Federer in [30], and the local C1,1-regularity of oriented distance
functions introduced by Delfour and Zolésio in [20].

In [24, Chapter 7 Theorems 7.2-7.3 and 8.1-8.4], one can already �nd most of the material about
these three last properties. However, as far as the uniform ball condition is here concerned, we
believe it would be useful to unify the exposition and notation to the expense of a lengthy article.
Hence, for completeness, three equivalent characterizations of De�nition 1.1 are given in Section 2
with further references, namely Theorems 2.6�2.8 (but proofs are postponed to the Appendix).

Equipped with this class of admissible shapes, we can now state our main general existence
result in the three-dimensional Euclidean space R3. We refer to Section 4.5 for its most general
form in Rn, but the following one is enough for the three physical applications we present hereafter.

Theorem 1.3. Let ε > 0 and B ⊂ R3 be a non-empty bounded open set, large enough so that
Oε(B) 6= ∅. We consider (C, C̃) ∈ R × R, �ve continuous maps j0, f0, g0, g1, g2 : R3 × S2 → R,
and four maps j1, j2, f1, f2 : R3 × S2 ×R→ R being continuous and convex in their last variable.
Then, the following problem has at least one solution (see Notation 1.4):

inf

∫

∂Ω

j0 [x,n (x)] dA (x) +

∫

∂Ω

j1 [x,n (x) , H (x)] dA (x) +

∫

∂Ω

j2 [x,n (x) ,K (x)] dA (x) ,

where the in�mum is taken among Ω ∈ Oε(B) satisfying a �nite number of constraints of the form:




∫

∂Ω

f0 [x,n (x)] dA (x) +

∫

∂Ω

f1 [x,n (x) , H (x)] dA (x) +

∫

∂Ω

f2 [x,n (x) ,K (x)] dA (x) 6 C
∫

∂Ω

g0 [x,n (x)] dA (x) +

∫

∂Ω

H (x) g1 [x,n (x)] dA (x) +

∫

∂Ω

K (x) g2 [x,n (x)] dA (x) = C̃.

Notation 1.4. We denote by A(•) (respectively V (•)) the area (resp. the volume) i.e. the two(resp.
three)-dimensional Hausdor� measure, and the integration on a surface is done with respect to A.
The Gauss map n : x 7→ n(x) ∈ S2 always refers to the unit outer normal �eld of the surface, while
H = κ1 + κ2 is the scalar mean curvature and K = κ1κ2 is the Gaussian curvature.
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We mention that the particular case j0 > 0, j1 = j2 = 0 without constraints is studied in [36].
The proof of Theorem 1.3 only relies on basic tools of analysis and does not use geometric measure
theory. Following the usual direct method from Calculus of Variations, we establish:

(i) in Proposition 3.2 that the class Oε(B) is sequentially compact for some various modes of
convergence (for the Hausdor� distance of the complements in B, of the adherences, of the
boundaries, for the L1(B)-norm of the characteristic functions, for the W 1,1(B)-norm of the
oriented distance functions, and in the sense of compact sets, cf. De�nition 3.1), allowing the
extraction of a minimizing subsequence that converges to a candidate for being a minimizer;

(ii) in Section 4 that the functionals and inequality constraints considered in Theorem 1.3 are
lower semi-continuous with respect to the convergence in the sense of compact sets provided
the boundaries also converge for the Haudor� distance, while the equality constraints are
really continuous, explaining why we only assume (ji, fi)i=1,2 to be convex in their last
variable to get lower semi-continuity (but note that no growth condition is imposed here)
whereas the integrands containing (gi)i=1,2 have to be linear in H and K to get continuity.

Point (i) is a consequence of the fact that the ε-ball condition implies the uniform cone property
(Theorem 2.7 (i)), for which we have the compactness result of Chenais [8], later re�ned by Delfour
and Zolésio [20] [24, Chapter 7 Theorem 13.1]. Point (ii) is much harder to obtain. Our method is
based on localization and the study of convergence for graphs of regular functions (Theorem 3.3).
In Section 3, we show we can locally parametrize simultaneously by C1,1-graphs in a �xed local
frame the boundaries of a converging sequence in Oε(B) (cf. Figure 2). Moreover, the local graphs
converge strongly in C1,1−δ, δ ∈]0, 1], and weakly-star in W 2,∞. This allows to study and get (ii).

The author is aware of the important work of Delfour and Zolésio related to the distance function
[21] [24, Chapter 6] and oriented distance function [20] [24, Chapter 7] with numerous applications
in shape di�erential calculus [24, Chapter 9]. We refer to Section 3.1 for further references and an
overview of the general background related to these concepts. Since the viewpoint of local graphs
and oriented distance functions bΩ are equivalent [24, Chapter 7 Theorem 8.2 (ii)], Theorem 3.3
and the continuity results of Section 4 can also be expressed and proved in terms of bΩ.

However, we decide to consider here the graph approach for several reasons. First, the oriented
distance functions do not remove the di�culty overcome by Theorem 3.3 i.e. the existence of a
�xed set to properly study continuity. Indeed, let us assume the convergence of some (∂Ωi)i∈N to
∂Ω for the Hausdor� distance. We can �nd a common tubular neighbourhood Vr(∂Ω), r > 0, in
which occurs the convergence of the associated oriented distance functions (bΩi)i∈N to bΩ strongly
in C1,1−δ for any δ ∈]0, 1] and weakly-star in W 2,∞. Nevertheless, the continuity of a functional
ω 7→

∫
∂ω
j remains unclear because even if

∫
∂Ωi

j = limh→0
1

2h

∫
Vh(∂Ωi)

j ◦ (Id− bΩi∇bΩi) as in [15],

the exchange of the limits i → +∞ and h → 0 requires some work, that we believe as technical
as what we have done to get Theorem 3.3. If this issue is overcome, then the continuity results of
Section 4 also follow from the various convergences of (bΩi)i∈N to bΩ and the fact that ∇bΩi is an
extension of the unit outward normal �eld to ∂Ωi, Hess(bΩi) of the second fundamental form, etc.

Moreover, the article aims to give general existence results for shape optimization problems
involving a large range of geometric functionals and constraints. It is thus intended to a broad
audience and the viewpoint of graph seems a rather usual approach, compared to further equivalent
sophisticated tools that would certainly lighten the proofs. In addition, we only deal here with C1,1-
regularity and do not necessarily need very sharp tools for studying cracks or the �ne geometric
properties of shapes. Furthermore, this paper also intends to settle the framework for another
future work that will soon be published [11] and study more complex problems of the form:

inf
Ω∈Oε(B)

∫

∂Ω

j [x,nΩ (x) , HΩ (x) ,KΩ (x) , uΩ (x) ,∇uΩ (x)] dA (x) ,

where uΩ is the solution of some second-order elliptic boundary-value problems posed on the inner
domain enclosed by the shape ∂Ω. In this direction, the convergence results of Theorem 3.3 are
very useful to study the convergence of (uΩi ◦Xi)i∈N, where Xi is a local parametrization of ∂Ωi.

Finally, to our knowledge, the existence results presented here are new. Indeed, the functionals
we consider are de�ned on the boundary of a domain, a case which is not covered by the usual
existence theory in shape optimization. Moreover, we are able to extend and generalize the results
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given in [36] by using a similar framework [35]. If the compactness issue is quite straightforward,
the continuity of quite general functionals de�ned on the boundary is not. In particular, we show
in Section 4 how to use Theorem 3.3 in order to study the continuity and lower-semi-continuity
properties for a wide range of geometric functionals. Although the statements of Sections 4.1�4.3
are rather expected consequences of Theorem 3.3 under the construction of a suitable partition of
unity, the ones of Section 4.4 are not, especially the L∞-weak-star convergence of the Gaussian
curvature. In particular, in Section 4.4, we emphasize the fact that we manage to obtain the non-
trivial continuity of non-linear functionals (such as the genus) by applying the Div-Curl Lemma to
this geometric setting. To our knowledge, such a method is new. We now present three physical
applications of Theorem 1.3 (further examples are also detailed in Section 4.5).

1.1 First application: minimizing the Canham-Helfrich energy with area

and volume constraints

In biology, when a su�ciently large amount of phospholipids is inserted in a aqueous media, they
immediately gather in pairs to form bilayers also called vesicles. Devoid of nucleus among mammals,
red blood cells are typical examples of vesicles on which is �xed a network of proteins playing the
role of a skeleton inside the membrane [59]. In the 70s, Canham [7] then Helfrich [37] suggested a
simple model to characterize vesicles. Imposing the area of the bilayer and the volume of �uid it
contains, their shape is a minimizer for the following free-bending energy (see Notation 1.4):

E =
kb
2

∫

membrane

(H −H0)
2
dA+ kG

∫

membrane

KdA, (1)

where H0 ∈ R (called the spontaneous curvature) measures the asymmetry between the two layers,
and where kb > 0, kG < 0 are two other physical constants. Note that if kG > 0, for any kb, H0 ∈ R,
the Canham-Helfrich energy (1) with prescribed area A0 and volume V0 is not bounded from below.
Indeed, in that case, from the Gauss-Bonnet Theorem, the second term tends to −∞ as the genus
g → +∞, while the �rst term remains bounded by 4|kb|(12π + 1

4H
2
0A0) (to see this last point,

combine [41, Remark 1.7 (iii) (1.5)], [52, Theorem 1.1], and [56, Inequality (0.2)]).

The two-dimensional case of (1) is considered by Bellettini, Dal Maso, and Paolini in [3]. Some
of their results is recovered by Delladio [25] in the framework of special generalized Gauss graphs
from the theory of currents. Then, Choksi and Veneroni [9] solve the axisymmetric situation of (1)
in R3 assuming −2kb < kG < 0. In the general case, this hypothesis gives a fundamental coercivity
property [9, Lemma 2.1] and the integrand of (1) is standard in the sense of [40, De�nition 4.1.2].
Hence, we get a minimizer for (1) in the class of recti�able integer oriented 2-varifold in R3 with
L2-bounded generalized second fundamental form [40, Theorem 5.3.2] [47, Section 2] [4, Appendix].
These compactness and lower semi-continuity properties were already noticed in [4, Section 9.3].

However, the regularity of minimizers remains an open problem and experiments show that
singular behaviours can occur to vesicles such as the budding e�ect [53, 54]. This cannot happen
to red blood cells because their skeleton prevents the membrane from bending too much locally
[59, Section 2.1]. To take this aspect into account, the uniform ball condition of De�nition 1.1 is
also motivated by the modelization of the equilibrium shapes of red blood cells. We even have a
clue for its physical value [59, Section 2.1.5]. Our result states as follows.

Theorem 1.5. Let H0, kG ∈ R and ε, kb, A0, V0 > 0 such that A3
0 > 36πV 2

0 . Then, the following
problem has at least one solution (see Notation 1.4):

inf
Ω∈Oε(R3)
A(∂Ω)=A0

V (Ω)=V0

kb
2

∫

∂Ω

(H −H0)2dA+ kG

∫

∂Ω

KdA.

Remark 1.6. The hypothesis A3
0 > 36πV 2

0 is rather natural. Indeed, any compact surface has to
satisfy the isoperimetric inequality and equality only occurs for spheres. Hence, we have to assume
A3

0 > 36πV 2
0 otherwise the set of constraints in Oε(R3) is either empty or reduced to a ball of area

A0 and volume V0. Moreover, note that we only consider here the class Oε(R3) and not Oε(B)
with B bounded as it is the case for Theorem 1.3. Indeed, a uniform bound on the diameter is
implicitly given by the functional and the area constraint [56, Lemma 1.1]. Finally, the result of
Theorem 1.5 also holds true if H0 is a continuous function of the position and the normal vector.
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1.2 Second application: minimizing the Canham-Helfrich energy with

prescribed genus, area, and volume

The Gauss-Bonnet Theorem [30, Theorem 5.19] is valid for sets of positive reach (cf. De�nition 2.1)
thus we get from Theorem 2.6 that

∫
Σ
KdA = 4π(1 − g) for any compact connected C1,1-surface

Σ (without boundary embedded in R3) of genus g ∈ N. Hence, instead of minimizing (1), people
usually �x the topology and search for a minimizer of the following energy (see Notation 1.4):

H(Σ) =

∫

Σ

(H −H0)
2
dA, (2)

with prescribed area and enclosed volume. The critical points of (2) are studied by Nagasawa and
Yi in [49]. Like (1), such a functional depends on the surface but also on its orientation. However,
in the case H0 6= 0, energy (2) is not even lower semi-continuous with respect to the varifold
convergence [4, Section 9.3]: the counterexample is due to Groÿe-Brauckmann [34]. In this case,
we cannot directly use the tools of geometric measure theory but we can prove the following result.

Theorem 1.7. Let H0 ∈ R, g ∈ N, and ε,A0, V0 > 0 such that A3
0 > 36πV 2

0 . Then, the following
problem has at least one solution (see Notation 1.4 and Remark 1.6):

inf
Ω∈Oε(R3)

genus(∂Ω)=g
A(∂Ω)=A0

V (Ω)=V0

∫

∂Ω

(H −H0)2dA,

where genus(∂Ω) = g has to be understood as ∂Ω is a compact connected C1,1-surface of genus g.

1.3 Third application: minimizing the Willmore functional with various

constraints

The particular case H0 = 0 in (2) is known as the Willmore functional (see Notation 1.4):

W(Σ) =
1

4

∫

Σ

H2dA. (3)

It has been widely studied by geometers. Without constraint, Willmore [60, Theorem 7.2.2] proved
that spheres are the only global minimizers of (3). The existence was established by Simon [56] for
genus-one surfaces, Bauer and Kuwert [2] for higher genus. Recently, Marques and Neves [45] solved
the so-called Willmore conjecture: the conformal transformations of the stereographic projection
of the Cli�ord torus are the only global minimizers of (3) among smooth genus-one surfaces.

A main ingredient is the conformal invariance of (3), from which we can in particular deduce
that minimizing (3) with prescribed isoperimetric ratio is equivalent to impose the area and the
enclosed volume. In this direction, Schygulla [52] established the existence of a minimizer for (3)
among analytic surfaces of zero genus and given isoperimetric ratio. For higher genus, Keller,
Mondino, and Riviere [41] recently obtained similar results, using the point of view of immersions
developed by Riviere [51] to characterize precisely the critical points of (3).

An existence result related to (3) is the particular case H0 = 0 of Theorem 1.7. Again, the
di�culty with these kind of functionals is not to obtain a minimizer (compactness and lower semi-
continuity in the class of varifolds for example) but to show that it is regular in the usual sense (i.e.
a smooth surface). We now give a last application of Theorem 1.3 which comes from the modelling
of vesicles. It is known as the bilayer-couple model [53, Section 2.5.3] and it states as follows.

Theorem 1.8. Let M0 ∈ R and ε,A0, V0 > 0 such that A3
0 > 36πV 2

0 . Then, the following problem
has at least one solution (see Notation 1.4 and Remark 1.6):

inf
Ω∈Oε(R3)

genus(∂Ω)=g
A(∂Ω)=A0

V (Ω)=V0∫
∂Ω

HdA=M0

1

4

∫

∂Ω

H2dA,

where genus(∂Ω) = g has to be understood as ∂Ω is a compact connected C1,1-surface of genus g.
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To conclude the introduction, we recall how the paper is organized. In Section 2, three equivalent
characterizations of the uniform ball condition are stated, namely Theorem 2.6 in terms of positive
reach, Theorem 2.7 in terms of C1,1-hypersurface, and Theorem 2.8 in terms of C1,1-regular oriented
distance function. The proofs are postponed to the Appendix. Following the classical method from
the Calculus of Variations, in Section 3.1, we �rst obtain the compactness of the class Oε(B) for
various modes of convergence. This essentially follows from the fact that the ε-ball condition
implies a uniform cone property, for which we already have some good compactness results.

Then, in the remaining part of Section 3, we prove the key ingredient of Theorem 1.3 i.e. we
manage to parametrize in a �xed local frame simultaneously all the graphs associated with the
boundaries of a converging sequence in Oε(B). We prove the W 2,∞-weak-star and the C1,1−δ-
strong convergence of these local graphs for any δ ∈]0, 1]. Finally, in Section 4, we show how to use
this local result on a suitable partition of unity to get the global continuity for a general range of
geometric functionals. We conclude by giving some existence results in Section 4.5. In particular,
we prove Theorem 1.3, its generalization to Rn, and detail many applications such as Theorem 1.5
and Theorems 1.7�1.8, mainly coming from the modelling of vesicles and red blood cells.

2 Three characterizations of the uniform ball property

In this section, we recall three characterizations of the ε-ball condition, namely Theorems 2.6�2.8.
First, it is equivalent to Federer's notion of positive reach [30]. Then, it is equivalent to a uniform
C1,1-regularity of hypersurfaces. Finally, it is equivalent to the local C1,1-regularity of oriented
distance functions introduced by Zolésio and Delfour [24, Chapter 7]. All this is known but for
completeness and readability, the proofs are postponed to the Appendix, since we did not �nd
references where these characterizations were gathered in the form given in Theorems 2.6�2.8.

Indeed, two equivalent characterizations in terms of positive reach, local graph, and oriented
distance function can be found in [24, Chapter 7 Theorems 7.2-7.3 and 8.1-8.4], but they are not
linked to the uniform ball condition studied in this paper. Morover, many parts of Theorems 2.6�
2.7 can be found in the literature as remarks [39, below Theorem 1.4] [46, (1.10)] [30, Remark 4.20],
sometimes with proofs [31, Section 2.1] [35, Theorem 2.2] [42, �4 Theorem 1] [43, Proposition 1.4],
or as consequences of results [32, Theorem 1.2] [1, Theorem 1.1 (1.2)]. Finally, we mention that the
proofs of Theorems 2.6�2.7 were already given in [10] and are reproduced here for completeness.

Before stating the theorems, we recall some de�nitions and notation, used hereafter in the paper.
Let n > 2 be an integer henceforth set. The space Rn whose points are marked x = (x1, . . . , xn) is
naturally provided with its usual Euclidean structure, 〈x | y〉 =

∑n
k=1 xkyk and ‖x‖ =

√
〈x | x〉,

but also with a direct orthonormal frame whose choice will be speci�ed later. Inside this frame,
every point x of Rn will be written into the form (x′, xn) such that x′ = (x1, . . . , xn−1) ∈ Rn−1.
In particular, the symbols 0 and 0′ respectively refer to the zero vector of Rn and Rn−1.

First, some of the notation introduced in [30, Section 4] by Federer are recalled. For every
non-empty subset A of Rn, the following map is well de�ned and 1-Lipschitz continuous:

d(•, A) : Rn −→ [0,+∞[
x 7−→ d(x, A) = inf

a∈A
‖x− a‖.

Furthermore, we set Unp(A) := {x ∈ Rn | ∃!a ∈ A, ‖x− a‖ = d(x, A)}. This is the set of points
in Rn having a unique projection on A i.e. the maximal domain on which this map is well de�ned:

pA : x ∈ Unp(A) 7−→ pA(x) ∈ A,

where pA(x) is the unique point of A such that ‖pA(x) − x‖ = d(x, A). We can also notice that
A ⊆ Unp(A) thus in particular Unp(A) 6= ∅. We can now express what is a set of positive reach.

De�nition 2.1. Consider any non-empty subset A of Rn. First, we set for any point a ∈ A:

Reach(A,a) = sup {r > 0, Br(a) ⊆ Unp(A)} ,

with the convention sup ∅ = 0. Then, we de�ne the reach of A as Reach(A) = infa∈A Reach(A,a).
Finally, we say that A has a positive reach if we have Reach(A) > 0.
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De�nition 2.1 is the one given by Federer [30, De�nition 4.1]. Note that if A is a non-empty open
subset of Rn, then Unp(A) = A so Reach(x,A) = d(x, ∂A) for any x ∈ A and thus Reach(A) = 0
[30, Remark 4.2]. Hence, the notion of reach is of little interest for open sets. This is reason why
some authors often assume that A is closed in De�nition 2.1, or equivalently, de�ne Reach(A,a) for
any a ∈ A as in [24, Chapter 6 De�nition 6.1]. Similarly, in order to ensure that any point of Rn
has at least one projection on A [24, Chapter 6 Theorem 2.1 (ii)], some people often assume that
A is closed, or equivalently, de�ne the projection pA as a map from Unp(A) into A. In our case,
we will always consider the reach of the boundary ∂Ω, the closure Ω, or the complement Rn\Ω of
an open set Ω /∈ {∅,Rn} so De�nition 2.1 and the one of pA do not lead to any ambiguity here.

Then, we also recall the de�nition of a C1,1-hypersurface in terms of local graph. Note that
from the Jordan-Brouwer Separation Theorem, any compact topological hypersurface of Rn has
a well-de�ned inner domain, and in particular a well-de�ned enclosed volume. If instead of being
compact, it is connected and closed as a subset of Rn, then it remains the boundary of an open set
[48, Theorem 4.16] [27, Section 8.15], which is not unique and possibly unbounded in this case.

De�nition 2.2. Consider any non-empty subset S of Rn. We say that S is a C1,1-hypersurface
if there exists an open subset Ω of Rn such that ∂Ω = S, and such that for any point x0 ∈ ∂Ω,
there exists a direct orthonormal frame centred at x0 such that in this local frame, there exists a
map ϕ : Dr(0

′)→]− a, a[ continuously di�erentiable with a > 0, such that ϕ and its gradient ∇ϕ
are L-Lipschitz continuous with L > 0, satisfying ϕ(0′) = 0, ∇ϕ(0′) = 0′, and also:





∂Ω ∩ (Dr (0′)×]− a, a[) = {(x′, ϕ(x′)) , x′ ∈ Dr(0
′)}

Ω ∩ (Dr (0′)×]− a, a[) = {(x′, xn), x′ ∈ Dr(0
′) and − a < xn < ϕ(x′)} ,

with Dr(0
′) = {x′ ∈ Rn−1, ‖x′‖ < r} the open ball of Rn−1 of radius r > 0 centred at the origin 0′.

Remark 2.3. In De�nition 2.2, note that the gradient ∇ϕ : Dr(0
′)→ Rn−1 is valued in DrL(0′).

Finally, we recall the de�nition of the uniform cone property introduced by Chenais in [8], and
from which the ε-ball condition is inspired. We also refer to [38, De�nition 2.4.1].

De�nition 2.4. Let α ∈]0, π2 [ and Ω ⊂ Rn be open with a non-empty boundary. We say that Ω
satis�es the α-cone condition if for any x ∈ ∂Ω, there exists a unit vector ξx of Rn such that:

∀y ∈ Bα(x) ∩ Ω, Cα(y, ξx) ⊆ Ω,

where Cα(y, ξx) = {z ∈ Bα(y), ‖z − y‖ cosα < 〈z − y | ξx〉} refers to the open cone of vertex y,
direction ξx, and (half-)aperture α.

At last, we give the de�nition of the oriented distance function introduced by Delfour and
Zolésio in [20], which provides a useful level-set description of a set.

De�nition 2.5. Let A ⊆ Rn have a non-empty boundary. Then, the oriented distance function
bA : Rn 7→ R is de�ned as bA (x) := d(x, A)− d(x,Rn\A) for any x ∈ Rn. In particular, we have:

∀x ∈ Rn, bA (x) =





d (x, ∂A) if x ∈ Rn\A
0 if x ∈ ∂A.
−d (x, ∂A) if x ∈ Int(A)

We are now in position to state three characterizations of the ε-ball condition. In Theorems 2.6�
2.8, V (•) refers to the n-dimensional Lebesgue measure and the proofs are given in the Appendix.

Theorem 2.6 (A characterization in terms of positive reach). Consider any open subset Ω
of Rn with a non-empty boundary. Then, the following implications are true:

(i) if there exists ε > 0 such that Ω ∈ Oε(Rn) as in De�nition 1.1, then ∂Ω has a positive reach
in the sense of De�nition 2.1 with Reach(∂Ω) > ε and we have V (∂Ω) = 0;

(ii) if ∂Ω has a positive reach and V (∂Ω) = 0, then Ω ∈ Oε(Rn) for any ε ∈]0,Reach(∂Ω)[, and
moreover, if ∂Ω has a �nite positive reach, then Ω also satis�es the Reach(∂Ω)-ball condition.
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In particular, if V (∂Ω) = 0, then we have the following characterization:

Reach (∂Ω) = sup {ε > 0, Ω ∈ Oε(Rn)} ,

with the convention sup ∅ = 0. Moreover, this supremum becomes a maximum if it is not zero and
�nite. Finally, we get Reach(∂Ω) = +∞ if and only if ∂Ω is an a�ne hyperplane of Rn.

Theorem 2.7 (A characterization in terms of C1,1-regularity). Let Ω be any open subset of
Rn with a non-empty boundary. If there exists ε > 0 such that Ω ∈ Oε(Rn), then its boundary ∂Ω
is a C1,1-hypersurface of Rn in the sense of De�nition 2.2, where a = ε, the constants L, r depend
only on ε, and where ∇ϕ is valued in D 32

31
(0′). Moreover, we have the following properties:

(i) Ω satis�es the f−1(ε)-cone property as in De�nition 2.4 with f : α ∈]0, π2 [7→ 2α
cosα ∈]0,+∞[;

(ii) the dx of De�nition 1.1 is the unit outer normal vector to the hypersurface at the point x;

(iii) the Gauss map d : x ∈ ∂Ω 7→ dx ∈ Sn−1 is well de�ned and 1
ε -Lipschitz continuous.

Conversely, if S is a non-empty compact C1,1-hypersurface of Rn in the sense of De�nition 2.2,
then there exists ε > 0 such that its inner domain Ω ∈ Oε(Rn). In particular, it has a positive
reach with Reach(S) = max {ε > 0, Ω ∈ Oε(Rn)} and we have V (S) = 0.

Theorem 2.8 (A characterization in terms of oriented distance function). Let Ω be any
open subset of Rn with a non-empty boundary. If there exists ε > 0 such that Ω ∈ Oε(Rn) as in
De�nition 1.1, then the oriented distance function bΩ introduced in De�nition 2.5 is continuously
di�erentiable on the open tubular neighbourhood Vε(∂Ω) := {x ∈ Rn, d(x, ∂Ω) < ε}. Moreover, we
have V (∂Ω) = 0 and for any r ∈]0, ε[, the map ∇bΩ : Vr(∂Ω)→ Sn−1 is 2

ε−r -Lipschitz continuous,

having a unique 2
ε−r -Lipschitz continuous extension to Vr(∂Ω). Conversely, if there exists ε > 0

such that bΩ ∈ C1,1(Bε(x)) and V (Bε(x) ∩ ∂Ω) = 0 for any x ∈ ∂Ω, then we have Ω ∈ Oε(Rn).

Remark 2.9. In Theorem 2.7, one can notice that a, L, and r only depend on ε for any point of
the hypersurface. This uniform dependence of the C1,1-regularity characterizes the class Oε(Rn).
Indeed, the converse part of Theorem 2.7 also holds true if instead of being compact, the non-
empty C1,1-hypersurface S satis�es: ∃ε > 0,∀x0 ∈ S,min( 1

L ,
r
3 ,

a
3 ) > ε. In this case, we still have

Ω ∈ Oε(Rn) where Ω is the open set of De�nition 2.2 such that ∂Ω = S.

Remark 2.10. From Point (iii) of Theorem 2.7, the Gauss map d is 1
ε -Lipschitz continuous.

Hence, it is di�erentiable almost everywhere and its di�erential D•d : x ∈ ∂Ω 7→ Dxd ∈ L(Tx∂Ω) is
an L∞-map satisfying ‖D•d‖L∞(∂Ω) 6

1
ε [38, Section 5.2.2]. In particular, the principal curvatures

(see Section 4.1 for de�nitions and (33) for details) satisfy ‖κl‖L∞(∂Ω) 6
1
ε for any l ∈ {1, ..., n−1}.

3 Parametrization of a converging sequence from Oε(B)

In this section, we are interested in establishing some good compactness results. First, we recall
the de�nitions of some various modes of convergence used thereafter.

De�nition 3.1. The Hausdor� distance dH between two compact sets X and Y in Rn is de�ned
as dH(X,Y ) := max(supx∈X d(x, Y ), supy∈Y d(y, X)). We say that a sequence of compacts sets
(Ki)i∈N converges to a compact set K for the Hausdor� distance if dH(Ki,K) → 0 as i → +∞.
Let B be any non-empty bounded open subset of Rn. A sequence of open sets (Ωi)i∈N ⊂ B converges
to an open set Ω ⊂ B:

(i) in the Hausdor� sense if (B\Ωi)i∈N converges to B\Ω for the Hausdor� distance;

(ii) in the sense of compact sets if for any compact sets K and L such that K ⊂ Ω and L ⊂ B\Ω,
there exists I ∈ N such that for any integer i > I, we have K ⊂ Ωi and L ⊂ B\Ωi;

(iii) in the sense of characteristic functions if we have
∫
B
|1Ωi(x) − 1Ω(x)|dx → 0, where 1X is

the characteristic function of X, valued one for the points of X, otherwise zero.

In Section 3.1, we recall some well-known compactness results about the uniform cone property.
From Point (i) of Theorem 2.7, every set satisfying the ε-ball condition also satis�es the f−1(ε)-
cone property. Hence, we only have to check that Oε(B) is closed under the convergence in the
Hausdor� sense (cf. De�nition 3.1 (i)) to get the following compactness result.
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Proposition 3.2. Let ε > 0 and B ⊂ Rn be a bounded open set, large enough to contain an open
ball of radius 3ε. If (Ωi)i∈N is a sequence of elements from Oε(B), then there exists Ω ∈ Oε(B)
such that a subsequence (Ωi′)i∈N converges to Ω in the following senses (see De�nition 3.1):

• (Ωi′)i∈N converges to Ω in the Hausdor� sense;

• (∂Ωi′)i∈N converges to ∂Ω for the Hausdor� distance;

• (Ωi′)i∈N converges to Ω for the Hausdor� distance;

• (B\Ωi′)i∈N converges to B\Ω in the Hausdor� sense;

• (Ωi′)i∈N converges to Ω in the sense of compact sets;

• (Ωi′)i∈N converges to Ω in the sense of characteristic functions.

Moreover, considering the associated oriented distance functions introduced in De�nition 2.5, we
also have that (bΩi′ )i∈N strongly converges to bΩ in W 1,p(B,R) for any p ∈ [1,+∞[.

In Section 3.1, Proposition 3.2 is proved and for sake of completeness, further explanations and
references are given with respect to this general compactness pattern. Then, in the remaining part
of Section 3, we consider a sequence (Ωi)i∈N of elements from Oε(B) converging to Ω ∈ Oε(B) in
the sense of compact sets (cf. De�nition 3.1 (ii)). We prove that for any i su�ciently large, the
boundary ∂Ωi can be locally parametrized by a C1,1-graph in a local frame associated with ∂Ω.
The key point here is that the local frame is �xed and does not depend in i. Moreover, we get the
C1,1−δ-strong for any δ ∈]0, 1] and theW 2,∞-weak-star convergence of a subsequence of these local
graphs. The entire sequence converges under the additional assumption limi→+∞ dH(∂Ωi, ∂Ω) = 0.
In this case, the limit graph is precisely the one associated with ∂Ω. These results are illustrated
in Figure 2 and will be fundamentally used in Section 4 to study the continuity of functionals.

Theorem 3.3. Let (Ωi)i∈N ⊂ Oε(B) converge to Ω ∈ Oε(B) as in De�nition 3.1 (ii). Then, for
any point x0 ∈ ∂Ω, there exists a direct orthonormal frame centred at x0, and also I ∈ N depending
only on x0, ε, Ω, and (Ωi)i∈N, such that inside this frame, for any integer i > I, there exists a
continuously di�erentiable map ϕi : Dr̃(0

′) →] − ε, ε[, whose gradient ∇ϕi is valued in D 32
29

(0′),
where ∇ϕi and ϕi are L-Lipschitz continuous with L > 0 and r̃ > 0 depending only on ε, and such
that:





∂Ωi ∩ (Dr̃(0
′)∩]− ε, ε[) = {(x′, ϕi(x′)), x′ ∈ Dr̃(0

′)}

Ωi ∩ (Dr̃(0
′)∩]− ε, ε[) = {(x′, xn), x′ ∈ Dr̃(0

′) and − ε < xn < ϕi(x
′)} .

Moreover, any of the (ϕi)i>I has a unique C1,1-extension to the closure Dr̃(0′) and there exists

ϕ ∈W 2,∞ (Dr̃(0
′)) ∩ C1(Dr̃(0′)) such that a subsequence (ϕi′)i>I satis�es:





ϕi′ → ϕ strongly in C1,1−δ(Dr̃(0′)) for any δ ∈]0, 1],

ϕi′ ⇀ ϕ weakly star in W 2,∞(Dr̃(0
′)).

(4)

If in addition, we assume that (∂Ωi)i∈N converges to ∂Ω for the Hausdor� distance, then the map
ϕ is precisely the one of De�nition 2.2 associated with the point x0 of ∂Ω and furthermore, the
whole sequence (ϕi)i>I converge to ϕ in (4).

The proof of Theorem 3.3 is organized in the spirit of Sections 5.1.2 and 5.2.1�5.2.2. First, some
geometric inequalities are given in Section 3.2. Then, the boundary ∂Ωi is locally parametrized by
a certain graph in Section 3.3. Finally, in Section 3.4, we obtain the C1,1-regularity of this graph.
We conclude Section 3 by proving Theorem 3.3 i.e. that (4) holds true for the graphs.

3.1 Compactness of the class Oε(B)

In this section, we recall the general background concerning the compactness results given by a
uniform regularity. First, we consider the well-known case of the uniform cone property.
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Rn−1

dx0

∂Ω

ε

−ε

x0

x
ϕ(x′)

x′

∂Ωi

−r(ε) r(ε)

xi
ϕi(x

′)

Figure 2: Illustration of Theorem 3.3 stating that there exists a �xed common local frame in which
a converging sequence of elements in Oε(B) can be simultaneously parametrized by C1,1-graphs.

Theorem 3.4. Let α ∈]0, π2 [ and B be a bounded open subset of Rn. We set Oα(B) as the class of
non-empty open sets Ω ⊆ B that satisfy the α-cone property of De�nition 2.4. We assume that B
is large enough to have Oα(B) 6= ∅. If (Ωi)i∈N is a sequence of elements from Oα(B), then there
exists Ω ∈ Oα(B) such that a subsequence (Ωi′)i∈N converges to Ω as in Proposition 3.2.

Proof. First, for a proof of the convergence in the sense of characteristic functions, we refer to the
original paper of Chenais [8, Theorem III.1]. Another proof is given in [24, Chapter 5 Theorem 6.11]
but assume that the boundary ∂B is uniformly Lipschitz. Then, we refer to [38, Theorem 2.4.10]
for further details concerning the proof of Theorem 3.4 that is not considering the convergence of
the oriented distance functions. Finally, a complete proof of Theorem 3.4 can be found in Section
[24, Chapter 7 Section 13 Theorem 13.1 and Corollary 2].

Working with a family of open sets Ω contained a bounded open hold-all B ⊂ Rn makes the
boundaries compact and such a class becomes sequentially compact in the Hausdor� sense (cf.
De�nition 3.1 (i) and for a proof see e.g. [24, Chapter 6 Theorem 2.4 (ii)] or [38, Theorem 2.2.23]).
As shown by Chenais in [8], adding a uniform Lipschitz condition on the local graph yields to a
compactness result in terms of characteristic functions. In [58], Tiba obtain in a similar result by
assuming only a uniform condition on the modulus of continuity of the local graph functions. In
doing so, he generalized what Chenais did to domains with cusps.

However, there is a stronger and neater version which gives the convergence of the oriented
distance functions bΩ in W 1,p(B) for any p ∈ [1,+∞[. It was originally given in the �rst 2001
edition of the book of Delfour and Zolésio [24, Chapter 7 Section 13] in terms of a uniform fat
segment condition that generalizes the uniform cone and cusp properties. In [22, 23], Delfour
and Zolésio gave the equivalence between this condition and the one considered by Tiba [24,
Chapter 7 Theorem 13.2]. Most compactness theorems (uniform cone property of Chenais [8],
density perimeter and capacity condition of Bucur and Zolésio [5, 6], sets of bounded curvatures
[24, Chapter 7 Section 11], and the graph version of the uniform cusp property of Tiba [58]) are
not only true for the C0-convergence of distance functions, or the Lp-convergence of characteristic
functions, but also for the �ner W 1,p-convergence of oriented distance functions.

Moreover, this latter directly implies [24, Chapter 7 Theorem 4.1 (iv)-(v)] the other convergences
i.e. of the distance functions dΩ, dRn\Ω, and d∂Ω in C0(B) and in W 1,p(B) for any p ∈ [1,∞[, and
of the characteristics functions 1Ω, 1Rn\Ω, and 1∂Ω in Lp(B) for any p ∈ [1,+∞[. Since we have

dH(A,B) = ‖dA − dB‖C0(B) for any A,B ⊂ B (see e.g. [38, Proposition 2.2.25] or [24, Chapter 6

Section 2.2]), this general pattern is exactly what we have stated in Proposition 3.2 for the uniform
ball condition, which requires a uniform local Lipschitz condition on the local graph function and
its gradient at each point of the boundary (cf. Theorem 2.7).

The oriented distance function of De�nition 2.5 was originally introduced by Delfour and Zolésio
in [20]. They were able to sharpen the local characterization of Ck-regular sets, k > 2, given by
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Gilbarg and Trudinger [33], and extended it to sets of class C1,1. Therefore, for a set of class C1,1 or
with better regularity, the oriented distance function has the same regularity in the neighbourhood
of each point of its boundary, and this is equivalent to a local graph representation with the same
smoothness [24, Chapter 7 Theorem 8.2].

The sets of class C1,1 have been extensively studied through the oriented distance functions bΩ
[15, 18, 19], and especially in the context of thin and asymptotics shells [12, 13, 14, 16, 17, 22].
In particular, the restriction of ∇bΩ to ∂Ω is the unitary exterior normal vector to Ω, Hess(bΩ) is
the natural extension to Rn of the second fundamental form associated with ∂Ω, (Hess(bΩ))2 the
third fundamental form, and so on. They exists almost everywhere with respect to the (n − 1)-
dimensional Hausdor� measure (see for instance [17]). Under this point of view, the intrisic theory
of Sobolev space on such C1,1-hypersurface can be found in [15].

However, this article consider the more geometrical approach of the uniform ball condition in
the context of shape optimization. Of course, the two concepts are equivalent as we have shown
in Theorem 2.8, and both can be used to study these kind of problems. The reasons of this choice
were already explained in Section 1, from below Theorem 1.3 until Section 1.1.

We are now in position to prove Proposition 3.2, mentioning that a proof can also be found in
[35, Theorem 2.8]. More precisely, Guo and Yang prove that Oε(B) is sequentially compact for
the convergence in the Hausdor� sense (cf. De�nition 3.1 (i)). Hence, combining this result with
Theorem 3.4, we get that Proposition 3.2 holds true. The proof is short, see [35] for details.

Proof of Proposition 3.2. Since Oε(B) ⊂ Of−1(ε)(B) (Point (i) of Theorem 2.7), Theorem 3.4
holds true and we only have to check Ω ∈ Oε(B). Consider x ∈ ∂Ω. From [38, Proposition 2.2.14],
there exists a sequence of points xi ∈ ∂Ωi converging to x. Then, we can apply the ε-ball condition
on each point xi so there exists a sequence of unit vector dxi of Rn such that:

∀i ∈ N, Bε(xi − εdxi) ⊆ Ωi and Bε(xi + εdxi) ⊆ B\Ωi.

Since ‖dxi‖ = 1, there exists a unit vector dx of Rn such that, up to a subsequence, (dxi)i∈N
converges to dx. Finally, the inclusion is stable under the Hausdor� convergence [38, (2.16)] and
we get the ε-ball condition of De�nition 1.1 by letting i→ +∞ in the above inclusions.

3.2 Some global and local geometric inequalities

In the remaining part of Section 3, consider a sequence (Ωi)i∈N ⊂ Oε(B) converging to Ω ∈ Oε(B)
in the sense of compact sets (cf. De�nition 3.1 (ii)). We also make the following hypothesis, which
are only used throughout Section 3.2�3.4 to prove Theorem 3.3.

Assumption 3.5. Let x0 ∈ ∂Ω henceforth set. From the ε-ball condition, a unit vector dx0
is

associated with the point x0 (which is unique from Proposition 5.4). Moreover, we have:




Bε(x0 − εdx0) ⊆ Ω

Bε(x0 + εdx0) ⊆ B\Ω.

Then, we consider η ∈]0, ε[. Since we assume that (Ωi)i∈N converges to Ω as in De�nition 3.1 (ii),
there exists I ∈ N depending on (Ωi)i∈N, Ω, x0, ε and η, such that for any integer i > I, we have:





Bε−η(x0 − εdx0) ⊆ Ωi

Bε−η(x0 + εdx0) ⊆ B\Ωi.
(5)

Finally, we consider any integer i > I.

Proposition 3.6. We assume that (5) holds true. Then, for any point xi ∈ ∂Ωi, we have

‖dxi − dx0
‖2 6

1

ε2
‖xi − x0‖2 +

(2ε)2 − (2ε− η)2

ε2
. (6)

Proof. With (5) and the ε-ball condition at xi ∈ ∂Ωi, we get Bε−η(x0 ± εdx0)∩Bε(xi∓εdxi) = ∅.
We deduce ‖xi−x0∓ ε(dxi +dx0

)‖ > 2ε− η. Squaring these two inequalities and summing them,
we obtain the required one: ‖xi−x0‖2+4ε2−(2ε−η)2 > 2ε2−2ε2〈dxi | dx0

〉 = ε2‖dxi−dx0
‖2.
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Proposition 3.7. Under Assumption 3.5, for any xi ∈ ∂Ωi, we have the following global inequality:

|〈xi − x0 | dx0
〉| < 1

2ε
‖xi − x0‖2 +

ε2 − (ε− η)2

2ε
. (7)

Moreover, if we introduce the vector (xi − x0)′ = (xi − x0)− 〈xi − x0 | dx0〉dx0 and if we assume
that ‖(xi − x0)′‖ < ε− η and |〈xi − x0 | dx0

〉| < ε, then we have the following local inequality:

1

2ε
‖xi − x0‖2 +

ε2 − (ε− η)2

2ε
< ε−

√
(ε− η)2 − ‖(xi − x0)′‖2. (8)

Proof. From (5), any point xi ∈ ∂Ωi cannot belong to the sets Bε−η(x0 ± εdx0
). Hence, we have:

‖xi − x0 ∓ εdx0‖ > ε − η. Squaring these two inequalities, we get the �rst required relation (7):
‖xi − x0‖2 + ε2 − (ε− η)2 > 2ε|〈xi − x0 | dx0〉|. Then, by introducing the vector (xi − x0)′ of the
statement, the previous inequality now takes the following form:

|〈xi − x0 | dx0
〉|2 − 2ε|〈xi − x0 | dx0

〉|+ ‖(xi − x0)′‖2 + ε2 − (ε− η)2 > 0.

We assume that its left member is a second-order polynomial whose reduced discriminant is positive:
∆′ := (ε− η)2−‖(xi−x0)′‖2 > 0. Hence, the unknown satis�es either |〈xi−x0 | dx0

〉| < ε−
√

∆′

or |〈xi−x0 | dx0
〉| > ε+

√
∆′. We assume |〈xi−x0 | dx0

〉| < ε and the last case cannot hold true.
Squaring the remaining inequality, we get: |〈xi−x0 | dx0

〉|2 +‖(xi−x0)′‖2 < ε2 +(ε−η)2−2ε
√

∆′,
which is the second required relation (8) since its left member is equal to ‖xi − x0‖2.

Corollary 3.8. Considering the assumptions and notation of Propositions 3.6 and 3.7, we have:

‖xi − x0‖ < 2η + 2‖(xi − x0)′‖, (9)

ε‖dxi − dx0
‖ < 2

√
2εη +

√
2‖(xi − x0)′‖. (10)

Proof. Consider any xi ∈ ∂Ωi. We set (xi − x0)′ = (xi − x0) − 〈xi − x0 | dx0
〉dx0

. We assume
‖(xi − x0)′‖ < ε− η and |〈xi − x0 | dx0

〉| < ε. The local estimation (8) of Proposition 3.7 gives:

‖xi − x0‖2 < ε2 + (ε− η)2 − 2ε
√

(ε− η)2 − ‖(xi − x0)′‖2

=

[
ε2 + (ε− η)

2
]2
− 4ε2(ε− η)2 + 4ε2‖(xi − x0)′‖2

ε2 + (ε− η)2 + 2ε
√

(ε− η)2 − ‖(xi − x0)′‖2

<

[
ε2 − (ε− η)2

ε

]2

+ 4‖(xi − x0)′‖2 < 4η2 + 4‖(xi − x0)′‖2.

Hence, we get: ‖xi − x0‖ < 2η + 2‖(xi − x0)′‖. Then, using (6), we also have:

ε‖dxi − dx0
‖ 6

√
4ε2 − (2ε− η)2 + ‖xi − x0‖2.

Combining the above inequality with (8), we obtain:

ε‖dxi − dx0
‖ <

√
4εη − η2 + ε2 + (ε− η)2 − 2ε

√
(ε− η)2 − ‖(xi − x0)′‖2

=

√
2ε

4εη + ‖(xi − x0)′‖2

ε+ η +
√

(ε− η)2 − ‖(xi − x0)′‖2
< 2

√
2εη +

√
2‖(xi − x0)′‖.

Consequently, the required inequalities (9)�(10) are established so Corollary 3.8 holds true.

3.3 A local parametrization of the boundary ∂Ωi

Henceforth, we consider a basis Bx0
of the hyperplane d⊥x0

such that (x0,Bx0
,dx0

) is a direct
orthonormal frame. The position of any point is now determined in this local frame associated
with x0. More precisely, for any point x ∈ Rn, we set x′ = (x1, . . . , xn−1) such that x = (x′, xn).
In particular, the symbols 0 and 0′ respectively refer to the zero vector of Rn and Rn−1. Moreover,
since x0 is identi�ed with 0 in this new frame, Relations (5) of Assumption 3.5 take new forms:

Bε−η(0′,−ε) ⊆ Ωi and Bε−η(0′, ε) ⊆ B\Ωi. (11)

We introduce two functions de�ned on Dε−η(0′) = {x′ ∈ Rn−1, ‖x′‖ < ε − η}. The �rst one
determine around x0 the position of the boundary ∂Ωi thanks to some exterior points, the other
one with interior points. Then, we show these two maps coincide even if it means reducing η.
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Proposition 3.9. Under Assumption 3.5, the two following maps ϕ±i are well de�ned:





ϕ+
i : x′ ∈ Dε−η(0′) 7−→ sup{xn ∈ [−ε, ε], (x′, xn) ∈ Ωi} ∈ ]− ε, ε[

ϕ−i : x′ ∈ Dε−η(0′) 7−→ inf{xn ∈ [−ε, ε], (x′, xn) ∈ B\Ωi} ∈ ]− ε, ε[,

Moreover, for any x′ ∈ Dε−η(0′), introducing the points x±i = (x′, ϕ±i (x′)), we have x±i ∈ ∂Ωi and
also the following inequalities:

|ϕ±i (x′)| < 1

2ε
‖x±i − x0‖2 +

ε2 − (ε− η)2

2ε
< ε−

√
(ε− η)2 − ‖x′‖2. (12)

Proof. Let x′ ∈ Dε−η(0′) and g : t ∈ [−ε, ε] 7→ (x′, t). Since −ε ∈ g−1(Ωi) ⊆ [−ε, ε], we can set
ϕ+
i (x′) = sup g−1(Ωi). The map g is continuous so g−1(Ωi) is open and ϕ+

i (x′) 6= ε thus we get
ϕ+
i (x′) /∈ g−1(Ωi) i.e. x+

i ∈ Ωi\Ωi. Similarly, the map ϕ−i is well de�ned and x−i ∈ ∂Ωi. Finally,
we use (7) and (8) on the points x0 and xi = x±i in order to obtain (12).

Lemma 3.10. We make Assumption 3.5 and assume η < ε
3 . We set r = 1

2

√
4(ε− η)2 − (ε+ η)2

and x′ ∈ Dr(0
′). Assume there exists xn ∈]− ε, ε[ such that xi := (x′, xn) belongs to ∂Ωi. We also

consider x̃n ∈ R satisfying the inequality |x̃n| < ε−
√

(ε− η)2 − ‖x′‖2. Introducing x̃i = (x′, x̃n),
then we have: (x̃n < xn =⇒ x̃i ∈ Ωi) and

(
x̃n > xn =⇒ x̃i ∈ B\Ωi

)
.

Proof. We assume η < ε
3 so we can set r = 1

2

√
4(ε− η)2 − (ε+ η)2. Consider any x′ ∈ Dr(0

′) and

also (xn, x̃n) ∈]− ε, ε[2 such that xi := (x′, xn) ∈ ∂Ωi and x̃i := (x′, x̃n) /∈ Bε−η(0′,±ε). We need
to show that if x̃n ≷ xn, then x̃i ∈ Bε(xi ± εdxi). The ε-ball condition on Ωi will give the result.
Since xi − x̃i = (xn − x̃n)dx0

, if we assume x̃n > xn, then we have:

‖x̃i − xi − εdxi‖2 − ε2 = (x̃n − xn)2 − 2ε(x̃n − xn)〈dx0
| dxi〉

= |x̃n − xn|
(
|x̃n − xn|+ ε‖dxi − dx0

‖2 − 2ε
)

6 |x̃n − xn|
(
|x̃n|+ |xn|+ ‖xi−x0‖2+(2ε)2−(2ε−η)2

ε − 2ε
)
,

where the last inequality comes from Proposition 3.6 (6) applied to xi ∈ ∂Ωi. Finally, we use the
inequality involving x̃n and the ones (7)-(8) of Proposition 3.7 applied to xi ∈ ∂Ωi to obtain:

‖x̃i − xi − εdxi‖2 − ε2 < 4|xn − x̃n|
(
ε+ η

2
−
√

(ε− η)2 − ‖x′‖2
)

︸ ︷︷ ︸
6
(
ε+η

2 −
√

(ε−η)2−r2
)

= 0

.

Hence, if x̃n > xn, then we get x̃i ∈ Bε(xi + εdxi) ⊆ B\Ωi. Similarly, one can prove that if
x̃n < xn, then we have x̃i ∈ Bε(xi − εdxi) ⊆ Ωi.

Proposition 3.11. Let η, r be as in Lemma 3.10. Then, the two functions ϕ±i of Proposition 3.9
coincide on Dr(0

′). The map ϕi refers to their common restrictions and it satis�es:





∂Ωi ∩ (Dr(0
′)∩]− ε, ε[) = {(x′, ϕi(x′)), x′ ∈ Dr(0

′)}

Ωi ∩ (Dr(0
′)∩]− ε, ε[) = {(x′, xn), x′ ∈ Dr(0

′) and − ε < xn < ϕi(x
′)} .

Proof. First, we assume by contradiction that there exists x′ ∈ Dr(0
′) such that ϕ−i (x′) 6= ϕ+

i (x′).
The hypothesis of Lemma 3.10 are satis�ed for the points xi := (x′, ϕ+

i (x′)) and x̃i := (x′, ϕ−i (x′))
by using (12). Hence, either (ϕ−i (x′) < ϕ+

i (x′) ⇒ x̃i ∈ Ωi) or (ϕ−i (x′) > ϕ+
i (x′) ⇒ x̃i ∈ B\Ωi)

whereas x̃i ∈ ∂Ωi. We deduce that ϕ−i (x′) = ϕ+
i (x′) for any x′ ∈ Dr(0

′). Then, we consider
x′ ∈ Dr(0

′) and xn ∈] − ε, ε[. We set xi = (x′, ϕi(x
′)) and x̃i = (x′, xn). Proposition 3.9 ensures

that if xn = ϕi(x
′), then xi ∈ ∂Ωi. Moreover, if −ε < xn 6 −ε +

√
(ε− η)2 − ‖x′‖2, then

x̃i ∈ Bε−η(0′,−ε) ⊆ Ωi and if −ε +
√

(ε− η)2 − ‖x′‖2 < xn < ϕ(x′), then apply Lemma 3.10 in
order to get x̃i ∈ Ωi. Consequently, we proved: ∀x′ ∈ Dr(0

′), −ε < xn < ϕi(x
′) =⇒ (x′, xn) ∈ Ωi.

To conclude, similar arguments hold true when ε > xn > ϕi(x
′) and imply (x′, xn) ∈ B\Ωi.
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3.4 The C1,1-regularity of the local graph ϕi

We previously showed that the boundary ∂Ωi is locally described by the graph of a well-de�ned
map ϕi : Dr(0

′)→]− ε, ε[. Now we prove its C1,1-regularity even if it means reducing η and r.

Lemma 3.12. The following map is well de�ned, smooth, surjective and increasing:

fη : ]0, π2 [ −→ ]2
√

2εη,+∞[

α 7−→ 3α+ 2
√

2εη

cosα
.

In particular, it is an homeomorphism and its inverse f−1
η satis�es the following inequality:

∀ε > 0, ∀η ∈
]
0,
ε

8

[
, f−1

η (ε) <
ε

3
. (13)

Proof. The proof is basic calculus.

Proposition 3.13. In Assumption 3.5, let η < ε
8 and consider α ∈]0, f−1

η (ε)], where f−1
η has been

introduced in Lemma 3.12. Then, we have:

∀xi ∈ Bα(x0) ∩ Ωi, Cα(xi,−dx0) ⊆ Ωi,

where Cα(xi,−dx0) is de�ned in De�nition 2.4.

Proof. Since we have η < ε
3 , we can set r = 1

2

√
4(ε− η)2 − (ε+ η)2 and Cr,ε = Dr(0

′)×] − ε, ε[.
Moreover, we assume η < ε

8 i.e. 2
√

2εη < ε so f−1
η (ε) is well de�ned. Choose α ∈]0, f−1

η (ε)] then

consider xi = (x′, xn) ∈ Bα(x0) ∩ Ωi and yi = (y′, yn) ∈ Cα(xi,−dx0). The proof of the assertion
yi ∈ Ωi is divided into the three following steps.

1. Check xi ∈ Cr,ε so as to introduce the point x̃i = (x′, ϕi(x
′)) of ∂Ωi satisfying xn 6 ϕi(x

′).

2. Consider ỹi = (y′, yn + ϕi(x
′)− xn) and prove ỹi ∈ Cα(x̃i,−dx0

) ⊆ Bε(x̃i − εdx̃i) ⊆ Ωi.

3. Show (ỹi,yi) ∈ Cr,ε×Cr,ε in order to deduce yn+ϕi(x
′)−xn < ϕi(y

′) and conclude yi ∈ Ωi.

First, from (13), we have: max(‖x′‖, |xn|) 6 ‖xi − x0‖ < α 6 f−1
η (ε) < ε

3 . Since η < ε
8 , we get

r > 1
2 [4( 7ε

8 )2−( 9ε
8 )2]

1
2 > ε

2 thus xi ∈ Ωi∩Cr,ε. Hence, from Proposition 3.11, it comes xn 6 ϕi(x
′).

We set x̃i = (x′, ϕi(x
′)) ∈ ∂Ωi ∩ Cr,ε. Then, we prove Cα(x̃i,−dx0

) ⊆ Bε(x̃i − εdx̃i) so consider
any y ∈ Cα(x̃i,−dx0

). Combining the Cauchy-Schwartz inequality and y ∈ Cα(x̃i,−dx0
), we get:

‖y − x̃i + εdx̃i‖2 − ε2 6 ‖y − x̃i‖2 + 2ε‖y − x̃i‖‖dx̃i − dx0
‖ − 2ε‖y − x̃i‖ cosα

< 2‖y − x̃i‖
(α

2
+ 2
√

2εη +
√

2‖x′‖ − ε cosα
)
< 2α cosα (fη(α)− ε)︸ ︷︷ ︸

60

,

where we used (10) on x̃i ∈ ∂Ωi ∩ Cr,ε and ‖x′‖ 6 ‖xi − x0‖ < α. Hence, y ∈ Bε(x̃i − εdx̃i) so
Cα(x̃i,−dx0

) ⊆ Bε(x̃i − εdx̃i) ⊆ Ωi, using the ε-ball condition. Moreover, since ỹi − x̃i = yi − xi
and yi ∈ Cα(xi,−dx0

), we get ỹi ∈ Cα(x̃i,−dx0
), which ends the proof of ỹi ∈ Ωi. Finally, we

check that (yi, ỹi) ∈ Cr,ε × Cr,ε. We have successively:





‖y′‖ 6 ‖y′ − x′‖+ ‖x′‖ <
√
α2 − α2 cos2 α+ α =

α

cosα

(
1

2
sin 2α+ cosα

)
<
fη(α)

2
6
ε

2
< r

|yn| 6 |yn − xn|+ |xn| 6 ‖yi − xi‖+ ‖xi − x0‖ < 2α < f(α) 6 ε

|ỹn| = |yn + ϕi(x
′)− xn| 6 ‖yi − xi‖+ ε−

√
(ε− η)2 − ‖x′‖2 < α+

η(2ε− η) + ‖x′‖2

ε+
√

(ε− η)2 − ‖x′‖2
.

Here, we used Relation (12), the fact that yi ∈ Cα(xi,−dx0
) and xi ∈ Bα(x0). Hence, we obtain:

|ỹn| < 2α+ 2η < 2f−1
η (ε) + 2 ε8 6 2ε

3 + ε
4 < ε. To conclude, apply Proposition 3.11 to ỹi ∈ Ωi ∩Cr,ε

in order to get yn +ϕi(x
′)−xn < ϕ(y′). Since we �rstly proved xn 6 ϕi(x

′), we have yn < ϕi(y
′).

Applying Proposition 3.11 to yi ∈ Cr,ε, we get yi ∈ Ωi as required.
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Lemma 3.14. The following map is well de�ned, smooth, surjective and increasing:

g : ]0, π8 [ −→ ]0,+∞[

η 7−→ 32η

cos2(4η)
.

In particular, it is an homeomorphism and its inverse g−1 satis�es the following relations:

∀ε > 0, g−1(ε) <
ε

32
and g−1(ε) <

1

4
f−1
g−1(ε)(ε), (14)

where f−1
η is de�ned in Lemma 3.12.

Proof. We only prove the inequality g−1(ε) < 1
4f
−1
g−1(ε)(ε). The remaining part is basic calculus.

Consider any ε > 0. There exists a unique η ∈]0, π8 [ such that g(η) = ε or equivalently η = g−1(ε).
Hence, we have 4η ∈]0, π2 [ so we can compute, using the �rst inequality η < ε

32 :

fη(4η) =
2
√

2ηε

cos(4η)

(
3

√
2η

ε
+ 1

)
<

2
√

2ηε

cos(4η)

(
3

√
2

32
+ 1

)
<

4
√

2εη

cos(4η)
=
√
g(η)ε = ε.

Since fη is an increasing homeomorphism, so does f−1
η and the inequality follows: 4η < f−1

η (ε).

Corollary 3.15. In Assumption 3.5, we set η = g−1(ε), then consider α = f−1
η (ε) and r̃ = 1

4α−η.
The restriction to Dr̃(0

′) of the map ϕi de�ned in Proposition 3.11 is 1
tanα -Lipschitz continuous.

Proof. Let η = g−1(ε) and using (14), we have η < ε
32 so we can set r = 1

2

√
4(ε− η)2 − (ε+ η)2

and α = f−1
η (ε), but we also have r̃ := 1

4α− η > 0. We consider any (x′+,x
′
−) ∈ Dr̃(0

′)×Dr̃(0
′).

Using (13)-(14), we get r̃ < 1
4f
−1
η (ε) < ε

12 < 1
2 [4( 31ε

32 )2 − ( 33ε
32 )2]

1
2 < r. From Proposition 3.11,

we can de�ne x±i := (x′±, ϕi(x
′
±)) ∈ ∂Ωi. Then, we show that x±i ∈ ∂Ωi ∩ Bα(x0) ∩ Bα(x∓i ).

Relation (9) ensures that ‖x±i − x0‖ < 2‖x′±‖ + 2η 6 2r̃ + 2η < α and the triangle inequality
gives ‖x+

i − x−i ‖ 6 ‖x
+
i − x0‖+ ‖x0 − x−i ‖ < 4r̃ + 4η = α. Finally, we apply Proposition 3.13 to

x±i ∈ ∂Ωi ∩Bα(x0), which cannot belong to the cone Cα(x∓i ,−dx0) ⊆ Ωi. Hence, we obtain:

|〈x+
i − x−i | dx0

〉| 6 cosα‖x+
i − x−i ‖ = cosα

√
‖x′+ − x′−‖2 + |〈x+

i − x−i | dx0
〉|2.

Re-arranging the above inequality, we deduce that the map ϕi is L-Lipschitz continuous with L > 0
depending only on ε as required: |ϕi(x′+)− ϕi(x′−)| = |〈x+

i − x−i | dx0
〉| 6 1

tanα‖x
′
+ − x′−‖.

Proposition 3.16. We set r̃ = 1
4f
−1
g−1(ε)(ε) − g

−1(ε), where f and g are de�ned in Lemmas 3.12

and 3.14. Then, the restriction to Dr̃(0
′) of the map ϕi de�ned in Proposition 3.11 is di�erentiable:

∀a′ ∈ Dr̃(0
′), ∇ϕi(a′) =

−1

〈dai | dx0
〉
d′ai where ai := (a′, ϕi(a

′)).

Moreover, ∇ϕi : Dr̃(0
′) → Rn−1 is L-Lipschitz continuous with L > 0 depending only on ε, and

the map is also uniformly bounded. More precisely, we have ‖∇ϕi(a′)‖ < 32
29 for any a′ ∈ Dr̃(0

′).

Proof. Let η = g−1(ε) and using (14), we have η < ε
32 so we can set r = 1

2

√
4(ε− η)2 − (ε+ η)2

and α = f−1
η (ε), but we also have r̃ := 1

4α− η > 0. Let a′ ∈ Dr̃(0
′) and x′ ∈ Dr̃−‖a′‖(a′). Hence,

(a′,x′) ∈ Dr̃(0
′)×Dr̃(0

′). Using (13)-(14), we get r̃ < 1
4f
−1
η (ε) < ε

12 <
1
2 [4( 31ε

32 )2 − ( 33ε
32 )2]

1
2 < r.

From Proposition 3.11, we can de�ne x±i := (x′±, ϕi(x
′
±)) ∈ ∂Ωi. Then, we apply (35) to Ωi thus:

|〈xi−ai | dai〉| 6
1

2ε
‖xi−ai‖2 =

1

2ε

(
‖x′ − a′‖2 + |ϕi(x′)− ϕi(a′)|2

)
6

1

2ε

(
1 +

1

tan2 α

)

︸ ︷︷ ︸
:=C(ε)>0

‖x′−a′‖2,

where we also used the Lipschitz continuity of ϕi on Dr̃(0
′) established in Corollary 3.15. We note

that dai = (d′ai , (dai)n) where (dai)n = 〈dai | dx0
〉. Hence, the above inequality takes the form:

| (ϕi(x′)− ϕi(a′)) (dai)n + 〈d′ai | x
′ − a′〉| 6 C(ε)‖x′ − a′‖2.
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This last inequality is a �rst-order Taylor expansion of ϕi if it can be divided by a uniform positive
constant smaller than (dai)n. Let us justify this last assertion. From (6) and (8), we deduce:

(dai)n = 1− 1

2
‖dai − dx0

‖2 > 1− 1

2ε2
‖ai − x0‖2 −

4εη − η2

2ε2
>

1

ε

√
(ε− η)2 − ‖a′‖2 − η

ε
.

Then, inequality (14) gives η
ε <

1
32 and from (13), it comes ‖a′‖ < r̃ < α

4 < ε
12 . Consequently, we

get (dai)n > [( 31
32 )2 − ( 1

12 )2]
1
2 − 1

32 >
29
32 and from the foregoing, we obtain:

∀x′ ∈ Dr̃−‖a′‖(a′), ϕi(x
′)− ϕi(a′) +

〈
d′ai

(dai)n
| x′ − a′

〉
6

32C(ε)

29
‖x′ − a′‖2.

Therefore, ϕi is di�erentiable at any point a
′ ∈ Dr̃(0

′) with ∇ϕi(a′) = −d′ai/(dai)n. Moreover, the
fact that (dai)n >

29
32 and ‖d′ai‖ 6 ‖dai‖ = 1 also ensures that ‖∇ϕi(a′)‖ < 32

29 for any a′ ∈ Dr̃(0
′)

i.e. the map ∇ϕi is uniformly bounded. Finally, we show that ∇ϕi : Dr̃(0
′) → Rn−1 is Lipschitz

continuous. Let (x′,a′) ∈ Dr̃(0
′)×Dr̃(0

′). We have:

‖∇ϕi(x′)−∇ϕi(a′)‖ 6 | 1
(dxi

)n
− 1

(dai
)n
|‖d′xi‖+ 1

(dai )n
‖d′ai − d

′

xi‖

6
32

29

(
32

29
|(dai)n − (dxi)n|+ ‖dai − dxi‖

)

6
32

29ε

(
1 +

32

29

)
‖xi − ai‖ 6

32

29ε

(
1 +

32

29

)√
1 +

1

tan2 α
‖x′ − a′‖.

We used the fact that (dai)n >
29
32 , the Lipschitz continuity of ϕi proved in Corollary 3.15 and the

one of the map xi ∈ ∂Ωi 7→ dxi coming from Proposition 5.4 applied to Ωi ∈ Oε(B). To conclude,
∇ϕi is an L-Lipschitz continuous map, where L > 0 depends only on ε.

Proof of Theorem 3.3. Set K := Dr̃(0′) where r̃ := 1
4f
−1
g−1(ε)(ε) − g

−1(ε) is positive from (14).

Using Propositions 3.11, 3.16 and Corollary 3.15, we have proved that each Ωi is parametrized
by a local graph ϕi : Dr̃(0

′) →] − ε, ε[ as stated in Theorem 3.3. Hence, it remains to prove the
convergence of these graphs. First, any of the (ϕi)i>I is Lipschitz thus uniformly continuous on
Dr̃(0

′) so it has a unique Lipschitz continuous extension to K. In addition, the sequence (ϕi)i>I
is uniformly bounded and equi-Lipschitz continuous. Applying the Arzelà-Ascoli Theorem, it is
uniformly converging, up to a subsequence, to a Lipschitz continuous function ϕ̃ : K → [−ε, ε].
Similarly, using Corollary 3.15, the sequence (∇ϕi)i>I is uniformly bounded and equi-L-Lipschitz
continuous so up to a subsequence, it is uniformly converging on K to a Lipschitz continuous map,
which has to be ∇ϕ̃ (use the convergence in the sense of distributions and [30, Lemma 4.7]). Then,
let δ ∈]0, 1] and we have:

sup
(x,y)∈K×K

x 6=y

‖∇ (ϕi − ϕ) (x)−∇ (ϕi − ϕ) (y) ‖
‖x− y‖1−δ

6
(
L+ ‖∇ϕ‖C0,1(K)

)1−δ ‖∇ϕi −∇ϕ‖δC0(K),

from which we deduce that up to a subsequence, (ϕi)i>I converges to ϕ in C1,1−δ(K) for any
δ ∈]0, 1]. Moreover, using [38, Section 5.2.2], each coe�cient of the Hessian matrix of ϕi is uniformly
bounded in L∞(K) so up to a subsequence again [38, Lemma 2.2.27], each of them weakly-star
converges in L∞(K) to the ones of ϕ̃. Finally, we assume that limi→+∞ dH(∂Ωi, ∂Ω) = 0. Even if
it means reducing r̃ again, we can also assume that r̃ < r , where r > 0 is the one of Theorem 2.7.
Consequently, K ⊆ Dr(0

′) and we can consider the local map ϕ : K →]− ε, ε[ associated with ∂Ω.
We now show that ϕ ≡ ϕ̃ on K. Let x′ ∈ K. We set x = (x′, ϕ̃(x′)) and xi = (x′, ϕi(x

′)). There
exists y ∈ ∂Ω such that d(xi, ∂Ω) = ‖xi − y‖. We thus have:

d(x, ∂Ω) 6 ‖x− y‖ 6 ‖x− xi‖+ ‖xi − y‖ = |ϕi(x′)− ϕ̃(x′)|+ d(xi, ∂Ω)

6 ‖ϕi − ϕ̃‖C0(K) + dH(∂Ωi, ∂Ω).

By letting i → +∞, we obtain x ∈ ∂Ω. In particular, from the ε-ball condition, we deduce that
|ϕ̃(x′)| 6= ε otherwise x ∈ Bε(0′, ε) ⊆ B\Ω or x ∈ Bε(0′,−ε) ⊆ Ω which is not the case. Therefore,
since K ⊂ Dr(0

′), we get x ∈ ∂Ω∩ (Dr(0
′)×]− ε, ε[) and Theorem 2.7 yields to x = (x′, ϕ(x′)) i.e.

ϕ(x′) = ϕ̃(x′) for any x′ ∈ K. To conclude, we also have proved that ϕ is the unique limit of any
converging subsequence of (ϕi)i>I . Hence, the whole sequence (ϕi)i>I is converging to ϕ.
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4 Continuity of some geometric functionals in the class Oε(B)

In this section, we prove that the convergence properties and the uniform C1,1-regularity of the
class Oε(B) ensure the continuity of a wide range of geometric functionals. More precisely, with a
suitable partition of unity, we show how to use the local convergence results of Theorem 3.3 in order
to get the global continuity of many functionals of the form J : Ω ∈ Oε(B) 7→

∫
∂Ω
jΩ(x)dA(x).

First, we study the case of integrands depending only on the position and the normal vector
i.e. for any jΩ : x ∈ ∂Ω 7→ j[x,n(x)], where j : B× Sn−1 → R is a continuous map. In Section 4.2,
we explain how to build a partition of unity and the continuity of J will directly follow from the
C1-strong convergence of the local graphs given in Theorem 3.3.

Then, we aim to use the L∞-weak star convergence of the Hessian-matrix coe�cients associated
with these local graphs. We thus consider integrands whose expressions in the local basis are linear
in these coe�cients. It is the case for the scalar mean curvature H and in Section 4.3, we obtain the
continuity of J for any jΩ : x ∈ ∂Ω 7→ H(x)j[x,n(x)], where j : B×Sn−1 → R is a continuous map.
Moreover, using classical arguments, we can relax the continuity results into lower semi-continuity
ones if we only assume convexity with respect to H of integrands jΩ : x ∈ ∂Ω 7→ j[x,n(x), H(x)].
In this case, note that we only have lower semi-continuity and not continuity (which requires the
linearity of j in H). Note also that no growth condition on j is imposed here regarding the last
variable. In particular, we are able to get the lower semi-continuity of Ω ∈ Oε(B) 7→

∫
∂Ω
|H|dA,

which is excluded from many statements of geometric measure theory (cf. Remark 4.15).

Furthermore, we only need to assume the continuity of j with respect to the set of variables in
order to ensure that the functional J is well de�ned. Indeed, from Theorem 2.7, the Gauss map
n : x ∈ ∂Ω 7→ n(x) ∈ Sn−1 is 1

ε -Lipschitz continuous. Rademacher's Theorem [29, Section 3.1.2]
ensures it is di�erentiable almost everywhere and its di�erential D•n : x ∈ ∂Ω 7→ Dxn ∈ L(Tx∂Ω)
is an L∞-map satisfying ‖D•n‖L∞(∂Ω) 6 1

ε . We deduce that the map x ∈ ∂Ω 7→ (x,n(x), H(x))

is valued in the compact set B × Sn−1 × [−n−1
ε , n−1

ε ]. In particular, the continuity of j and the
compactness of ∂Ω ensure the existence of

∫
∂Ω
j[x,n(x), H(x)]dA(x) < +∞ i.e. J : Oε(B)→ R is

well de�ned. These kind of arguments also work for any functional considered in Section 4.

Finally, we wonder if we can have the L∞-weak star convergence of some non-linear functions of
the Hessian-matrix coe�cients associated with the local graphs. Considering the Gauss-Codazzi-
Mainardi equations (28)�(29), we detail how to apply a version of the Div-Curl Lemma [57] to
this geometrical setting. In Section 4.4, we obtain the L∞-weak star convergence of the Gaussian
curvature K, and more generally of (22) i.e. of the elementary symmetric polynomials H(l) of the
principal curvatures. As before, we deduce continuity for integrands that are linear in K, H(l),
and only lower semi-continuity for integrands that are convex in K, H(l), l = 1 . . . n− 1.

Note that for C1,1-hypersurfaces, (H(l))06l6n−1 corresponds to the curvature measures de�ned
more generally for sets of positive reach. Consequently, we have strengthened the results of Federer
[30, Theorem 5.9] in the particular context of the ε-ball condition: the (H(l))06l6n−1 are not only
converging in the sense of Radon measures but also L∞-weakly star (cf. Remark 4.5). Throughout
this section, we make the following hypothesis, that were exactly the one assumed in Theorem 3.3.

Assumption 4.1. Let ε > 0 and B ⊂ Rn be an open bounded set, large enough to contain at least
an open ball of radius 3ε. We assume that (Ωi)i∈N is a sequence of elements from Oε(B) converging
to Ω ∈ Oε(B) in the sense of compacts sets (cf. De�nition 3.1 (ii)) and limi→+∞ dH(∂Ωi, ∂Ω) = 0.

De�nition 4.2. Let f , (fi)i∈N : E → F be continuous maps between two metric spaces. We say
that (fi)i∈N diagonally converges to f if ‖f(ti)− f(t)‖F → 0 for any (ti)i∈N converging to t in E.

Remark 4.3. The uniform convergence implies the diagonal convergence implying the pointwise
convergence. Conversely, any sequence of equi-continuous maps converging pointwise is diagonally
convergent. If in addition, it is uniformly bounded, then we get the uniform convergence.

Section 4 is organized as follows. In Section 4.1, we recall some notions related to the geometry
of C1,1-hypersurfaces. In Section 4.2, we study the continuity of functionals depending on the
position and the normal vector. In Section 4.3, we consider the dependence in the mean curvature.
In Section 4.4, we treat the case of the Gaussian curvature in R3 and we prove its Rn-version,
namely Theorem 4.4 stated hereafter. We conclude by giving some existence results in Section 4.5.
We prove Theorem 1.3, its generalization to Rn, and detail many applications like Theorem 1.5
and Theorems 1.7�1.8, mainly coming from the modelling of vesicles and red blood cells.
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Theorem 4.4. Let ε,B,Ω, (Ωi)i∈N be as in Assumption 4.1. We consider some continuous maps
jl, jli : Rn × Sn−1 → R such that each sequence (jli)i∈N is uniformly bounded on B × Sn−1 and
diagonally converges to jl for any l ∈ {0, . . . , n− 1}. Then, the following functional is continuous:

J (∂Ωi) :=

n−1∑

l=0

∫

∂Ωi


 ∑

16n1<...<nl6n−1

κ∂Ωi
n1

(x) . . . κ∂Ωi
nl

(x)


 jli

[
x,n∂Ωi (x)

]
dA (x) −→

i→+∞
J(∂Ω),

where κ1, . . . κn−1 are the principal curvatures, n the unit outer normal �eld to the hypersurface,
and where the integration is done with respect to the (n− 1)-dimensional Hausdor� measure A(•).

Remark 4.5. In the speci�c case of compact C1,1-hypersurfaces, note that the above theorem is
stronger than Federer's one on sets of positive reach [30, Theorem 5.9]. Indeed, in Theorem 4.4,
taking jli(x,n(x)) = jl(x) yields to the convergence of the curvature measures associated with ∂Ωi
to the ones of ∂Ω in the sense of Radon measures.

4.1 On the geometry of hypersurfaces with C1,1-regularity

Let us consider a non-empty compact C1,1-hypersurface S ⊂ Rn. Merely speaking, for any point
x0 ∈ S, there exists rx0

> 0, ax0
> 0, and a unit vector dx0

such that in the cylinder de�ned by:

Crx0
,ax0

(x0) = {x ∈ Rn, |〈x− x0 | dx0〉| < ax0 and ‖(x− x0)− 〈x− x0 | dx0〉dx0‖ < rx0} ,
(15)

the hypersurface S is the graph of a C1,1-map. Introducing the orthogonal projection on the a�ne
hyperplane x0 + d⊥x0

:

Πx0
: Rn −→ x0 + d⊥x0

x 7−→ x− 〈x− x0 | dx0
〉dx0

,
(16)

and considering the set Drx0
(x0) = Πx0(Crx0

,ax0
(x0)), this means that there exists a continuously

di�erentiable map ϕx0
: x′ ∈ Drx0

(x0) 7→ ϕx0
(x′) ∈] − ax0

, ax0
[ such that its gradient ∇ϕx0

and
ϕx0

are Lx0
-Lipschitz continuous maps, and such that:

S ∩ Crx0
,ax0

(x0) = {x′ + ϕx0
(x′)dx0

, x′ ∈ Drx0
(x0)}.

Hence, we can introduce the local parametrization:

Xx0
: Drx0

(x0) −→ S ∩ Crx0
,ax0

(x0)
x′ 7−→ x′ + ϕx0(x′)dx0

and S is a C1,1-hypersurface in the sense of [48, De�nition 2.2]. Indeed, Xx0 is an homeomorphism,
its inverse map is the restriction of Πx0

to Crx0
,ax0

(x0), and Xx0
is an immersion of class C1,1.

De�nition 4.6. Let n > 2. We say that a non-empty subset S of Rn is a C1,1-hypersurface in the
sense of [48, De�nition 2.2] if for any point x ∈ S, there exists an open set Ux ⊆ Rn−1, an open
neighbourhood Vx of x in Rn, and a C1,1-map Xx : Ux → Vx ∩S, which is an homeomorphism and
such that its di�erential DyXx : Rn−1 → Rn is injective for any y ∈ Ux.

We usually drop the dependence in x0 to lighten the notation, and consider a direct orthonormal
frame (x0,Bx0

,dx0
) where Bx0

is a basis of d⊥x0
. In this local frame, the point x0 is identi�ed with

the zero vector 0 ∈ Rn, the a�ne hyperplane x0 + d⊥x0
with Rn−1 and x0 + Rdx0

with R. Hence,
the cylinder Crx0 ,ax0

(x0) becomes Dr(0
′)×] − a, a[, ϕx0

is the C1,1-map ϕ : Dr(0
′) →] − a, a[,

the projection Πx0
is X−1 : (x′, xn) 7→ x′, and the parametrization Xx0

becomes the C1,1-map
X : x′ ∈ Dr(0

′) 7→ (x′, ϕ(x′)) ∈ S ∩ (Dr(0
′)×]− a, a[). In this setting, S is a C1,1-hypersurface in

the sense of De�nition 2.2.

Since x′ ∈ Dr(0
′) 7→ Dx′X is injective, the vectors ∂1X, . . ., ∂n−1X are linearly independent.

For any point x ∈ S∩(Dr(0
′)×]−a, a[), we de�ne the tangent hyperplane TxS byDX−1(x)X(Rn−1).

It is an (n − 1)-dimensional vector space so (∂1X, . . ., ∂n−1X) forms a basis of TxS. However,
this basis is not necessarily orthonormal. Consequently, the �rst fundamental form of S at x is
de�ned as the restriction of the usual scalar product in Rn to the tangent hyperplane TxS, i.e.
as I(x) : (v,w) ∈ TxS × TxS 7→ 〈v | w〉. In the basis (∂1X, . . . , ∂n−1X), it is represented by a

18



positive-de�nite symmetric matrix usually referred to as (gij)16i,j6n−1 and its inverse denoted by
(gij)16i,j6n−1 is also explicitly given in this case:

gij = 〈∂iX | ∂jX〉 = δij + ∂iϕ∂jϕ, (17)

gij = δij −
∂iϕ∂jϕ

1 + ‖∇ϕ‖2
. (18)

As a function of x′, note that each coe�cient of these two matrices is Lipschitz continuous so
it is a W 1,∞-map [29, Section 4.2.3], and from Rademacher's Theorem [29, Section 3.1.2], its
di�erential exists almost everywhere. Moreover, any v ∈ TxS can be decomposed in the basis
(∂1X, . . . , ∂n−1X). Denoting by Vi the component of ∂iX and vi = 〈v | ∂iX〉, we have:

v =

n−1∑

i=1

Vi∂iX =⇒ vj =

n∑

i=1

Vigij =⇒ Vi =

n−1∑

j=1

gijvj =⇒ v =

n−1∑

i=1



n−1∑

j=1

gijvj


 ∂iX. (19)

In particular, we deduce I(v,w) =
∑n−1
i,j=1 g

ijviwj . Then, the orthogonal of the tangent hyperplane
is one dimensional. Hence, there exists a unique unit vector n orthogonal to the (n − 1) vectors
∂1X, . . ., ∂n−1X and pointing outwards the inner domain of S i.e. det(∂1X, . . ., ∂n−1X,n) > 0.
It is called the unit outer normal vector to the hypersurface and we have its explicit expression:

∀x′ ∈ Dr(0
′), n ◦X(x′) =

1√
1 + ‖∇ϕ(x′)‖2

(
−∇ϕ(x′)

1

)
. (20)

It is a Lipschitz continuous map, like the coe�cients of the �rst fundamental form. In particular,
it is di�erentiable almost everywhere and introducing the Gauss map n : x ∈ S 7→ n(x) ∈ Sn−1,
we can compute its di�erential almost everywhere called the Weingarten map:

Dxn : TxS = DX−1(x)X(R2) −→ Tn(x)Sn−1 = DX−1(x)(n ◦X)(R2)
v = DX−1(x)X(w) 7−→ Dxn(v) = DX−1(x)(n ◦X)(w).

(21)

Note that Tn(x)Sn−1 = DX−1(x)(n ◦X)(R2) because n ◦X is a Lipschitz parametrization of Sn−1.

Since Tn(x)Sn−1 ∼ n(x)⊥ can be identi�ed with TxS, the map Dxn is an endomorphism of TxS.
Moreover, one can prove it is self-adjoint so it can be diagonalized to obtain n − 1 eigenvalues
denoted by κ1(x), . . ., κn−1(x) and called the principal curvatures. Recall that the eigenvalues of
an endomorphism do not depend on the chosen basis and thus are really properties of the operator.
This assertion also holds true for the coe�cients of the characteristic polynomial associated with
Dxn so we can introduce them:

∀l ∈ {0, . . . , n− 1}, H(l)(x) =
∑

16n1<...<nl6n−1

κn1
(x) . . . κnl (x) . (22)

In particular, H(0) = 1, H(1) = H is called the scalar mean curvature, and H(n−1) = K refers to
the Gaussian curvature:

H(x) = κ1(x) + . . .+ κn−1(x) and K(x) = κ1(x)κ2(x) . . . κn−1(x). (23)

Moreover, introducing the symmetric matrix (bij)16i,j6n−1 de�ned by:

bij = −〈Dn(∂iX) | ∂jX〉 = −〈∂i(n ◦X) | ∂jX〉 =
Hess ϕ√

1 + ‖∇ϕ‖2
= 〈n ◦X | ∂ijX〉 , (24)

we get from (19) that the Weingarten map Dn is represented in the local basis (∂1X, . . . , ∂n−1X)
by the following symmetric matrix:

(hij)16i,j6n−1 =

(
−
n−1∑

k=1

gikbkj

)
=

(
−
n−1∑

k=1

(
δik −

∂iϕ∂jϕ

1 + ‖∇ϕ‖2

)
∂kjϕ√

1 + ‖∇ϕ‖2

)
. (25)

Finally, we introduce the symmetric bilinear form whose representation in the local basis is (bij).
It is called the second fundamental form of the hypersurface and it is de�ned by:

II(x) : Tx(S)× Tx(S) −→ R

(v,w) 7−→ 〈−Dxn(v) | w〉 =

n−1∑

i,j,k,l=1

gijvjg
klwlbil =

n−1∑

i,j,k=1

gijvjvkhki.
(26)
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We can also decompose ∂ijX in the basis (∂1X, . . . , ∂n−1X,n) and its coe�cients in the tangent
space are the Christo�el symbols:

∂ijX =

n−1∑

k=1

Γkij∂kX + bijn

Note that the Christo�el symbols are symmetric with respect to the lower indices: Γkij = Γkji. They
can be expressed only in terms of coe�cients of the �rst fundamental form:

Γkij =
1

2

n−1∑

l=1

gkl (∂jgli + ∂iglj − ∂lgij) . (27)

Like the �rst fundamental form, it is an intrinsic notion, which in particular do not depend on the
orientation chosen for the hypersurface, while the Gauss map, the Weingarten map, and the second
fundamental form does. Note that in local coordinates, the coe�cients of the �rst fundamental
form and the Gauss map are Lipschitz continuous functions i.e. n ◦ X, gij , gij ∈ W 1,∞(Dr(0

′)).
Hence, the Christo�el symbols, the Weingarten map and the coe�cients of the second fundamental
form exist almost everywhere and Γkij , bij , hij ∈ L∞(Dr(0

′)). Furthermore, one can prove that a

C1,1-hypersurface satis�es the following relations in the sense of distributions, respectively called
the Gauss and Codazzi-Mainardi equations:

∂lΓ
k
ij − ∂jΓkil +

n−1∑

m=1

(
ΓmijΓ

k
ml − Γmil Γ

k
mj

)
=

n−1∑

m=1

gkm (bijbml − bilbmj) (28)

∂kbij − ∂jbik =

n−1∑

l=1

(
Γlikblj − Γlijblk

)
. (29)

In fact, the converse statement is also true in R3: these equations characterize uniquely a sur-
face and it is referred as the Fundamental Theorem of Surface Theory, valid with C1,1-regularity
[44]. Given a simply-connected open subset ω ⊆ R2, a symmetric positive-de�nite (2 × 2)-matrix
(gij)16i,j62 ∈ W 1,∞(ω) and a symmetric matrix (bij)16i,j62 ∈ L∞(ω) satisfying (28) and (29) in
the sense of distributions, then there exists an injective C1,1-immersion X : ω → R3, unique up to
proper isometries of R3, such that the surface S := X(ω) has (gij) and (bij) as coe�cients of the
�rst and second fundamental forms. To conclude, we recall that A(•) (respectively V (•)) refers to
the n− 1(resp. n)-dimensional Hausdor� measure. The integration is always be done with respect
to A and we have (dA ◦X)(x′) =

√
det(gij)dx

′ =
√

1 + ‖∇ϕ(x′)‖2dx′. We refer to [26, 48] for a
more detailed exposition on all the notions quickly introduced here.

4.2 Geometric functionals involving the position and the normal vector

Proposition 4.7. Consider Assumption 4.1. Then, for any continuous map j : Rn × Sn−1 → R,
we have:

lim
i→+∞

∫

∂Ωi

j [x,n (x)] dA (x) =

∫

∂Ω

j [x,n (x)] dA (x) .

In particular, the area and the volume are continuous: A(∂Ωi) −→ A(∂Ω) and V (Ωi) −→ V (Ω).

Remark 4.8. Note that the above result states the convergence of (∂Ωi)i∈N to ∂Ω in the sense
of oriented varifolds [4, Appendix B] [55]. Similar results were obtained in [36]. Moreover, the
continuity of volume and the lower semi-continuity of area are already implied by the convergence
of characteristic functions (cf. De�nition 3.1 (iii) and Proposition 3.2) [38, Proposition 2.3.6].

Proof. Consider Assumption 4.1. Hence, from Theorem 3.3, the boundaries (∂Ωi)i∈N are locally
parametrized by graphs of C1,1-maps ϕi that converge strongly in C1 and weakly-star in W 2,∞

to the map ϕ associated with ∂Ω. We now detail the procedure which allows to pass from this
local result to the global one thanks to a suitable partition of unity. For any x ∈ ∂Ω, we introduce
the cylinder Cr̃,ε(x) de�ned by (15) and we assume that r̃ > 0 is the one given in Theorem 3.3.
In particular, it only depends on ε. Since ∂Ω is compact, there exists a �nite number K > 1 of
points written x1, . . . ,xK , such that ∂Ω ⊆

⋃K
k=1 C r̃2 , ε2 (xk). We set δ = min( r̃2 ,

ε
2 ) > 0. From the

triangle inequality, the tubular neighbourhood Vδ(∂Ω) = {y ∈ Rn, d(y, ∂Ω) < δ} has its closure
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embedded in
⋃K
k=1 Cr̃,ε(xk). Then, we can introduce a partition of unity on this set. There exists

K non-negative C∞-maps ξk with compact support in Cr̃,ε(xk) and such that
∑K
k=1 ξ

k(x) = 1
for any point x ∈ Vδ(∂Ω). Now, we can apply Theorem 3.3 to the K points xk. There exists K
integers Ik ∈ N and some maps ϕki : Dr̃(xk) 7→]− ε, ε[, with i > Ik and K > k > 1, such that:

{
∂Ωi ∩ Cr̃,ε(xk) =

{
(x′, ϕki (x′)), x′ ∈ Dr̃(xk)

}

Ωi ∩ Cr̃,ε(xk) =
{

(x′, xn), x′ ∈ Dr̃(xk) and − ε < xn < ϕki (x′)
}
.

Moreover, the K sequences of functions (ϕki )i>Ik and (∇ϕki )i>Ik converge uniformly on Dr̃(xk)
respectively to the maps ϕk and ∇ϕk associated with ∂Ω at each point xk. From the Hausdor�
convergence of the boundaries given in Assumption 4.1, there also exists I0 ∈ N such that for any
integer i > I0, we have ∂Ωi ∈ Vδ(∂Ω). Hence, we set I = max06k6K Ik, which thus only depends
on (Ωi)i∈N, Ω and ε. Then, we deduce that for any integer i > I, we have:

J(∂Ωi) :=

∫

∂Ωi

j [x,n (x)] dA(x) =

∫

∂Ωi∩Vδ(∂Ω)

j [x,n (x)] dA(x)

=

∫

∂Ωi

(
K∑

k=1

ξk (x)

)
j [x,n (x)] dA(x) =

K∑

k=1

∫

∂Ωi∩Cr,ε(xk)

ξk (x) j [x,n (x)] dA(x)

=

K∑

k=1

∫

Dr̃(xk)

ξk
(

x′

ϕki (x′)

)
j



(

x′

ϕki (x′)

)
,




−∇ϕki (x
′)√

1+‖∇ϕki (x′)‖2
1√

1+‖∇ϕki (x′)‖2





√

1 + ‖∇ϕki (x′) ‖2dx′

The last equality comes from [48, Proposition 5.13] and Relation (20). The uniform convergence of
theK sequences (ϕki )i>I and (∇ϕki )i>I on the compact setDr̃(xk) combined with the continuity of j
and (ξk)16k6K allows one to let i→∞ in the above expression. Observing that the limit expression
obtained is equal to J(∂Ω), we proved that the functional J is continuous. Finally, for the area, take
j ≡ 1 and for the volume, applying the Divergence Theorem, take j[x,n(x)] = 1

n 〈x | n(x)〉.

Proposition 4.9. Consider Assumption 4.1 and some continuous maps j, ji : Rn × Sn−1 → R
such that (ji)i∈N is uniformly bounded on B × Sn−1 and diagonally converges to j in the sense of
De�nition 4.2. Then, we have:

lim
i→+∞

∫

∂Ωi

ji [x,n (x)] dA (x) =

∫

∂Ω

j [x,n (x)] dA (x) .

Proof. The proof is identical to the one of Proposition 4.7. Using the same partition of unity and
the same notation, we get that

∫
∂Ωi

ji[x,n(x)]dA(x) is equal to:

K∑

k=1

∫

Dr̃(xk)

ξk
(

x′

ϕki (x′)

)
ji



(

x′

ϕki (x′)

)
,




−∇ϕki (x
′)√

1+‖∇ϕki (x′)‖2
1√

1+‖∇ϕki (x′)‖2





√

1 + ‖∇ϕki (x′) ‖2dx′.

Then, instead of using the uniform convergence of each integrand on a compact set as it is the case
in Proposition 4.7, we apply instead Lebesgue's Dominated Convergence Theorem. Indeed, the
diagonal convergence ensures the pointwise convergence of each integrand, which are also, using
the other hypothesis, uniformly bounded. Hence, we can let i→ +∞ in the above expression.

De�nition 4.10. Let S,Si be some non-empty compact C1-hypersurfaces of Rn such that (Si)i∈N
converges to S for the Hausdor� distance: dH(Si,S) −→i→+∞ 0. On each hypersurface Si, we also
consider a continuous vector �eld Vi : x ∈ Si 7→ Vi(x) ∈ TxSi. We say that (Vi)i∈N is diagonally
converging to a vector �eld on S denoted by V : x ∈ S 7→ V(x) ∈ TxS if for any point x ∈ S and
for any sequence of points xi ∈ Si that converges to x, we have ‖Vi(xi)−V(x)‖ −→i→+∞ 0.

Remark 4.11. In De�nition 4.10, (Vi(xi))i∈N is assumed to converge to V(x) as a sequence of
points in Rn, although Vi(xi) and V(x) belong to di�erent linear spaces TxiSi and TxS.
Corollary 4.12. Let ε,B,Ω, (Ωi)i∈N be as in Assumption 4.1 and consider some continuous vector
�elds Vi on ∂Ωi converging to a continuous vector �eld V on ∂Ω as in De�nition 4.10. We also
assume that (Vi)i∈N is uniformly bounded. If j : Rn × Sn−1 × Rn → R is a continuous map, then
we have:

lim
i→+∞

∫

∂Ωi

j [x,n (x) ,Vi (x)] dA(x) =

∫

∂Ω

j [x,n (x) ,V (x)] dA(x).

Of course, this continuity result can be extended to a �nite number of vector �elds.
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Proof. We only have to check that the maps ji : (x,u) ∈ ∂Ωi × Sn−1 → j[x,u,Vi(x)] can be
extended to Rn × Sn−1 such that their extension satisfy the hypothesis of Proposition 4.9. This is
a standard procedure [38, Section 5.4.1]. Using the partition of unity given in Proposition 4.7 and
introducing the C1,1-di�eomorphisms Ψk

i : (x′, xn) ∈ Cr,ε(xk) 7→ (x′, ϕki (x′)− xn), we can set:

∀(x,u) ∈ Rn×Sn−1, ji(x,u) =

K∑

k=1

ξk(x)j
[
(Ψk

i )−1 ◦Πxk ◦Ψk
i (x),u,Vi ◦ (Ψk

i )−1 ◦Πxk ◦Ψk
i (x)

]
.

We recall that Πxk is de�ned by (16). Finally, (ji)i∈N diagonally converges to the extension of
(x,u) 7→ j[x,u,V(x)], since (Vi)i∈N is diagonally converging to V . Moreover, (Ωi)i∈N ⊂ B, the
Gauss map is always valued in Sn−1, and (Vi)i∈N is uniformly bounded. Hence, (x,n∂Ωi(x),Vi(x))
is valued in a compact set. Since j is continuous on this compact set, it is bounded and (ji)i∈N is
thus uniformly bounded on B × Sn−1. Finally, we can apply Proposition 4.9 to let i→ +∞.

4.3 Some linear functionals involving the second fundamental form

From Theorem 3.3, we only have the L∞-weak-star convergence of the coe�cients associated with
the Hessian of the local maps ϕki so we consider here the case of functionals whose expressions in
the parametrization are linear in ∂pqϕ

k
i . This is the case for the scalar mean curvature and the

second fundamental form of two vector �elds.

Proposition 4.13. Consider Assumption 4.1 and a continuous map j : Rn × Sn−1 → R. Then,
the functional Ω ∈ Oε(B) 7→

∫
∂Ω
H(x)j[x,n(x)]dA(x) is continuous:

lim
i→+∞

∫

∂Ωi

H (x) j [x,n (x)] dA (x) =

∫

∂Ω

H (x) j [x,n (x)] dA (x) .

Proof. The proof is identical to the one of Proposition 4.7. Using the same notation and the same
partition of unity, we have to check that in the parametrization Xk

i : x′ ∈ Dr̃(xk) 7→ (x′, ϕki (x′)),
the scalar mean curvature L∞-weakly-star converges. It is the trace (23) of the Weingarten map
de�ned by (21) so relation (25) gives:

(H ◦Xk
i ) = −

n−1∑

p,q=1

gpqbqp = −
n−1∑

p,q=1

(
δpq −

∂pϕ
k
i ∂qϕ

k
i

1 + ‖∇ϕki ‖2

)(
∂pqϕ

k
i√

1 + ‖∇ϕki ‖2

)
. (30)

Using Theorem 3.3, the K sequences (H ◦Xk
i )i∈N weakly-star converge in L∞(Dr̃(xk)) respectively

to H ◦Xk. The remaining part of each integrand below uniformly converges to the one of ∂Ω so
we can let i→ +∞ inside:

K∑

k=1

∫

Dr̃(xk)

(H ◦Xk
i )(x′)(ξk ◦Xk

i )(x′)j[Xk
i (x′), (n ◦Xk

i )(x′)](dA ◦Xk
i )(x′),

to get the limit asserted in Proposition 4.13.

Corollary 4.14. Consider Assumption 4.1 and a continuous map j : Rn × Sn−1 × R → R which
is convex in its last variable. Then, we have:

∫

∂Ω

j [x,n (x) , H (x)] dA (x) 6 lim inf
i→+∞

∫

∂Ωi

j [x,n (x) , H (x)] dA (x) .

Remark 4.15. In particular, this result implies that the Helfrich (2) and the Willmore functional
(3) are lower semi-continuous, and so does the p-th power norm of the mean curvature

∫
|H|pdA,

p > 1. Note that we are able to treat the critical case p = 1, while it is often excluded from many
statements of geometric measure theory [25, Example 4.1] [47, De�nition 2.2] [40, De�nition 4.1.2].
We emphasize the fact that we have here lower semi-continuity and not continuity.

Proof. The arguments are standard [57, �2 Theorem 4]. We only sketch the proof. First, assume
that j is the maximum of �nitely many a�ne functions according to its last variable:

∀t ∈ R, j(x,n(x), t) = max
06l6L

jl [x,n(x)] t+ j̃l [x,n(x)] . (31)
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For simplicity, let us assume that j only depends on the position. Using a partition of unity as in
Proposition 4.7, we introduce the local parametrizations Xk : x′ ∈ Dr̃(xk) 7→ (x′, ϕk(x′)) and we
make a partition of the set Dr̃(xk) into L disjoints sets. We de�ne recursively for any l ∈ {1, . . . L}:

Dk
l =



x′ ∈ Dr̃(xk)\

l⋃

l̃=1

Dk
l̃
, j
[
Xk(x′),

(
H ◦Xk

)
(x′)

]
= jl

[
Xk(x′)

]
H
[
Xk(x′)

]
+ j̃l

[
Xk(x′)

]


 .

Then, applying Proposition 4.13, we have successively:

∫

∂Ω

j[x, H(x)]dA(x) =

K∑

k=1

∫

Dr̃(xk)

(ξk ◦Xk)j[Xk, (H ◦Xk)](dA ◦Xk)

=

K∑

k=1

L∑

l=1

∫

Dkl

(ξk ◦Xk)
(
jl[X

k]H[Xk] + j̃l[X
k]
)

(dA ◦Xk)

=

K∑

k=1

L∑

l=1

lim
i→+∞

∫

Dkl

(ξk ◦Xk
i )
(
jl[X

k
i ]H[Xk

i ] + j̃l[X
k
i ]
)

(dA ◦Xk
i )

6
K∑

k=1

L∑

l=1

lim inf
i→+∞

∫

Dkl

(ξk ◦Xk
i )j[Xk

i , (H ◦Xk
i )](dA ◦Xk

i )

6 lim inf
i→+∞

∫

∂Ωi

j[x, H(x)]dA(x).

The result holds true for maps j that are maximum of �nitely many planes. In general, we write
j = limL→+∞ jL where jL is de�ned by (31) and apply the Monotone Convergence Theorem.

Proposition 4.16. Consider Assumption 4.1 and some continuous maps j, ji : Rn × Sn−1 → R
such that (ji)i∈N is uniformly bounded on B × Sn−1 and diagonally converges to j in the sense of
De�nition 4.2. Then, we have:

lim
i→+∞

∫

∂Ωi

H (x) ji [x,n (x)] dA (x) =

∫

∂Ω

H (x) j [x,n (x)] dA (x) .

Remark 4.17. As in Corollary 4.12, we can consider here that ji is a continuous map of the
position, the normal vector, and a �nite number of uniformly bounded vector �elds diagonally
converging in the sense of De�nition 4.10.

Proof. The proof is identical to the one of Proposition 4.13. Writing the functional in terms of
local parametrizations, it remains to check that we can let i → +∞ in each integral. From (30),
(H ◦ Xk

i )i∈N weakly-star converges in L∞(Dr̃(0
′)) to H ◦ Xk, while the remaining part of the

integrand is strongly converging in L1(Dr̃(0
′)), since the hypothesis allows one to apply Lebesgue's

Dominated Convergence Theorem. Hence, Proposition 4.16 holds true.

Proposition 4.18. Consider Assumption 4.1 and some uniformly bounded continuous vector �elds
Vi and Wi on ∂Ωi that are diagonally converging to continuous vector �elds V and W on ∂Ω in
the sense of De�nition 4.10. Let j, ji : Rn × Sn−1 → R be continuous maps such that (ji)i∈N is
uniformly bounded on B×Sn−1 and diagonally converges to j as in De�nition 4.2. Then, we have:

lim
i→+∞

∫

∂Ωi

II (x) [Vi (x) ,Wi (x)] ji [x,n (x)] dA (x) =

∫

∂Ω

II (x) [V (x) ,W (x)] j [x,n (x)] dA (x) .

Remark 4.19. Note that if ji = j for any i ∈ N, then the above assertion states that a functional
which is linear in the second fundamental form is continuous. Hence, adapting the arguments of
Corollary 4.14, any functional whose integrand is a continuous map of the position, the normal
vector, and the second fundamental form, convex in its last variable, is lower semi-continuous.

Proof. We write the integral in terms of local parametrizations and check that we can let i→ +∞.
In the local basis (∂1X

k
i , . . . , ∂n−1X

k
i ), using (26), the second fundamental form takes the form:

(
II ◦Xk

i

) (
Vi ◦Xk

i ,Wi ◦Xk
i

)
=

n−1∑

p,q,r,s=1

〈
Vi ◦Xk

i | ∂pXk
i

〉
gpqbqrg

rs
〈
Wi ◦Xk

i | ∂sXk
i

〉
.

Hence, each integrand is the product of gpqbqrg
rs with a remaining term. Using the assumptions,

the convergence results of Theorem 3.3, and Lebesgue's Dominated Convergence Theorem, we get
that gpqbqrg

rs weakly-star converges in L∞, while the remaining term L1-strongly converges.
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4.4 Some non-linear functionals involving the second fundamental form

All the previous continuity results were obtained by expressing the integrals in the parametrizations
associated with a suitable partition of unity, and by observing that each integrand is the product of
bpq converging L

∞-weakly-star with a remaining term converging L1-strongly. We are wondering
here if a non-linear function such as the determinant of the (bpq) can also L∞-weakly-star converge.
Note that the convergence is in L∞ and not in W 1,p so we cannot use e.g. [28, Section 8.2.4.b].

However, the coe�cients of the �rst and second fundamental forms are not random coe�cients.
They characterize the hypersurfaces through the Gauss-Codazzi-Mainardi equations (28) and (29).
Hence, using the di�erential structure of these equations, we want to obtain the L∞-weak-star
convergence of non-linear functions of the bpq. This is done by considering a generalization of the
Div-Curl Lemma due to Tartar. We refer to [57, Section 6] for details and it states as follows.

Proposition 4.20 (Tartar [57, Section 6 Corollary 13]). Let n > 3 and U ⊂ Rn−1 be open
and bounded with smooth boundary. We consider a sequence of maps (ui)i∈N weakly-star converging
to u in L∞(U,RM ), M > 1, and a continuous functional F : RM → R such that (F (ui))i∈N is
weakly-star converging in L∞(U,R). Let us suppose we are given P �rst-order constant coe�cient

di�erential operators Apv :=
∑n−1
q=1

∑M
m=1 a

p
mq∂qvm such that the sequences (Apui)i∈N lies in a

compact subset of H−1(U). We also assume that (ui)i∈N is almost everywhere valued in K for
some given compact set K ⊂ RM . We introduce the following wave cone:

Λ =

{
λ ∈ RM | ∃µ ∈ Rn−1\{0′},∀p ∈ {1, . . . P},

n−1∑

q=1

M∑

m=1

apmqλmµq = 0

}
.

If F is a quadratic form and F = 0 on Λ, then the weak-star limit of (F (ui))i∈N is F (u).

We now treat the case of R3 to get familiar with the notation and observe how Proposition 4.20
can be used here to obtain the L∞-weak-star convergence of the Gaussian curvature K = κ1κ2. Let
n = 3, U = Dr̃(xk), and ui : x′ 7→ (bpq) ∈ R22

de�ned by (24) with Xk
i : x′ 7→ (x′, ϕki (x′)) ∈ ∂Ωi.

First, we show that the assumptions of Proposition 4.20 are satis�ed. From Theorem 3.3, (ui)i∈N
L∞(U)-weakly-star converges to u and it is uniformly bounded so it is valued in a compact set.
Moreover, in the case n = 3, there are only two Codazzi-Mainardi equations (29):





∂1b12 − ∂2b11 =
(
Γ1

11b12 − Γ1
12b11

)
+
(
Γ2

11b22 − Γ2
12b21

)

∂1b22 − ∂2b21 =
(
Γ1

21b12 − Γ1
22b11

)
+
(
Γ2

21b22 − Γ2
22b21

)
.

Hence, the two di�erential operators A1ui := ∂1b12 − ∂2b11 and A2ui := ∂1b22 − ∂2b21 are valued
and uniformly bounded in L∞(U), which is compactly embedded in H−1(U) (Rellich-Kondrachov
Embedding Theorem), so we deduce that up to a subsequence, (A1ui)i∈N and (A2ui)i∈N lies in a
compact subset of H−1(U). Let us now have a look at the wave cone:

Λ =

{(
λ11 λ12

λ21 λ22

)
∈ R22

| ∃
(
µ1

µ2

)
6=
(

0
0

)
, µ1λ12 − µ2λ11 = 0 and µ1λ22 − µ2λ21 = 0

}
.

Remark 4.21. The wave cone Λ is the set of (2× 2)-matrices with zero determinant.

Consequently, if we want to apply Proposition 4.20 on a quadratic form in the bpq, we get
from Remark 4.21 that the determinant is one possibility. Indeed, if we set F (ui) = det(ui), then
F is quadratic and F (λ) = 0 for any λ ∈ Λ. Since (F (ui))i∈N is uniformly bounded in L∞(U),
up to a subsequence, it is converging and applying Proposition 4.20, the limit is F (u). This also
proves that F (u) is the unique limit of any converging subsequence. Hence, the whole sequence is
converging to F (u) and we are now in position to prove the following result.

Proposition 4.22. Consider Assumption 4.1 and some continuous maps j, ji : R3× S2 → R such
that (ji)i∈N is uniformly bounded on B × S2 and diagonally converges to j as in De�nition 4.2.
Then, we have (note that Remarks 4.17 and 4.19 also hold true here):

lim
i→+∞

∫

∂Ωi

K (x) ji [x,n (x)] dA (x) =

∫

∂Ω

K (x) j [x,n (x)] dA (x) .

In particular, the genus is continuous: genus(∂Ωi) −→i→+∞ genus(∂Ω).
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Proof. As in the proof of Proposition 4.7, we can express the functional in the parametrizations
associated with the partition of unity. Then, we have to check we can let i→ +∞ in each integral.
Note that K is the determinant (23) of the Weingarten map (21) so we get from (25):

K ◦Xk
i = det(h) = det(−g−1b) = −det(bpq)

det(grs)
.

From the foregoing and the uniform convergence of (grs), we get that the sequences (K ◦Xk
i )i∈N

converge L∞-weakly-star respectively to K ◦ Xk, whereas the remaining term in the integrand
is L1-strongly converging using the hypothesis and Lebesgue's Dominated Convergence Theorem.
Hence, we can let i → +∞ and Proposition 4.22 holds true. Finally, concerning the genus, we
apply the Gauss-Bonnet Theorem

∫
∂Ωi

KdA = 4π(1− gi) −→i→+∞
∫
∂Ω
KdA = 4π(1− g).

We now establish the equivalent of Proposition 4.22 in Rn. First, instead of working with
the coe�cients (bpq) of the second fundamental form (24), we prefer to work with the ones (hpq)

representing the Weingarten map. We set n > 3, U = Dr̃(xk), and ui : x′ ∈ U 7→ (hpq) ∈ R(n−1)2

de�ned by (25) in the local parametrizations Xk
i : x′ ∈ U 7→ (x′, ϕki (x′)) ∈ ∂Ωi introduced in

the proof of Proposition 4.7. Then, we check that the hypothesis of Proposition 4.20 are satis�ed.
From Theorem 3.3, (ui)i∈N weakly-star converges to u in L∞(U) and it is uniformly bounded so it
is valued in a compact set. Using the Codazzi-Mainardi equations (29), the di�erential operators:

∂q′hpq − ∂qhpq′ =

n−1∑

m=1

((∂q′g
pm)bmq − (∂qg

pm)bmq′) +

n−1∑

m=1

gpm (∂q′bmq − ∂qbmq′) ,

are valued and uniformly bounded in L∞(U), which is compactly embedded in H−1(U) (Rellich-
Kondrachov Embedding Theorem), so up to a subsequence, they lies in a compact set of H−1(U).
Finally, we introduce the wave cone of Proposition 4.20:

Λ =
{
λ ∈ R(n−1)2

| ∃µ 6= 0(n−1)×1,∀(p, q,m) ∈ {1, . . . , n− 1}3, µmλpq − µqλpm = 0
}
.

De�nition 4.23. A pth-order minor of a square (n − 1)2-matrix M is the determinant of any
(p× p)-matrix M [I, J ] formed by the coe�cients of M corresponding to rows with index in I and
columns with index in J , where I, J ⊂ {1, . . . , n− 1} have p elements i.e. ]I = ]J = p.

Remark 4.24. The wave cone Λ is the set of square (n − 1)2-matrices of rank zero or one. In
particular, any minor of order two is zero for such matrices.

Consequently, Remark 4.24 combined with Proposition 4.20 tells us that continuous functionals
are given by the ones whose expressions in the local parametrizations (cf. proof of Proposition 4.7)
are linear in terms of the form hpqhp′q′ − hpq′hp′q. However, such terms depend on the partition
of unity and on the parametrizations i.e. on the chosen basis (∂1X

k
i , . . . , ∂n−1X

k
i ) whereas the

integrand of the functional cannot. We now give three applications for which it is the case.

Proposition 4.25. Consider Assumption 4.1 and some continuous maps j, ji : Rn × Sn−1 → R
so that (ji)i∈N is uniformly bounded on B × Sn−1 and diagonally converges to j in the sense of
De�nition 4.2. Then, introducing H(2) =

∑
16p<q6n−1 κpκq de�ned in (22), we have:

lim
i→+∞

∫

∂Ωi

H(2) (x) ji [x,n (x)] dA (x) =

∫

∂Ω

H(2) (x) j [x,n (x)] dA (x) .

Note that Remarks 4.17 and 4.19 also hold true here.

Proof. First, using the notation of De�nition 4.23, note that the characteristic polynomial of (hpq),
which is the matrix (25) representing the Weingarten map (21) in the basis (∂1X

k
i , . . . ∂n−1X

k
i ),

can be expressed as:

P (t) = det (h− tIn−1) = (−1)ntn +

n−1∑

m=1

(−1)n−m


∑

]I=m

det(h[I, I])


 tn−m,
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but we can also represent the Weingarten map in the basis associated with the principal curvatures:

P (t) =

n−1∏

m=1

((
κm ◦Xk

i

)
− t
)

=

n−1∑

m=0

(−1)n−m
(
H(m) ◦Xk

i

)
tn−m.

Since each coe�cients of the characteristic polynomial do not depend on the chosen basis, we get:

∀m ∈ {0, . . . , n− 1}, H(m) ◦Xk
i =

∑

]I=m

det(h[I, I]). (32)

If we set F (λ) =
∑
]I=2 det(λ[I, I]), then F is quadratic and from Remark 4.24 we get F (λ) = 0 for

any λ ∈ Λ. Since (F (ui))i∈N is uniformly bounded in L∞(U), up to a subsequence, it is converging
and applying Proposition 4.20, the limit is F (u), unique limit of any converging subsequence so
the whole sequence is converging to F (u). Using (32), we get that the sequences (H(2) ◦ Xk

i )i∈N
converge L∞-weakly-star respectively to H(2) ◦Xk, whereas the remaining term in the integrand
is L1-strongly converging using the hypothesis and Lebesgue's Dominated Convergence Theorem.
Hence, we can let i→ +∞ and the functional is continuous.

Corollary 4.26. Considering Assumption 4.1, a continuous map j : Rn × Sn−1 × R→ R convex
in its last variable, and the (Frobenius) L2-norm ‖Dxn‖2 =

√
trace(Dxn ◦DxnT ) = (

∑n−1
m=1 κ

2
m)

1
2

of the Weingarten map (21), we have:
∫

∂Ω

j
[
x,n (x) , ‖Dxn‖22

]
dA (x) 6 lim inf

i→+∞

∫

∂Ωi

j
[
x,n (x) , ‖Dxn‖22

]
dA (x) .

In particular, the pth-power of the L2-norm of the second fundamental form
∫
‖II‖p2dA, p > 2 is

lower semi-continuous.

Proof. First, assume that j is linear in its last argument. Note that the Frobenius norm ‖.‖2 does
not depend on the chosen basis so we can consider the one associated with the principal curvatures,
and we get ‖Dn‖22 =

∑n−1
m=1 κ

2
m = (

∑n−1
m=1 κm)2 −

∑
p6=q κpκq = H2 − 2H(2). Hence, there exists a

continuous map j̃ : Rn × Sn−1 → R such that
∫
∂Ωi

j[x,n(x), ‖Dxn‖22]dA(x) is equal to:

∫

∂Ωi

H2 (x) j̃ [x,n (x)] dA (x)− 2

∫

∂Ωi

H(2) (x) j̃ [x,n (x)] dA (x) .

In the left term, the integrand is convex in H so Corollary 4.14 furnishes its lower semi-continuity.
Concerning the right one, apply Proposition 4.25 to get its continuity. Therefore, the functional is
lower semi-continuous if j is linear in its last variable. Then, we can apply the standard procedure
[57, �2 Theorem 4] described in Corollary 4.14 to get the same result in the general case. Finally,
‖II(x)‖22 = ‖Dxn‖22 and if p > 2, t 7→ t

p
2 is convex thus

∫
‖II‖p2dA is lower semi-continuous.

Proposition 4.27. Consider Assumption 4.1, some continuous maps j, ji : Rn × Sn−1 → R such
that (ji)i∈N is uniformly bounded on B × Sn−1 and diagonally converges to j as in De�nition 4.2,
and some vector �elds Vi and Wi on ∂Ωi uniformly bounded and diagonally converging to vector
�elds V and W on ∂Ω in the sense of De�nition 4.10. Then, the following functional is continuous
(note that Remarks 4.17 and 4.19 also hold true here):

J (∂Ωi) :=

∫

∂Ωi

〈Dxn [Vi (x)] | Dxn [Wi (x)]−H (x)Wi (x)〉 ji [x,n (x)] dA (x) −→
i→+∞

J (∂Ω) .

Proof. Again, the idea is to check that the expression of the functional in the parametrization is
linear in a term of the form bpqbp′q′ − bpq′bp′q′ . First, the linear term can be expressed as:

n−1∑

p,p′,p”=1

n−1∑

q,q′,q”=1

〈
Vi ◦Xk

i | ∂qXk
i

〉
gpqgp

′q′ (bq′pbp”p′ − bq′p′bpp”) gp”q”
〈
Wi ◦Xk

i | ∂q”Xk
i

〉

Note that until now, in Section 4, we never used the fact that (gpq), (gpq), (bpq) or (hpq) are
symmetric matrices. Here, let us invert the two indices bpp” = bp”p in the above expression. Then,
bq′pbp”p′ − bq′p′bp”p is L∞-weakly-star converging. Indeed, as we did for (hpq), we can use the
Codazzi-Mainardi equations (29) and Remark 4.24 to apply Proposition 4.20 on (bpq). Finally,
the hypothesis and the convergence results of Theorem 3.3 gives the L1-strong convergence of the
remaining term so we can let i→ +∞ in each integral and the functional is continuous.
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Note that until now, in Section 4.4, we only used the Codazzi-Mainardi equations (29). We
want here to use the Gauss equations (28) because from the foregoing, its right member is L∞-
weakly-star converging. For this purpose, we need to introduce some concepts of Riemannian
geometry which are beyond the scope of the article. Hence, we refer to [60] for precise de�nitions.
Merely speaking, the Riemann curvature tensor R of a Riemannian manifold measures the extend
to which the �rst fundamental form is not locally isometric to an Euclidean space, i.e. the non-
commutativity of the covariant derivative. In the basis (∂1X, . . . , ∂n−1X), it has the following
representation [60, Section 2.6]:

Rkjli =

n−1∑

m=1

gkmRmjli = ∂lΓ
k
ij − ∂jΓkil +

n−1∑

m=1

(
ΓmijΓ

k
ml − Γmil Γ

k
mj

)
,

where the Christo�els symbols Γkij were de�ned in (27). Hence, the Gauss equations (28) state
that in the local parametrization, the Riemann curvature tensor is given by:

Rkjli =

n−1∑

m=1

gkm (bijbml − bilbmj) ,

which is thus L∞-weakly-star converging, and so does the Ricci curvature tensor [60, Section 3.3]

Ricij =
∑n−1
k=1 R

k
ikj and the scalar curvature R =

∑n−1
i,j=1 g

ijRij . Hence, we get the following result.

Proposition 4.28. Consider Assumption 4.1, some continuous maps j, ji : Rn × Sn−1 → R such
that (ji)i∈N is uniformly bounded on B × Sn−1 and diagonally converges to j as in De�nition 4.2,
and some vector �elds Ti,Ui,Vi,Wi on ∂Ωi uniformly bounded and diagonally converging to vector
�elds T,U,V,W on ∂Ω in the sense of De�nition 4.10. Then, the three following functionals are
continuous (note that Remarks 4.17 and 4.19 also hold true here):





J (∂Ωi) :=

∫

∂Ωi

〈Rx [Ti (x) ,Ui (x)]Vi (x) | Wi (x)〉 ji [x,n (x)] dA (x) −→
i→+∞

J (∂Ω)

J ′ (∂Ωi) :=

∫

∂Ωi

Ricx [Vi (x) ,Wi (x)] ji [x,n (x)] dA (x) −→
i→+∞

J ′ (∂Ω)

J” (∂Ωi) :=

∫

∂Ωi

R (x) ji [x,n (x)] dA (x) −→
i→+∞

J” (∂Ω) .

Proof. The proof is same than the previous ones. Write the functional in the local parametrizations,
and observe that it is a �nite sum of integrals whose integrand is the product of a L∞-weakly-star
converging term, while the other one is converging L1-strongly so we can let i→ +∞.

Note that in the case n = 3, the scalar curvature R is twice the Gaussian curvature K = κ1κ2.
Hence, the continuity of the last functional above is the generalization of Proposition 4.22 to Rn,
n > 3, which was the task of the subsection. We conclude by proving Theorem 4.4.

Proof of Theorem 4.4. Using Proposition 4.20 and (29), we showed how to get the L∞-weakly-
star convergence of any h[pp′, qq′] := hpqhp′q′−hpq′hp′q from the one of (hpq) de�ned in (25). Now,
we want to apply Proposition 4.20 to (h[pp′, qq′]). For this purpose, we need to �nd di�erential
operators which are valued and uniformly bounded in L∞. Using (29), this is the case for:

∂q hpq hp′q
∂q′ hpq′ hp′q′

∂q” hpq” hp′q”

= ∂qh[pp′, q′q”]− ∂q′h[pp′, qq”] + ∂q”h[pp′, qq′]

= (∂qhpq′ − ∂q′hpq)hp′q” + (∂q′hp′q − ∂qhp′q′)hpq”
+ (∂qhp′q” − ∂q”hp′q)hpq′ + (∂q”hp′q′ − ∂q′hp′q”)hpq

+ (∂q”hpq − ∂qhpq”)hp′q′ + (∂q′hp′q” − ∂q”hpq′)hp′q.

Then, the wave cone associated with these di�erential operators is thus given by:

Λ =



λ ∈ R(n−1)4

| ∃µ 6= 0(n−1)×1,∀(p, p′, q, q′, q”) ∈ {0, . . . , n− 1},
µq λpq λp′q
µq′ λpq′ λp′q′
µq” λpq” λp′q”

= 0



 .

As in Remark 4.21, one can check that the wave cone is given by all (n − 1)2-matrices for which
any minor of order three are zero in the sense of De�nition 4.23. Finally, combining (32) and
Proposition 4.20, we get that functionals linear in H(3) are continuous. This procedure can be
done recursively similarly to H(l) for any l > 3 so Theorem 4.4 holds true.
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4.5 Existence of a minimizer for various geometric functionals

We are now in position to establish general existence results in the class Oε(B). More precisely, we
can minimize any functional (and constraints) built from those given before in Section 4. Indeed,
considering a minimizing sequence in Oε(B), there exists a converging subsequence as stated in
Proposition 3.2 and Assumption 4.1 holds true. Then, applying the appropriate continuity results,
we can pass to the limit in the functional and the constraints to get the existence of a minimizer.

In this section, we �rst give a proof of Theorem 1.3 and state/prove its generalization to Rn.
Then, we establish the existence for a very general model of vesicles. In particular, we prove that
Theorems 1.5, 1.7, and 1.8 hold true. We refer to Sections 1.1, 1.2, and 1.3 of the introduction for
a detailed exposition on these three models. Finally, we present two more applications that show
how to use other continuity results to get the existence of a minimizer in the class Oε(B).

Proof of Theorem 1.3. Consider any minimizing sequence (Ωi)i∈N of Oε(B). Proposition 3.2
ensures that up to a subsequence, (Ωi)i∈N is converging to an open set Ω ∈ Oε(B) as stated in
Assumption 4.1. We can thus combine Propositions 4.7, 4.13, and 4.22 to let i → +∞ in the
equalities of the form:
∫

∂Ωi

g0 [x,n (x)] dA (x) +

∫

∂Ωi

H (x) g1 [x,n (x)] dA (x) +

∫

∂Ωi

K (x) g2 [x,n (x)] dA (x) = C̃.

Then, apply Proposition 4.7, Corollary 4.14 and Remark 4.19 on Proposition 4.22, to obtain the
lower semi-continuity of the functional and that the inequality constraints remain true as i→ +∞.
Therefore, Ω is a minimizer of the functional satisfying the constraints in the class Oε(B).

Theorem 4.29. Let ε > 0 and B ⊂ Rn be a bounded open set, large enough to contain an open
ball of radius 3ε. Consider (C, C̃) ∈ R × R, some continuous maps j0, f0, g0, gl : Rn × Sn−1 → R,
and some maps jl, fl : Rn × Sn−1 × R→ R which are continuous and convex in their last variable
for any l ∈ {1, . . . , n− 1}. Then, the following problem has at least one solution (for the notation,
we refer to Section 4.1):

inf

∫

∂Ω

j0 [x,n (x)] dA (x) +

n−1∑

l=1

∫

∂Ω

jl

[
x,n (x) , H(l) (x)

]
dA (x) ,

where the in�mum is taken among Ω ∈ Oε(B) satisfying a �nite number of constraints of the form:




∫

∂Ω

f0 [x,n (x)] dA (x) +

n−1∑

l=1

∫

∂Ω

fl

[
x,n (x) , H(l) (x)

]
dA (x) 6 C

∫

∂Ω

g0 [x,n (x)] dA (x) +

n−1∑

l=1

∫

∂Ω

H(l) (x) gl [x,n (x)] dA (x) = C̃.

Proof. Consider a minimizing sequence (Ωi)i∈N of Oε(B). Proposition 3.2 ensures that up to a
subsequence, (Ωi)i∈N is converging to an open set Ω ∈ Oε(B) as stated in Assumption 4.1. We can
thus apply Theorem 4.4 to let i→ +∞ in the following equality:

∫

∂Ωi

g0 [x,n (x)] dA (x) +

n−1∑

l=1

∫

∂Ωi

H(l) (x) gl [x,n (x)] dA (x) = C̃.

Then, we can use again Theorem 4.4 for any l0 ∈ {1, . . . , n− 1} by setting jl0 = gl0 and jl = 0 for
any l 6= l0 to obtain the continuity of any

∫
H(l0)(•)gl0 [•,n(•)] and Remark 4.19 gives the lower

semi-continuity of any
∫
fl0 [•,n(•), H(l0)(•)] and

∫
jl0 [•,n(•), H(l0)(•)]. Hence, the functional is

lower-semi-continuous and the inequality constraint remains true as i → +∞. Therefore, Ω is a
minimizer of the functional satisfying the constraints.

Proposition 4.30. Let H0,M0, kG, km ∈ R and ε, kb, A0, V0 > 0 such that A3
0 > 36πV 2

0 . Then,
the following problem modelling the equilibrium shapes of vesicles [53, Section 2.5] has at least one
solution (see Notation 1.4):

inf
Ω∈Oε(R3)
A(∂Ω)=A0

V (Ω)=V0

kb
2

∫

∂Ω

(H −H0)2dA+ kG

∫

∂Ω

KdA+ km

(∫

∂Ω

HdA−M0

)2

.
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Proof. Let us consider a minimizing sequence (Ωi)i∈N ⊂ Oε(R3) of the functional satisfying the
area and volume constraints. First, we need to �nd an open ball B such that (Ωi)i∈N ⊂ Oε(B).
This can be done if we can bound the diameter thanks to the functional and the area constraint.
The �rst step is to control the Willmore energy (3). Introducing the functional of the statement
J : Ω ∈ Oε(B) 7→ kb

2

∫
∂Ω

(H −H0)2dA+ kG
∫
∂Ω
KdA+ km(

∫
∂Ω
HdA−M0)2, we have:

kb
4

∫

∂Ω

H2dA =
kb
4

∫

∂Ω

(H −H0 +H0)2dA 6
kb
2

∫

∂Ω

(H −H0)2dA+
kbH

2
0

2
A(∂Ω)

6 J(∂Ω) +
kbH

2
0

2
A(∂Ω) + |kG|

∫

∂Ω

KdA + |km|
(∫

∂Ω

HdA−M0

)2

6 J(∂Ω) +
kbH

2
0

2
A(∂Ω) + |kG|

∫

∂Ω

|K|dA+ 2|km|
(∫

∂Ω

HdA

)2

+ 2|km|M2
0 .

The second step is to use point (iii) in Theorem 2.7 and Remark 2.10. Considering a point x ∈ ∂Ω
in which the Gauss map n is di�erentiable, and a unit eigenvector el associated with the eigenvalue
κl of the Weingarten map Dxn, we have:

|κl(x)| = ‖κl(x)el‖ = ‖Dxn(el)‖ 6 ‖Dxn‖L(Tx∂Ω)‖el‖ 6
1

ε
, (33)

from which we deduce that max16l6n−1 ‖κl‖L∞(∂Ω) 6
1
ε . Hence, we obtain:

kb
4

∫

∂Ω

H2dA 6 J(∂Ω) +
kbH

2
0

2
A(∂Ω) +

|kG|
ε2

A(∂Ω) +
8|km|
ε2

A (∂Ω)
2

+ 2|km|M2
0 .

The �nal step is to apply [56, Lemma 1.1] to get four positive constants C0, C1, C2, C3 such that:

diam(Ω) 6 C0J(∂Ω)A(∂Ω) + C1A(∂Ω) + C2A(∂Ω)2 + C3A(∂Ω)3.

Hence, we can bound uniformly the diameter of the Ωi and there exists a ball B ⊂ Rn su�ciently
large such that (Ωi)i∈N ⊂ Oε(B). From Proposition 3.2, up to a subsequence, it is converging to
an Ω ∈ Oε(B) as stated in Assumption 4.1. Then, we can apply:

• Corollary 4.14 with j(x, y, z) = kb
2 (z−H0)2 to get the lower semi-continuity of kb2

∫
(H−H0)2;

• Proposition 4.22 with ji ≡ 1 to obtain the continuity of κG
∫
K;

• Proposition 4.13 with j ≡ 1 to have the continuity of
∫
HdA thus the one of km(

∫
HdA−M0)2.

The functional is lower semi-continuous and from Proposition 4.7 with j ≡ 1 and j(x, y) = 〈x | y〉,
the area and volume constraints are also continuous so let i→ +∞ and Ω is a minimizer.

Proof of Theorem 1.5. It is the particular case km = 0 in Proposition 4.30. This can be also
deduced from Theorem 1.3, it su�ces to follow the method described in the next proof.

Proof of Theorem 1.7. First, as in the proof of Proposition 4.30 , one can show that minimizing
in Oε(Rn) or in Oε(B) is equivalent here. Then, apply Theorem 1.3 by setting j0 = j2 ≡ 0 and
j1(x, y, z) = (z −H0)2 which is continuous and convex in z. The area and volume constraints can
be expressed as in Proposition 4.7 by setting g1 = g2 ≡ 0 and successively g0 ≡ 1, g0(x, y) = 〈x | y〉.
Using the Gauss-Bonnet Theorem, the genus constraint is written as

∫
KdA = 4π(1 − g) := K0.

Hence, Theorem 1.3 gives the existence of a minimizer satisfying the three constraints. Finally, we
can apply [38, Proposition 2.2.17] to ensure that the compact minimizer is connected since it is the
case for any minimizing sequence of compact sets. Hence, using again the Gauss-Bonnet Theorem,
the minimizer has the right genus so Theorem 1.7 holds true.

Proof of Theorem 1.8. The proof is identical to the previous one. We just need to set H0 = 0
and add a fourth equality constraint of the form g0 = g2 ≡ 0, g1 ≡ 1.

Proposition 4.31. Let ε > 0 and B ⊂ R4 be a bounded open set, large enough to contain an open
ball of radius 3ε. Consider two bounded continuous vector �elds of R4 denoted by V,W : R4 → R4

and a continuous map j : R4 × S3 × R, which is convex in its last variable. Then, the following
problem has at least one solution (for the notation, see Section 4.1 and above Proposition 4.28):

inf

∫

∂Ω

j [x,n (x) , Ricx (V (x) ∧ n (x) ,W (x)− 〈W (x) | n (x)〉n (x))] dA (x) ,
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where the in�mum is taken among all Ω ∈ Oε(B) satisfying the following constraint:
∫

∂Ω

R (x) 〈V (x) | n (x)〉 dA (x) =

∫

∂Ω

H(2) (x) 〈W (x) | n (x)〉 dA (x) .

Proof. Consider a minimizing sequence (Ωi)i∈N ⊂ Oε(B) of the functional satisfying the constraint.
From Proposition 3.2, up to a subsequence, it is converging to a set Ω ∈ Oε(B). We de�ne
Vi := V ∧ n∂Ωi and Wi := W − 〈W | n∂Ωi〉n∂Ωi which are two continuous vector �elds on ∂Ωi,
uniformly bounded since V and W are. We now check the diagonal convergence. Choose any
sequence of points xi ∈ ∂Ωi converging to x ∈ ∂Ω. Using the partition of unity introduced in
Proposition 4.7, we get that x ∈ ∂Ω ∩ Cr̃,ε(xk) for some k ∈ {1, . . .K}. Hence, there exists
x′ ∈ Dr̃(xk) such that x = (x′, ϕk(x′)). Since (xi)i∈N is converging to x, for i su�ciently large, we
can write xi = (x′i, ϕ

k
i (x′i)) with x′i ∈ Dr̃(xk). Hence, x′i → x′ and ϕki (x′i) → ϕk(x′), but we also

have from the triangle inequality:

‖∇ϕki (x′i)−∇ϕk(x′)‖ 6 ‖∇ϕki −∇ϕk‖C0(Dr̃(xk))
+ ‖∇ϕk(x′i)−∇ϕk(x′)‖.

From (4) and the continuity of ∇ϕk, we can let i→ +∞ and the diagonal convergence of (∇ϕki )i∈N
to ∇ϕk holds true. Then, using (20), n∂Ωi is also diagonally converging to n∂Ω, and so does Vi and
Wi. If j is linear in its last variable, we can apply Proposition 4.28 to obtain the continuity of the
functional, otherwise we can use Remark 4.19 on the previous case to get the lower semi-continuity
of the functional. Finally, apply Theorem 4.4 with jli ≡ 0 if l 6= 2 and j2

i = 〈V | n〉 to have
the continuity of the left member of the constraint. The continuity of the right one comes from
Proposition 4.28 on J” with ji = 〈W | n〉. Hence, we can let i→ +∞ in the constraint..

Proposition 4.32. Let ε,A0, V0 > 0 be such that A3
0 > 36πV 2

0 , and let B ⊂ R3 be a bounded open
set, large enough to contain an open ball of radius 3ε. We consider a bounded vector �eld in R3

denoted by V : R3 → R3 and a continuous map j : R3 × R2 × R → R which is convex in its last
variable. Then, the following problem has at least one solution:

inf
Ω∈Oε(B)
A(∂Ω)=A0

V (Ω)=V0

∫

∂Ω

j [x,n (x) , κv (x)] dA (x) ,

where κv is the normal curvature at x i.e. the curvature at x of the curve formed by the intersection
of the surface ∂Ω with the plane spanned by n(x) and the vector v := V(x)− 〈V(x) | n(x)〉n(x).

Proof. First, [48, Proposition 3.26, Remark 3.27] gives κv = κ1|〈v|e1〉|2 + κ2|〈v|e2〉|2 = II(v,v).
Then, as in the previous proof, we can show that v∂Ωi is diagonally converging to v∂Ω. Finally, if
j is linear in its last variable, we can apply Proposition 4.18 to get the continuity, otherwise use
Remark 4.19 to get its lower semi-continuity. The area and volume constraints are continuous from
Proposition 4.7. Hence, from Proposition 3.2, a minimizing sequence has a converging subsequence
to an Ω and from the foregoing we can let i→ +∞ in the functional and constraints.

5 Appendix: the proofs of Theorems 2.6�2.8

5.1 The sets of positive reach and the uniform ball condition

Throughout this section, Ω refers to any non-empty open subset of Rn di�erent from Rn. Hence,
its boundary ∂Ω is not empty and Reach(∂Ω) is well de�ned (cf. Remark 1.2). First, we establish
some properties that were mentioned in Federer's paper [30] and we show Theorem 2.6 holds true.

5.1.1 Positive reach implies uniform ball condition

The point of view adopted here is slightly di�erent from the usual one [30, Theorem 4.8]. Indeed,
in order to get the ε-ball condition at a given point x ∈ ∂Ω, we need to exhibit points outside the
boundary whose projections are precisely x, whereas people usually assume that they exist [24,
Chapter 6 Theorem 6.2 (ii) and Chapter 7 Theorem 7.2 (ii)] or only consider the projection of
points outside the boundary [24, Chapter 6 Theorems 6.2 (iii) and Chapter 7 Theorem 7.2 (iii)].
However, in order to do so, we have to prevent the open sets to have a thick boundary i.e. having
a non-empty interior and thus a non-zero Lebesgue measure [24, Chapter 5 Example 6.2].
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Lemma 5.1. For any x ∈ ∂Ω, we have: Reach(∂Ω,x) = min
(
Reach(Ω,x),Reach(Rn\Ω,x)

)
.

Proof. We only sketch the proof. Observe d(x, ∂Ω) = max(d(x,Ω), d(x,Rn\Ω)) for any x ∈ Rn to
get Unp(∂Ω) = Unp(Ω) ∩Unp(Rn\Ω) and the equality of Lemma 5.1 follows from de�nitions.

Proposition 5.2 (Federer [30, Theorem 4.8 (6)]). Let A 6= ∅ be closed in Rn, x ∈ A, and
v ∈ Rn. If the set {t > 0,x + tv ∈ Unp(A) and pA(x + tv) = x} is not empty and bounded from
above, then its supremum τ is well de�ned and x + τv cannot belong to the interior of Unp(A).

Proof. We refer to [30] for a proof using Peano's Existence Theorem on di�erential equations.

Corollary 5.3. If V (∂Ω) = 0, then for any point x ∈ ∂Ω satisfying Reach(∂Ω,x) > 0, there exists
two di�erent points y ∈ Unp(Ω)\{x} and ỹ ∈ Unp(Rn\Ω)\{x} such that pΩ(y) = pRn\Ω(ỹ) = x.

Proof. Consider x ∈ ∂Ω satisfying Reach(∂Ω,x) > 0. From Lemma 5.1, there exists r > 0 such
that Br(x) ⊆ Unp(Ω). Let (xi)i∈N be a sequence of elements in B r

2
(x)\Ω converging to x. Such a

sequence exists otherwise B r
2
(x) ⊂ Ω and Reach(x,Rn\Ω) > 0 would imply V (∂Ω) > 0. We set:

∀i ∈ N, ∀t ∈ R, zi(t) = pΩ(xi) + t
xi − pΩ(xi)

‖xi − pΩ(xi)‖
and ti =

r

2
+ d(xi,Ω),

which is well de�ned since xi ∈ Unp(Ω). First, zi(t) ∈ B r
2
(xi) ⊆ Br(x) ⊆ Unp(Ω) for any t ∈ [0, ti].

Then, using Federer's result recalled in Proposition 5.2, one can prove by contradiction that:

∀t ∈ [0, ti], pΩ(zi(t)) = pΩ(xi).

Finally, the sequence yi := zi(ti) satis�es ‖yi−xi‖ = r
2 and also pΩ(yi) = pΩ(xi). Moreover, since it

is bounded, (yi)i∈N is converging, up to a subsequence, to a point denoted by y ∈ Br(x) ⊆ Unp(Ω).
Using the continuity of pΩ [30, Theorem 4.8 (4)], we get y ∈ Unp(Ω)\{x} and pΩ(y) = pΩ(x) = x.
To conclude, similar arguments work by replacing Ω with Rn\Ω so Corollary 5.3 holds true.

Proof of Point (ii) in Theorem 2.6. The hypothesis ∂Ω 6= ∅ ensures its reach is well de�ned.
Assume Reach(∂Ω) > 0 and V (∂Ω) = 0. We choose ε ∈]0,Reach(∂Ω)[ and consider x ∈ ∂Ω.
From Corollary 5.3, there exists y ∈ Unp(Ω)\{x} such that pΩ(y) = x so we can set dx = x−y

‖x−y‖ .

From Lemma 5.1, we get x + [0, ε]dx ⊆ Unp(Ω). Then, we use Proposition 5.2 again to prove by
contradiction that pΩ(x + tdx) = x for any t ∈ [0, ε]. In particular, we have ‖z − (x + εdx)‖ > ε
for any point z ∈ Ω\{x} from which we deduce that:

Ω ⊆ {x} ∪
(
Rn\Bε(x + εdx)

)
⇐⇒ Bε(x + εdx)\{x} ⊆ Rn\Ω.

Similarly, there exists a unit vector ξx of Rn such that we get Bε(x + εξx)\{x} ⊆ Ω. Since we have
Bε(x + εξx) ∩ Bε(x + εdx) = {x}, we obtain dx = −ξx. To conclude, if Reach(∂Ω) < +∞, then
observe that BReach(∂Ω)(x ± Reach(∂Ω)dx) =

⋃
0<ε<Reach(∂Ω)Bε(x± εdx)\{x} in order to check

that Ω also satis�es the Reach(∂Ω)-ball condition.

5.1.2 Uniform ball condition implies positive reach

Proposition 5.4. Assume that there exists ε > 0 such that Ω ∈ Oε(Rn). Then, we have:

∀(x,y) ∈ ∂Ω× ∂Ω, ‖dx − dy‖ 6
1

ε
‖x− y‖. (34)

In particular, if x = y, then dx = dy which ensures the unit vector dx of De�nition 1.1 is unique.
In other words, the map d : x ∈ ∂Ω 7→ dx ∈ Sn−1 is well de�ned and 1

ε -Lipschitz continuous.

Proof. Let ε > 0 and Ω ∈ Oε(Rn). Since ∂Ω 6= ∅, we can consider (x,y) ∈ ∂Ω × ∂Ω. First, from
the ε-ball condition on x and y, we have Bε(x ± εdx) ∩ Bε(y ∓ εdy) = ∅, from which we deduce
‖x−y± ε(dx +dy)‖ > 2ε. Then, squaring these two inequalities and summing them, one obtains
the result (34) of the statement: ‖x− y‖2 > 2ε2 − 2ε2〈dx | dy〉 = ε2‖dx − dy‖2.

31



Proof of Point (i) in Theorem 2.6. Let ε > 0 and assume that Ω satis�es the ε-ball condition.
Since ∂Ω 6= ∅ we can choose any x ∈ ∂Ω and let us prove Bε(x) ⊆ Unp(∂Ω). First, we assume
y ∈ Bε(x) ∩ Ω. Since ∂Ω is closed, there exists z ∈ ∂Ω such that d(y, ∂Ω) = ‖z − y‖. Moreover,
we obtain from the ε-ball condition and y ∈ Ω:
(
Bε(z + εdz) ⊆ Rn\Ω and Bd(y,∂Ω)(y) ⊆ Ω

)
=⇒ Bε(z + εdz) ∩Bd(y,∂Ω)(y) = ∅.

Therefore, we deduce that y = z−d(y, ∂Ω)dz. Then, we show that such a z is unique. Considering
another projection z̃ of y on ∂Ω, we get from the foregoing: y = z− d(y, ∂Ω)dz = z̃− d(y, ∂Ω)dz̃.
Using (34), we have:

‖dz − dz̃‖ 6
1

ε
‖z− z̃‖ =

d(y, ∂Ω)

ε
‖dz − dz̃‖.

Since d(y, ∂Ω) 6 ‖x− y‖ < ε, the above inequality can only hold true if ‖dz − dz̃‖ = 0 i.e. z = z̃.
Hence, we obtain Bε(x)∩Ω ⊆ Unp(∂Ω) and similarly, one can prove Bε(x)∩ (Rn\Ω) ⊆ Unp(∂Ω).
Since ∂Ω ⊆ Unp(∂Ω), we �nally get Bε(x) ⊆ Unp(∂Ω). We thus have Reach(∂Ω,x) > ε for every
x ∈ ∂Ω i.e. Reach(∂Ω) > ε as required. To conclude the proof of Theorem 2.6, we can simply get
V (∂Ω) = 0 from Theorem 2.7 proved in Section 5.2. Indeed, ∂Ω can be written as a countable union
of Lipschitz graphs which have zero Lebesgue measure [29, combine Sections 2.2 and 2.4.1].

Proposition 5.5. Assume that there exists ε > 0 such that Ω ∈ Oε(Rn). Then, we have:

∀(a,x) ∈ ∂Ω× ∂Ω, | 〈x− a | da〉 | 6
1

2ε
‖x− a‖2. (35)

Moreover, introducing the vector (x− a)′ = (x− a)− 〈x− a | da〉da, if we assume ‖(x− a)′‖ < ε
and |〈x− a | da〉| < ε, then the following local inequality holds true:

1

2ε
‖x− a‖2 6 ε−

√
ε2 − ‖(x− a)′‖2. (36)

Proof. Let ε > 0 and Ω ∈ Oε(Rn). Since ∂Ω 6= ∅, we can consider (a,x) ∈ ∂Ω× ∂Ω. Observe that
the point x cannot belong neither to Bε(a − εda) ⊆ Ω nor to Bε(a + εda) ⊆ Rn\Ω. Hence, we
have ‖x− a∓ εda‖ > ε. Squaring these two inequalities, we obtain that (35) holds true:

‖x− a‖2 > 2ε| 〈x− a | da〉 | ⇐⇒ | 〈x− a | da〉 |2 − 2ε| 〈x− a | da〉 |+ ‖(x− a)′‖2 > 0.

It is a second-order polynomial inequality and we assume that its reduced discriminant is positive:
∆′ = ε2 − ‖(x − a)′‖2 > 0. Hence, the unknown cannot be located between the two roots: either
| 〈x− a | da〉 | 6 ε −

√
∆′ or | 〈x− a | da〉 | > ε +

√
∆′. We assume | 〈x− a | da〉 | < ε and the

last case cannot hold true. Squaring the remaining relation, we get the local inequality (36) of the
statement: ‖x− a‖2 = | 〈x− a | da〉 |2 + ‖(x− a)′‖2 6 2ε2 − 2ε

√
ε2 − ‖(x− a)′‖2.

5.2 The uniform ball condition and the compact C1,1-hypersurfaces

In this section, Theorem 2.7 is proved. First, we show ∂Ω can be considered locally as the graph of
a function whose C1,1-regularity is then established. Finally, we prove that the converse statement
holds true in the compact case. Hence, it is the optimal regularity we can expect from the uniform
ball property. The proofs in Sections 5.1.2 and 5.2.1�5.2.2 inspire those of Sections 3.2�3.4.

5.2.1 A local parametrization of the boundary ∂Ω

We now set ε > 0 and assume that the open set Ω satis�es the ε-ball condition. Since Ω /∈ {∅,Rn},
∂Ω is not empty so we consider any point x0 ∈ ∂Ω and its unique vector dx0

from Proposition 5.4.
We choose a basis Bx0

of the hyperplane d⊥x0
so that (x0,Bx0

,dx0
) is a direct orthonormal frame.

Inside this frame, any point x ∈ Rn is of the form (x′, xn) such that x′ = (x1, . . . , xn−1) ∈ Rn−1.
The zero vector 0 of Rn is now identi�ed with x0 so we have Bε(0

′,−ε) ⊆ Ω and Bε(0
′, ε) ⊆ Rn\Ω.

Proposition 5.6. The following maps ϕ± are well de�ned on Dε(0
′) = {x′ ∈ Rn−1, ‖x′‖ < ε}:

{
ϕ+ : x′ ∈ Dε(0

′) 7−→ sup{xn ∈ [−ε, ε], (x′, xn) ∈ Ω} ∈ ]− ε, ε[,
ϕ− : x′ ∈ Dε(0

′) 7−→ inf{xn ∈ [−ε, ε], (x′, xn) ∈ Rn\Ω} ∈ ]− ε, ε[.

Moreover, for any x′ ∈ Dε(0
′), introducing the points x± = (x′, ϕ±(x′)), we have x± ∈ ∂Ω and:

|ϕ±(x′)| 6 1

2ε
‖x± − x0‖2 6 ε−

√
ε2 − ‖x′‖2. (37)
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Proof. Let x′ ∈ Dε(0
′) and g : t ∈ [−ε, ε] 7→ (x′, t). Since −ε ∈ g−1(Ω) ⊆ [−ε, ε], we can set

ϕ+(x′) = sup g−1(Ω). The map g is continuous so g−1(Ω) is open and ϕ+(x′) 6= ε thus we get
ϕ(x′) /∈ g−1(Ω) i.e. x+ ∈ Ω\Ω. Similarly, the map ϕ− is well de�ned and x− ∈ ∂Ω. Finally, we
use (35) and (36) on the points x0 and x = x± in order to obtain (37).

Lemma 5.7. Let r =
√

3
2 ε and x′ ∈ Dr(0

′). We assume that there exists xn ∈] − ε, ε[ such that

x = (x′, xn) ∈ ∂Ω and x̃n ∈ R such that |x̃n| 6 ε−
√
ε2 − ‖x′‖2. Then, we introduce x̃ = (x′, x̃n)

and the following implications hold true: (x̃n < xn =⇒ x̃ ∈ Ω) and (x̃n > xn =⇒ x̃ ∈ Rn\Ω).

Proof. Let x′ ∈ Dr(0
′). Since x̃− x = (x̃n − xn)dx0

, if we assume x̃n > xn, then we have:

‖x̃− x− εdx‖2 − ε2 = |x̃n − xn|
(
|x̃n − xn|+ ε‖dx − dx0

‖2 − 2ε
)

6 |x̃n − xn|
(
|x̃n|+ |xn|+ 1

ε‖x− x0‖2 − 2ε
)

6 |x̃n − xn|
(

2ε− 4
√
ε2 − ‖x′‖2

)
< |x̃n − xn|

(
2ε− 4

√
ε2 − r2

)
= 0.

Indeed, we used (34) with x ∈ ∂Ω and y = x0, (35) and (36) applied to x ∈ ∂Ω and a = x0, and
also the hypothesis made on x̃n. Hence, we proved that if x̃n > xn, then x̃ ∈ Bε(x+εdx) ⊆ Rn\Ω.
Similarly, one can prove that if x̃n < xn, then we have x̃ ∈ Bε(x− εdx) ⊆ Ω.

Proposition 5.8. Set r =
√

3
2 ε. Then, the two maps ϕ± of Proposition 5.6 coincide on Dr(0

′).
We denote by ϕ their common restriction. Moreover, we have ϕ(0′) = 0 and also:

{
∂Ω ∩ (Dr(0

′)×]− ε, ε[) = {(x′, ϕ(x′)), x′ ∈ Dr(0
′)}

Ω ∩ (Dr(0
′)×]− ε, ε[) = {(x′, xn), x′ ∈ Dr(0

′) and − ε < xn < ϕ(x′)}.

Proof. Assume by contradiction that there exists x′ ∈ Dr(0
′) such that ϕ−(x′) 6= ϕ+(x′). We set

x = (x′, ϕ+(x′)) and x̃ = (x′, ϕ−(x′)). By using (37), the hypothesis of Lemma 5.7 are satis�ed
for x and x̃. Hence, either (ϕ−(x′) < ϕ+(x′) ⇒ x̃ ∈ Ω) or (ϕ−(x′) > ϕ+(x′) ⇒ x̃ ∈ Rn\Ω)
whereas x̃ ∈ ∂Ω. We deduce ϕ−(x′) = ϕ+(x′) for any x′ ∈ Dr(0

′). Now consider x′ ∈ Dr(0
′)

and xn ∈] − ε, ε[. We set x = (x′, ϕ(x′)) and x̃ = (x′, xn). If xn = ϕ(x′), then Proposition 5.6
ensures that x ∈ ∂Ω. Moreover, if −ε < xn < −ε+

√
ε2 − ‖x′‖2, then x̃ ∈ Bε(0′,−ε) ⊆ Ω, and if

−ε +
√
ε2 − ‖x′‖2 6 xn < ϕ(x′), then apply Lemma 5.7 to get x̃ ∈ Ω. Consequently, we proved

(−ε < xn < ϕ(x′) =⇒ (x′, xn) ∈ Ω) for any x′ ∈ Dr(0
′). Similar arguments hold true when

ε > xn > ϕ(x′) and imply (x′, xn) ∈ Rn\Ω. To conclude, note that x0 = 0 = (0′, ϕ(0′)).

5.2.2 The C1,1-regularity of the local graph

Lemma 5.9. The map f : α ∈]0, π2 [7→ 2α
cosα ∈]0,+∞[ is well de�ned, continuous, surjective and

increasing. In particular, it is an homeomorphism and its inverse f−1 satis�es:

∀ε > 0, f−1(ε) <
ε

2
. (38)

Proof. The proof is basic calculus.

Proposition 5.10 (Point (i) of Theorem 2.7). Consider any α ∈]0, f−1(ε)] where f is de�ned
in Lemma 5.9. Then, we have Cα(x,−dx0

) ⊆ Ω for any x ∈ Bα(x0) ∩ Ω. In particular, the set Ω
satis�es the f−1(ε)-cone property in the sense of De�nition 2.4.

Proof. We set r =
√

3
2 ε and Cr,ε = Dr(0

′)×] − ε, ε[. We choose any α ∈]0, f−1(ε)] then consider

x = (x′, xn) ∈ Bα(x0) ∩ Ω and y = (y′, yn) ∈ Cα(x,−dx0). The proof of the assertion y ∈ Ω is
divided into three steps:

• check that x ∈ Cr,ε so as to introduce the point x̃ = (x′, ϕ(x′)) of ∂Ω satisfying xn 6 ϕ(x′);

• consider ỹ = (y′, yn + ϕ(x′)− xn) and prove that ỹ ∈ Cα(x̃,−dx0
) ⊆ Bε(x̃− εdx̃) ⊆ Ω;

• show that (ỹ,y) ∈ Cr,ε×Cr,ε in order to deduce yn+ϕ(x′)−xn < ϕ(y′) and conclude y ∈ Ω.
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First, from (38), we have: max(‖x′‖, |xn|) 6 ‖x−x0‖ < α 6 f−1(ε) < ε
2 . Hence, we get x ∈ Ω∩Cr,ε

and applying Proposition 5.8, it comes xn 6 ϕ(x′). We set x̃ = (x′, ϕ(x′)) ∈ ∂Ω ∩ Cr,ε. Note that
x̃ ∈ Bα√2(x0) because Relation (37) applied to x̃ = (x′, ϕ(x′)) gives:

‖x̃− x0‖2 6 2ε2 − 2ε
√
ε2 − ‖x′‖2 =

4ε2‖x′‖2

2ε2 + 2ε
√
ε2 − ‖x′‖2

6 2‖x′‖2 6 2‖x− x0‖2 < 2α2.

Then, we prove Cα(x̃,−dx0
) ⊆ Bε(x̃ − εdx̃) so consider any point z ∈ Cα(x̃,−dx0

). Using the
Cauchy-Schwartz inequality, (34) applied to x̃ ∈ ∂Ω and y = x0, the fact that z ∈ Cα(x̃,−dx0

),
and the foregoing observation x̃ ∈ Bα√2(x0), we have successively:

‖z− x̃ + εdx̃‖2 − ε2 6 ‖z− x̃‖2 + 2ε‖z− x̃‖‖dx̃ − dx0
‖+ 2ε 〈z− x̃ | dx0

〉

< ‖z− x̃‖2 + 2‖z− x̃‖‖x̃− x0‖ − 2ε‖z− x̃‖ cosα

< ‖z− x̃‖
[(

1 + 2
√

2
)
α− 2ε cosα

]
< 2‖z− x̃‖ cosα (f(α)− ε) 6 0.

Hence, we get z ∈ Bε(x̃ − εdx̃) i.e. Cα(x̃,−dx0) ⊆ Bε(x̃ − εdx̃) ⊆ Ω using the ε-ball condition.
Moreover, since ỹ − x̃ = y − x and y ∈ Cα(x,−dx0

), we obtain ỹ ∈ Cα(x̃,−dx0
) and thus ỹ ∈ Ω.

Finally, we show that (y, ỹ) ∈ Cr,ε × Cr,ε. We have successively:





‖y′‖ 6 ‖y′ − x′‖+ ‖x′‖ <
√
α2 − α2 cos2 α+ α =

α

cosα

(
1

2
sin 2α+ cosα

)
6 3f(α)

4 6 3ε
4 < r

|yn| 6 |yn − xn|+ |xn| 6 ‖y − x‖+ ‖x− x0‖ < 2α < f(α) 6 ε

|yn + ϕ(x′)− xn| 6 ‖y − x‖+ ε−
√
ε2 − ‖x′‖2 < α+

‖x′‖2

ε+
√
ε2 − ‖x′‖2

6 α+ α2

ε < 3
2α 6 ε.

We used (37)�(38), the fact that y ∈ Cα(x,−dx0), and x ∈ Bα(x0). To conclude, Proposition 5.8
applied to ỹ ∈ Ω ∩ Cr,ε yields to yn + ϕ(x′)− xn < ϕ(y′). Since we �rstly proved xn 6 ϕ(x′), we
deduce that yn < ϕ(y′). Applying Proposition 5.8 to y ∈ Cr,ε, we get y ∈ Ω as required.

Corollary 5.11. The map ϕ restricted to D√2
4 f−1(ε)

(0′) is 1
tan[f−1(ε)] -Lipschitz continuous.

Proof. We set α = f−1(ε), r =
√

3
2 ε, and r̃ =

√
2

4 f
−1(ε). We choose any (x′+,x

′
−) ∈ Dr̃(0

′)×Dr̃(0
′).

From (38), we get r̃ < r so we can consider x± = (x′±, ϕ(x′±)) and Proposition 5.6 gives:

‖x± − x0‖2 6 2ε2 − 2ε
√
ε2 − ‖x′±‖2 =

4ε2‖x′±‖2

2ε2 + 2ε
√
ε2 − ‖x′±‖2

6 2‖x′±‖2 < 2r̃2 < α2.

Hence, we obtain x± ∈ Bα(x0)∩∂Ω. We also have: ‖x+−x−‖ 6 ‖x+−x0‖+‖x0−x−‖ < 2r̃
√

2 = α.
Finally, applying Proposition 5.10, the points x± cannot belong to the cones Cα(x∓,−dx0) ⊆ Ω
thus we get: |〈x+ − x− | dx0

〉| 6 cosα‖x+ − x−‖ = cosα
√
‖x′+ − x′−‖2 + |〈x+ − x− | dx0

〉|2.
Consequently, one can re-arrange these terms in order to obtain the result of the statement:
|ϕ(x′+)− ϕ(x′−)| = |〈x+ − x− | dx0

〉| 6 1
tanα‖x

′
+ − x′−‖.

Proposition 5.12. Set r̃ =
√

2
4 f
−1(ε). The map ϕ of Proposition 5.8 restricted to Dr̃(0

′) is
di�erentiable and its gradient ∇ϕ : Dr̃(0

′)→ Rn−1 is L-Lipschitz continuous where L > 0 depends
only on ε. Moreover, we have ∇ϕ(0′) = 0′ and also:

∀a′ ∈ Dr̃(0
′), ∇ϕ(a′) =

−1

〈da | dx0
〉
d′a, where a = (a′, ϕ(a′)).

Furthermore, the gradient map ∇ϕ : Dr̃(0
′)→ Rn−1 is bounded and valued in the set D 32

31
(0′).

Proof. Let a′ ∈ Dr̃(0
′) and x′ ∈ Dr̃−‖a′‖(a′). Consequently, we have (a′,x′) ∈ Dr̃(0

′) × Dr̃(0
′)

and from (38), we get r̃ <
√

3
2 ε. Hence, using Proposition 5.8, we can introduce x := (x′, ϕ(x′))
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and a := (a′, ϕ(a′)). Applying (35) to (a,x) ∈ ∂Ω× ∂Ω and using the Lipschitz continuity of ϕ on
Dr̃(0

′) proved in Corollary 5.11, we deduce that:

| (ϕ(x′)− ϕ(a′))dan + 〈d′a | x′ − a′〉| 6 1

2ε
‖x− a‖2 6

1

2ε

(
1 +

1

tan2[f−1(ε)]

)

︸ ︷︷ ︸
:=C(ε)>0

‖x′ − a′‖2,

where we set da = (d′a,dan) with dan = 〈da | dx0〉. It represents a �rst-order Taylor expansion of
the map ϕ if we can divide the above inequality by a uniform positive constant smaller than dan.
Let us justify this assertion. Apply (34) to x = a and y = x0, then use (37) to get:

dan = 1− 1

2
‖da − dx0

‖2 > 1− 1

2ε2
‖a− x0‖2 > 1−

ε−
√
ε2 − ‖a′‖2
ε

= 1− ‖a′‖2

ε(ε+
√
ε2 − ‖a′‖2)

.

Hence, using (38), we obtain dan > 1 − r̃2

ε2 >
31
32 > 0. Therefore, ϕ is a di�erentiable map at any

point a′ ∈ Dr̃(0
′) and its gradient is the one given in the statement:

∀x′ ∈ Dr̃−‖a′‖(a′), ϕ(x′)− ϕ(a′) +

〈
d′a
dan

| x′ − a′
〉

6
32

31
C(ε)‖x′ − a′‖2.

Moreover, for any (a′,x′) ∈ Dr̃(0
′)×Dr̃(0

′), we have successively:

‖∇ϕ(x′)−∇ϕ(a′)‖ 6
1

dan

− 1

dxn
‖d′x‖+

1

dan
‖d′a − d′x‖ 6

(
322

312
+

32

31

)
‖da − dx‖

6
32

31ε

(
1 +

32

31

)
‖x− a‖ 6 32

31ε

(
1 +

32

31

)√
1 +

1

tan2[f−1(ε)]
‖x′ − a′‖.

We applied (34) to x and y = a, then used the Lipschitz continuity of ϕ proved in Corollary 5.11.
Hence, ∇ϕ : a′ ∈ Dr̃(0

′) 7→ ∇ϕ(a′) is L-Lipschitz continuous with L > 0 depending only on ε.
To conclude, from the foregoing, we deduce ‖∇ϕ(x′)‖ = |(dan)−1| ‖d′a‖ < 32

31‖da‖ = 32
31 for any

x′ ∈ Dr̃(0
′) and the map ∇ϕ : Dr̃(0

′)→ Rn−1 is thus well valued in D 32
31

(0′).

Corollary 5.13 (Points (ii) and (iii) of Theorem 2.7). The unit vector dx0
of De�nition 1.1

is the outer normal vector to ∂Ω at the point x0. In particular, the 1
ε -Lipschitz continuous map

d : x 7→ dx of Proposition 5.4 is the Gauss map associated with the C1,1-hypersurface ∂Ω.

Proof. Consider the map ϕ : Dr̃(0
′)→]− ε, ε[ whose C1,1-regularity comes from Proposition 5.12.

We de�ne the C1,1-map X : Dr̃(0
′) → ∂Ω by X(x′) = (x′, ϕ(x′)) then we consider x′ ∈ Dr̃(0

′).
We denote by (ek)16k6n−1 the �rst vectors of our local basis. The tangent plane of ∂Ω at X(x′) is
spanned by the vectors ∂kX(x′) = ek + (0′, ∂kϕ(x′)). Since any normal vector u = (u1, . . . , un) to
this hyperplane is orthogonal to this (n− 1) vectors, we have: 〈u | ∂kX(x′)〉 = 0⇔ uk = un

dxn
dxk.

Hence, we obtain u = un
dxn

dx so u is collinear to dx. Now, if we impose that u points outwards Ω

and if we assume ‖u‖ = 1, then we get u = dx.

5.2.3 The compact case: when C1,1-regularity implies the uniform ball condition

Proof of Theorem 2.7. Combining Proposition 5.10 and Corollary 5.13, it remains to prove the
converse part of Theorem 2.7. Consider any non-empty compact C1,1-hypersurface S of Rn and
its associated inner domain Ω. Choose any x0 ∈ ∂Ω and its local frame as in De�nition 2.2. First,
we have for any (x′,y′) ∈ Dr(0

′)×Dr(0
′):

|ϕ(y′)− ϕ(x′)− 〈∇ϕ(x′) | y′ − x′〉| 6
∫ 1

0

‖∇ϕ (x′ + t(y′ − x′))−∇ϕ(x′)‖‖y′ − x′‖dt

6
L

2
‖y′ − x′‖2.

Then, we set ε0 = min( 1
L ,

r
3 ,

a
3 ) and consider any x ∈ Bε0(x0) ∩ ∂Ω. Since ε0 6 min(r, a), there

exists x′ ∈ Dr(0
′) such that x = (x′, ϕ(x′)). We introduce the notation dxn = (1 + ‖∇ϕ(x′)‖2)−

1
2

and d′x = −dxn∇ϕ(x′) so that dx := (d′x,dxn) is a unit vector. Now, let us show that Ω satisfy
the ε0-ball condition at the point x so choose any y ∈ Bε0(x+ ε0dx) ⊆ B2ε0(x) ⊆ B3ε0(x0). Since
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3ε0 6 min(r, a), there exists y′ ∈ Dr(0
′) and yn ∈] − a, a[ such that y = (y′, yn). Moreover, we

have y ∈ Rn\Ω i� yn > ϕ(y′). Observing that ‖y−x− ε0dx‖ < ε0 ⇔ 1
2ε0
‖y−x‖2 < 〈y−x | dx〉,

we obtain successively:

yn − ϕ(y′) =
1

dxn

[dxn (yn − ϕ(x′)) + 〈d′x | y′ − x′〉 − 〈d′x | y′ − x′〉+ dxn (ϕ(x′)− ϕ(y′))]

= 1
dxn
〈y − x | dx〉 − ϕ(y′) + ϕ(x′) + 〈∇ϕ(x′) | y′ − x′〉

>
‖y − x‖2

2ε0dxn

− L

2
‖y′ − x′‖2 >

1

2
‖y′ − x′‖2

(
1

ε0
− L

)
> 0.

Consequently, we get y /∈ Ω and we proved Bε0(x + ε0dx) ⊆ Rn\Ω. Similarly, we can obtain
Bε0(x− ε0dx) ⊆ Ω. Hence, for any x0 ∈ ∂Ω, there exists ε0 > 0 such that Ω∩Bε0(x0) satis�es the
ε0-ball condition. Finally, as ∂Ω is compact, it is included in a �nite reunion of such balls Bε0(x0).
De�ne ε > 0 as the minimum of this �nite number of ε0 and Ω will satisfy the ε-ball property.

5.3 The uniform ball property and the oriented distance functions

Proof of Theorem 2.8. Let Ω ⊂ Rn be open with ∂Ω 6= ∅. First, from [20, Theorem 5.1 (i)], the
oriented distance function bΩ : Rn → R is 1-Lipschitz continuous. Using Rademacher's Theorem
[29, Section 3.1.2], bΩ is di�erentiable almost everywhere with ‖∇bΩ‖L∞(Rn) 6 1. Then, we assume
that there exists ε > 0 such that Ω ∈ Oε(Rn). Let x ∈ ∂Ω. Following the arguments used in the
proof of the point (i) of Theorem 2.6 (cf. Section 5.1.2), we get for any y ∈ Bε(x), that there exists
a unique projection p∂Ω(y) on ∂Ω satisfying:

∀y ∈ Bε(x), p∂Ω(y) = y − bΩ(y)dp∂Ω(y), (39)

where dp∂Ω(y) is the unique vector of Proposition 5.4. Consequently, combining Proposition 5.4
with [20, Theorem 5.1 (i)] and d(y, ∂Ω) 6 ‖x− y‖ < ε, we deduce from (39):

∀(y, ỹ) ∈ Bε(x)×Bε(x), ‖p∂Ω(y)− p∂Ω(ỹ)‖ 6 2ε

ε− d(y, ∂Ω)
‖y − ỹ‖. (40)

Hence, p∂Ω(yi)→ p∂Ω(y) for any yi → y ∈ Bε(x) and p∂Ω ∈ C0(Bε(x)). Since Bε(x) ⊆ Unp(∂Ω),
we can apply [20, Theorem 5.1 (iv)]. We get b2Ω ∈ C1(Bε(x)) and [20, Theorem 5.1 (ii))] ensures
that ∇bΩ : Bε(x)\∂Ω → B1(0) is a well-de�ned map. Considering (39) and [20, Theorem 5.1
(iii))], we obtain ∇bΩ(y) = dp∂Ω(y) for any y ∈ Bε(x)\∂Ω. Since V (∂Ω) = 0 from Theorem 2.6
(i), we have ∇bΩ = d ◦ p∂Ω almost everywhere on Bε(x). From (40) and Proposition 5.4, d ◦ p∂Ω

is continuous on Bε(x) so [30, Lemma 4.7] yields to ∇bΩ = d ◦ p∂Ω everywhere on Bε(x) and
bΩ ∈ C1(Bε(x)) for any x ∈ ∂Ω i.e. bΩ ∈ C1(Vε(∂Ω)). Finally, if y ∈ Br(x) for some r ∈]0, ε[,
we deduce from (40) the 2ε

ε−r -Lipschitz continuity of p∂Ω : Br(x) → ∂Ω. Using Proposition 5.4,

the map ∇bΩ : Br(x) → Sn−1 is 2
ε−r -Lipschitz continuous. In particular, ∇bΩ is bounded and

uniformly continuous: it has a unique Lipschitz continuous extension to Br(x). Moreover, the
Lipschitz constant 2

ε−r does not depend on x ∈ ∂Ω thus bΩ ∈ C1,1(Vr(∂Ω)) for any r ∈]0, ε[.

Conversely, if there now exists ε > 0 such that bΩ ∈ C1,1(Bε(x)) and V (Bε(x) ∩ ∂Ω) = 0 for
any x ∈ ∂Ω, then we can apply [24, Chapter 7 Theorem 8.3 (ii)] to obtain Bε(x) ⊆ Unp(∂Ω)
i.e. Reach(x, ∂Ω) > ε for any x ∈ ∂Ω, from which we deduce Reach(∂Ω) > ε. We can now use
Theorem 2.6 (i). For this purpose, we check that V (∂Ω) 6

∑
x∈∂Ω∩Qn V (Bε(x) ∩ ∂Ω) = 0 and we

get Ω ∈ Oε(Rn) as expected, concluding the proof of Theorem 2.8.
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